kern_timeout.c revision 1.32 1 /* $NetBSD: kern_timeout.c,v 1.32 2008/03/28 20:44:39 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
41 * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 *
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. The name of the author may not be used to endorse or promote products
54 * derived from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
57 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
58 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
59 * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
60 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
61 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
62 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
63 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
64 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
65 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.32 2008/03/28 20:44:39 ad Exp $");
70
71 /*
72 * Timeouts are kept in a hierarchical timing wheel. The c_time is the
73 * value of the global variable "hardclock_ticks" when the timeout should
74 * be called. There are four levels with 256 buckets each. See 'Scheme 7'
75 * in "Hashed and Hierarchical Timing Wheels: Efficient Data Structures
76 * for Implementing a Timer Facility" by George Varghese and Tony Lauck.
77 *
78 * Some of the "math" in here is a bit tricky. We have to beware of
79 * wrapping ints.
80 *
81 * We use the fact that any element added to the queue must be added with
82 * a positive time. That means that any element `to' on the queue cannot
83 * be scheduled to timeout further in time than INT_MAX, but c->c_time can
84 * be positive or negative so comparing it with anything is dangerous.
85 * The only way we can use the c->c_time value in any predictable way is
86 * when we calculate how far in the future `to' will timeout - "c->c_time
87 * - hardclock_ticks". The result will always be positive for future
88 * timeouts and 0 or negative for due timeouts.
89 */
90
91 #define _CALLOUT_PRIVATE
92
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/kernel.h>
96 #include <sys/callout.h>
97 #include <sys/mutex.h>
98 #include <sys/proc.h>
99 #include <sys/sleepq.h>
100 #include <sys/syncobj.h>
101 #include <sys/evcnt.h>
102 #include <sys/intr.h>
103
104 #ifdef DDB
105 #include <machine/db_machdep.h>
106 #include <ddb/db_interface.h>
107 #include <ddb/db_access.h>
108 #include <ddb/db_sym.h>
109 #include <ddb/db_output.h>
110 #endif
111
112 #define BUCKETS 1024
113 #define WHEELSIZE 256
114 #define WHEELMASK 255
115 #define WHEELBITS 8
116
117 static struct callout_circq timeout_wheel[BUCKETS]; /* Queues of timeouts */
118 static struct callout_circq timeout_todo; /* Worklist */
119
120 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
121
122 #define BUCKET(rel, abs) \
123 (((rel) <= (1 << (2*WHEELBITS))) \
124 ? ((rel) <= (1 << WHEELBITS)) \
125 ? &timeout_wheel[MASKWHEEL(0, (abs))] \
126 : &timeout_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE] \
127 : ((rel) <= (1 << (3*WHEELBITS))) \
128 ? &timeout_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE] \
129 : &timeout_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
130
131 #define MOVEBUCKET(wheel, time) \
132 CIRCQ_APPEND(&timeout_todo, \
133 &timeout_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
134
135 /*
136 * Circular queue definitions.
137 */
138
139 #define CIRCQ_INIT(list) \
140 do { \
141 (list)->cq_next_l = (list); \
142 (list)->cq_prev_l = (list); \
143 } while (/*CONSTCOND*/0)
144
145 #define CIRCQ_INSERT(elem, list) \
146 do { \
147 (elem)->cq_prev_e = (list)->cq_prev_e; \
148 (elem)->cq_next_l = (list); \
149 (list)->cq_prev_l->cq_next_l = (elem); \
150 (list)->cq_prev_l = (elem); \
151 } while (/*CONSTCOND*/0)
152
153 #define CIRCQ_APPEND(fst, snd) \
154 do { \
155 if (!CIRCQ_EMPTY(snd)) { \
156 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l; \
157 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l; \
158 (snd)->cq_prev_l->cq_next_l = (fst); \
159 (fst)->cq_prev_l = (snd)->cq_prev_l; \
160 CIRCQ_INIT(snd); \
161 } \
162 } while (/*CONSTCOND*/0)
163
164 #define CIRCQ_REMOVE(elem) \
165 do { \
166 (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e; \
167 (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e; \
168 } while (/*CONSTCOND*/0)
169
170 #define CIRCQ_FIRST(list) ((list)->cq_next_e)
171 #define CIRCQ_NEXT(elem) ((elem)->cq_next_e)
172 #define CIRCQ_LAST(elem,list) ((elem)->cq_next_l == (list))
173 #define CIRCQ_EMPTY(list) ((list)->cq_next_l == (list))
174
175 static void callout_softclock(void *);
176
177 /*
178 * All wheels are locked with the same lock (which must also block out
179 * all interrupts). Eventually this should become per-CPU.
180 */
181 kmutex_t callout_lock;
182 sleepq_t callout_sleepq;
183 void *callout_si;
184
185 static struct evcnt callout_ev_late;
186 static struct evcnt callout_ev_block;
187
188 /*
189 * callout_startup:
190 *
191 * Initialize the callout facility, called at system startup time.
192 */
193 void
194 callout_startup(void)
195 {
196 int b;
197
198 KASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
199
200 CIRCQ_INIT(&timeout_todo);
201 for (b = 0; b < BUCKETS; b++)
202 CIRCQ_INIT(&timeout_wheel[b]);
203
204 mutex_init(&callout_lock, MUTEX_DEFAULT, IPL_SCHED);
205 sleepq_init(&callout_sleepq, &callout_lock);
206
207 evcnt_attach_dynamic(&callout_ev_late, EVCNT_TYPE_MISC,
208 NULL, "callout", "late");
209 evcnt_attach_dynamic(&callout_ev_block, EVCNT_TYPE_MISC,
210 NULL, "callout", "wait for completion");
211 }
212
213 /*
214 * callout_startup2:
215 *
216 * Complete initialization once soft interrupts are available.
217 */
218 void
219 callout_startup2(void)
220 {
221
222 callout_si = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
223 callout_softclock, NULL);
224 if (callout_si == NULL)
225 panic("callout_startup2: unable to register softclock intr");
226 }
227
228 /*
229 * callout_init:
230 *
231 * Initialize a callout structure.
232 */
233 void
234 callout_init(callout_t *cs, u_int flags)
235 {
236 callout_impl_t *c = (callout_impl_t *)cs;
237
238 KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
239
240 memset(c, 0, sizeof(*c));
241 c->c_flags = flags;
242 c->c_magic = CALLOUT_MAGIC;
243 }
244
245 /*
246 * callout_destroy:
247 *
248 * Destroy a callout structure. The callout must be stopped.
249 */
250 void
251 callout_destroy(callout_t *cs)
252 {
253 callout_impl_t *c = (callout_impl_t *)cs;
254
255 /*
256 * It's not necessary to lock in order to see the correct value
257 * of c->c_flags. If the callout could potentially have been
258 * running, the current thread should have stopped it.
259 */
260 KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
261 if (c->c_oncpu != NULL) {
262 KASSERT(
263 ((struct cpu_info *)c->c_oncpu)->ci_data.cpu_callout != c);
264 }
265 KASSERT(c->c_magic == CALLOUT_MAGIC);
266
267 c->c_magic = 0;
268 }
269
270 /*
271 * callout_schedule_locked:
272 *
273 * Schedule a callout to run. The function and argument must
274 * already be set in the callout structure. Must be called with
275 * callout_lock.
276 */
277 static void
278 callout_schedule_locked(callout_impl_t *c, int to_ticks)
279 {
280 int old_time;
281
282 KASSERT(to_ticks >= 0);
283 KASSERT(c->c_func != NULL);
284
285 /* Initialize the time here, it won't change. */
286 old_time = c->c_time;
287 c->c_time = to_ticks + hardclock_ticks;
288 c->c_flags &= ~CALLOUT_FIRED;
289
290 /*
291 * If this timeout is already scheduled and now is moved
292 * earlier, reschedule it now. Otherwise leave it in place
293 * and let it be rescheduled later.
294 */
295 if ((c->c_flags & CALLOUT_PENDING) != 0) {
296 if (c->c_time - old_time < 0) {
297 CIRCQ_REMOVE(&c->c_list);
298 CIRCQ_INSERT(&c->c_list, &timeout_todo);
299 }
300 } else {
301 c->c_flags |= CALLOUT_PENDING;
302 CIRCQ_INSERT(&c->c_list, &timeout_todo);
303 }
304 }
305
306 /*
307 * callout_reset:
308 *
309 * Reset a callout structure with a new function and argument, and
310 * schedule it to run.
311 */
312 void
313 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
314 {
315 callout_impl_t *c = (callout_impl_t *)cs;
316
317 KASSERT(c->c_magic == CALLOUT_MAGIC);
318
319 mutex_spin_enter(&callout_lock);
320
321 c->c_func = func;
322 c->c_arg = arg;
323
324 callout_schedule_locked(c, to_ticks);
325
326 mutex_spin_exit(&callout_lock);
327 }
328
329 /*
330 * callout_schedule:
331 *
332 * Schedule a callout to run. The function and argument must
333 * already be set in the callout structure.
334 */
335 void
336 callout_schedule(callout_t *cs, int to_ticks)
337 {
338 callout_impl_t *c = (callout_impl_t *)cs;
339
340 KASSERT(c->c_magic == CALLOUT_MAGIC);
341
342 mutex_spin_enter(&callout_lock);
343 callout_schedule_locked(c, to_ticks);
344 mutex_spin_exit(&callout_lock);
345 }
346
347
348 /*
349 * callout_stop:
350 *
351 * Try to cancel a pending callout.
352 */
353 bool
354 callout_stop(callout_t *cs)
355 {
356 callout_impl_t *c = (callout_impl_t *)cs;
357 struct cpu_info *ci;
358 bool expired;
359
360 KASSERT(c->c_magic == CALLOUT_MAGIC);
361
362 mutex_spin_enter(&callout_lock);
363
364 if ((c->c_flags & CALLOUT_PENDING) != 0)
365 CIRCQ_REMOVE(&c->c_list);
366 expired = ((c->c_flags & CALLOUT_FIRED) != 0);
367 c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
368
369 if ((ci = c->c_oncpu) != NULL && ci->ci_data.cpu_callout == c) {
370 /*
371 * This is for non-MPSAFE callouts only. To synchronize
372 * effectively we must be called with kernel_lock held.
373 * It's also taken in callout_softclock.
374 */
375 ci = c->c_oncpu;
376 ci->ci_data.cpu_callout_cancel = c;
377 }
378
379 mutex_spin_exit(&callout_lock);
380
381 return expired;
382 }
383
384 /*
385 * callout_halt:
386 *
387 * Cancel a pending callout. If in-flight, block until it completes.
388 * May not be called from a hard interrupt handler.
389 */
390 bool
391 callout_halt(callout_t *cs)
392 {
393 callout_impl_t *c = (callout_impl_t *)cs;
394 extern syncobj_t sleep_syncobj;
395 struct cpu_info *ci;
396 struct lwp *l;
397 bool expired;
398
399 KASSERT(c->c_magic == CALLOUT_MAGIC);
400 KASSERT(!cpu_intr_p());
401
402 mutex_spin_enter(&callout_lock);
403
404 expired = ((c->c_flags & CALLOUT_FIRED) != 0);
405 if ((c->c_flags & CALLOUT_PENDING) != 0)
406 CIRCQ_REMOVE(&c->c_list);
407 c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
408
409 l = curlwp;
410 while (__predict_false((ci = c->c_oncpu) != NULL &&
411 ci->ci_data.cpu_callout == c && c->c_onlwp != l)) {
412 KASSERT(l->l_wchan == NULL);
413
414 ci->ci_data.cpu_callout_nwait++;
415 callout_ev_block.ev_count++;
416
417 l->l_kpriority = true;
418 sleepq_enter(&callout_sleepq, l);
419 sleepq_enqueue(&callout_sleepq, ci, "callout", &sleep_syncobj);
420 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
421 sleepq_block(0, false);
422 mutex_spin_enter(&callout_lock);
423 }
424
425 mutex_spin_exit(&callout_lock);
426
427 return expired;
428 }
429
430 void
431 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
432 {
433 callout_impl_t *c = (callout_impl_t *)cs;
434
435 KASSERT(c->c_magic == CALLOUT_MAGIC);
436
437 mutex_spin_enter(&callout_lock);
438 c->c_func = func;
439 c->c_arg = arg;
440 mutex_spin_exit(&callout_lock);
441 }
442
443 bool
444 callout_expired(callout_t *cs)
445 {
446 callout_impl_t *c = (callout_impl_t *)cs;
447 bool rv;
448
449 KASSERT(c->c_magic == CALLOUT_MAGIC);
450
451 mutex_spin_enter(&callout_lock);
452 rv = ((c->c_flags & CALLOUT_FIRED) != 0);
453 mutex_spin_exit(&callout_lock);
454
455 return rv;
456 }
457
458 bool
459 callout_active(callout_t *cs)
460 {
461 callout_impl_t *c = (callout_impl_t *)cs;
462 bool rv;
463
464 KASSERT(c->c_magic == CALLOUT_MAGIC);
465
466 mutex_spin_enter(&callout_lock);
467 rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
468 mutex_spin_exit(&callout_lock);
469
470 return rv;
471 }
472
473 bool
474 callout_pending(callout_t *cs)
475 {
476 callout_impl_t *c = (callout_impl_t *)cs;
477 bool rv;
478
479 KASSERT(c->c_magic == CALLOUT_MAGIC);
480
481 mutex_spin_enter(&callout_lock);
482 rv = ((c->c_flags & CALLOUT_PENDING) != 0);
483 mutex_spin_exit(&callout_lock);
484
485 return rv;
486 }
487
488 bool
489 callout_invoking(callout_t *cs)
490 {
491 callout_impl_t *c = (callout_impl_t *)cs;
492 bool rv;
493
494 KASSERT(c->c_magic == CALLOUT_MAGIC);
495
496 mutex_spin_enter(&callout_lock);
497 rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
498 mutex_spin_exit(&callout_lock);
499
500 return rv;
501 }
502
503 void
504 callout_ack(callout_t *cs)
505 {
506 callout_impl_t *c = (callout_impl_t *)cs;
507
508 KASSERT(c->c_magic == CALLOUT_MAGIC);
509
510 mutex_spin_enter(&callout_lock);
511 c->c_flags &= ~CALLOUT_INVOKING;
512 mutex_spin_exit(&callout_lock);
513 }
514
515 /*
516 * This is called from hardclock() once every tick.
517 * We schedule callout_softclock() if there is work
518 * to be done.
519 */
520 void
521 callout_hardclock(void)
522 {
523 int needsoftclock;
524
525 mutex_spin_enter(&callout_lock);
526
527 MOVEBUCKET(0, hardclock_ticks);
528 if (MASKWHEEL(0, hardclock_ticks) == 0) {
529 MOVEBUCKET(1, hardclock_ticks);
530 if (MASKWHEEL(1, hardclock_ticks) == 0) {
531 MOVEBUCKET(2, hardclock_ticks);
532 if (MASKWHEEL(2, hardclock_ticks) == 0)
533 MOVEBUCKET(3, hardclock_ticks);
534 }
535 }
536
537 needsoftclock = !CIRCQ_EMPTY(&timeout_todo);
538 mutex_spin_exit(&callout_lock);
539
540 if (needsoftclock)
541 softint_schedule(callout_si);
542 }
543
544 /* ARGSUSED */
545 static void
546 callout_softclock(void *v)
547 {
548 callout_impl_t *c;
549 struct cpu_info *ci;
550 void (*func)(void *);
551 void *arg;
552 u_int mpsafe, count;
553 lwp_t *l;
554
555 l = curlwp;
556 ci = l->l_cpu;
557
558 mutex_spin_enter(&callout_lock);
559
560 while (!CIRCQ_EMPTY(&timeout_todo)) {
561 c = CIRCQ_FIRST(&timeout_todo);
562 KASSERT(c->c_magic == CALLOUT_MAGIC);
563 KASSERT(c->c_func != NULL);
564 KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
565 KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
566 CIRCQ_REMOVE(&c->c_list);
567
568 /* If due run it, otherwise insert it into the right bucket. */
569 if (c->c_time - hardclock_ticks > 0) {
570 CIRCQ_INSERT(&c->c_list,
571 BUCKET((c->c_time - hardclock_ticks), c->c_time));
572 } else {
573 if (c->c_time - hardclock_ticks < 0)
574 callout_ev_late.ev_count++;
575
576 c->c_flags ^= (CALLOUT_PENDING | CALLOUT_FIRED);
577 mpsafe = (c->c_flags & CALLOUT_MPSAFE);
578 func = c->c_func;
579 arg = c->c_arg;
580 c->c_oncpu = ci;
581 c->c_onlwp = l;
582 ci->ci_data.cpu_callout = c;
583
584 mutex_spin_exit(&callout_lock);
585 if (!mpsafe) {
586 KERNEL_LOCK(1, curlwp);
587 (*func)(arg);
588 KERNEL_UNLOCK_ONE(curlwp);
589 } else
590 (*func)(arg);
591 mutex_spin_enter(&callout_lock);
592
593 /*
594 * We can't touch 'c' here because it might be
595 * freed already. If LWPs waiting for callout
596 * to complete, awaken them.
597 */
598 ci->ci_data.cpu_callout = NULL;
599 if ((count = ci->ci_data.cpu_callout_nwait) != 0) {
600 ci->ci_data.cpu_callout_nwait = 0;
601 /* sleepq_wake() drops the lock. */
602 sleepq_wake(&callout_sleepq, ci, count);
603 mutex_spin_enter(&callout_lock);
604 }
605 }
606 }
607
608 mutex_spin_exit(&callout_lock);
609 }
610
611 #ifdef DDB
612 static void
613 db_show_callout_bucket(struct callout_circq *bucket)
614 {
615 callout_impl_t *c;
616 db_expr_t offset;
617 const char *name;
618 static char question[] = "?";
619
620 if (CIRCQ_EMPTY(bucket))
621 return;
622
623 for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
624 db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
625 &offset);
626 name = name ? name : question;
627 #ifdef _LP64
628 #define POINTER_WIDTH "%16lx"
629 #else
630 #define POINTER_WIDTH "%8lx"
631 #endif
632 db_printf("%9d %2d/%-4d " POINTER_WIDTH " %s\n",
633 c->c_time - hardclock_ticks,
634 (int)((bucket - timeout_wheel) / WHEELSIZE),
635 (int)(bucket - timeout_wheel), (u_long) c->c_arg, name);
636
637 if (CIRCQ_LAST(&c->c_list, bucket))
638 break;
639 }
640 }
641
642 void
643 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
644 {
645 int b;
646
647 db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
648 #ifdef _LP64
649 db_printf(" ticks wheel arg func\n");
650 #else
651 db_printf(" ticks wheel arg func\n");
652 #endif
653
654 /*
655 * Don't lock the callwheel; all the other CPUs are paused
656 * anyhow, and we might be called in a circumstance where
657 * some other CPU was paused while holding the lock.
658 */
659
660 db_show_callout_bucket(&timeout_todo);
661 for (b = 0; b < BUCKETS; b++)
662 db_show_callout_bucket(&timeout_wheel[b]);
663 }
664 #endif /* DDB */
665