kern_timeout.c revision 1.37 1 /* $NetBSD: kern_timeout.c,v 1.37 2008/04/22 12:04:22 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
41 * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
42 * All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 *
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. The name of the author may not be used to endorse or promote products
54 * derived from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
57 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
58 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
59 * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
60 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
61 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
62 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
63 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
64 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
65 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.37 2008/04/22 12:04:22 ad Exp $");
70
71 /*
72 * Timeouts are kept in a hierarchical timing wheel. The c_time is the
73 * value of c_cpu->cc_ticks when the timeout should be called. There are
74 * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
75 * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
76 * a Timer Facility" by George Varghese and Tony Lauck.
77 *
78 * Some of the "math" in here is a bit tricky. We have to beware of
79 * wrapping ints.
80 *
81 * We use the fact that any element added to the queue must be added with
82 * a positive time. That means that any element `to' on the queue cannot
83 * be scheduled to timeout further in time than INT_MAX, but c->c_time can
84 * be positive or negative so comparing it with anything is dangerous.
85 * The only way we can use the c->c_time value in any predictable way is
86 * when we calculate how far in the future `to' will timeout - "c->c_time
87 * - c->c_cpu->cc_ticks". The result will always be positive for future
88 * timeouts and 0 or negative for due timeouts.
89 */
90
91 #define _CALLOUT_PRIVATE
92
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/kernel.h>
96 #include <sys/callout.h>
97 #include <sys/mutex.h>
98 #include <sys/proc.h>
99 #include <sys/sleepq.h>
100 #include <sys/syncobj.h>
101 #include <sys/evcnt.h>
102 #include <sys/intr.h>
103 #include <sys/cpu.h>
104 #include <sys/kmem.h>
105
106 #ifdef DDB
107 #include <machine/db_machdep.h>
108 #include <ddb/db_interface.h>
109 #include <ddb/db_access.h>
110 #include <ddb/db_sym.h>
111 #include <ddb/db_output.h>
112 #endif
113
114 #define BUCKETS 1024
115 #define WHEELSIZE 256
116 #define WHEELMASK 255
117 #define WHEELBITS 8
118
119 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
120
121 #define BUCKET(cc, rel, abs) \
122 (((rel) <= (1 << (2*WHEELBITS))) \
123 ? ((rel) <= (1 << WHEELBITS)) \
124 ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))] \
125 : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE] \
126 : ((rel) <= (1 << (3*WHEELBITS))) \
127 ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE] \
128 : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
129
130 #define MOVEBUCKET(cc, wheel, time) \
131 CIRCQ_APPEND(&(cc)->cc_todo, \
132 &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
133
134 /*
135 * Circular queue definitions.
136 */
137
138 #define CIRCQ_INIT(list) \
139 do { \
140 (list)->cq_next_l = (list); \
141 (list)->cq_prev_l = (list); \
142 } while (/*CONSTCOND*/0)
143
144 #define CIRCQ_INSERT(elem, list) \
145 do { \
146 (elem)->cq_prev_e = (list)->cq_prev_e; \
147 (elem)->cq_next_l = (list); \
148 (list)->cq_prev_l->cq_next_l = (elem); \
149 (list)->cq_prev_l = (elem); \
150 } while (/*CONSTCOND*/0)
151
152 #define CIRCQ_APPEND(fst, snd) \
153 do { \
154 if (!CIRCQ_EMPTY(snd)) { \
155 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l; \
156 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l; \
157 (snd)->cq_prev_l->cq_next_l = (fst); \
158 (fst)->cq_prev_l = (snd)->cq_prev_l; \
159 CIRCQ_INIT(snd); \
160 } \
161 } while (/*CONSTCOND*/0)
162
163 #define CIRCQ_REMOVE(elem) \
164 do { \
165 (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e; \
166 (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e; \
167 } while (/*CONSTCOND*/0)
168
169 #define CIRCQ_FIRST(list) ((list)->cq_next_e)
170 #define CIRCQ_NEXT(elem) ((elem)->cq_next_e)
171 #define CIRCQ_LAST(elem,list) ((elem)->cq_next_l == (list))
172 #define CIRCQ_EMPTY(list) ((list)->cq_next_l == (list))
173
174 static void callout_softclock(void *);
175
176 struct callout_cpu {
177 kmutex_t cc_lock;
178 sleepq_t cc_sleepq;
179 u_int cc_nwait;
180 u_int cc_ticks;
181 lwp_t *cc_lwp;
182 callout_impl_t *cc_active;
183 callout_impl_t *cc_cancel;
184 struct evcnt cc_ev_late;
185 struct evcnt cc_ev_block;
186 struct callout_circq cc_todo; /* Worklist */
187 struct callout_circq cc_wheel[BUCKETS]; /* Queues of timeouts */
188 char cc_name1[12];
189 char cc_name2[12];
190 };
191
192 static struct callout_cpu callout_cpu0;
193 static void *callout_sih;
194
195 static inline kmutex_t *
196 callout_lock(callout_impl_t *c)
197 {
198 kmutex_t *lock;
199
200 for (;;) {
201 lock = &c->c_cpu->cc_lock;
202 mutex_spin_enter(lock);
203 if (__predict_true(lock == &c->c_cpu->cc_lock))
204 return lock;
205 mutex_spin_exit(lock);
206 }
207 }
208
209 /*
210 * callout_startup:
211 *
212 * Initialize the callout facility, called at system startup time.
213 * Do just enough to allow callouts to be safely registered.
214 */
215 void
216 callout_startup(void)
217 {
218 struct callout_cpu *cc;
219 int b;
220
221 KASSERT(curcpu()->ci_data.cpu_callout == NULL);
222
223 cc = &callout_cpu0;
224 mutex_init(&cc->cc_lock, MUTEX_DEFAULT, IPL_SCHED);
225 CIRCQ_INIT(&cc->cc_todo);
226 for (b = 0; b < BUCKETS; b++)
227 CIRCQ_INIT(&cc->cc_wheel[b]);
228 curcpu()->ci_data.cpu_callout = cc;
229 }
230
231 /*
232 * callout_init_cpu:
233 *
234 * Per-CPU initialization.
235 */
236 void
237 callout_init_cpu(struct cpu_info *ci)
238 {
239 struct callout_cpu *cc;
240 int b;
241
242 KASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
243
244 if ((cc = ci->ci_data.cpu_callout) == NULL) {
245 cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
246 if (cc == NULL)
247 panic("callout_init_cpu (1)");
248 mutex_init(&cc->cc_lock, MUTEX_DEFAULT, IPL_SCHED);
249 CIRCQ_INIT(&cc->cc_todo);
250 for (b = 0; b < BUCKETS; b++)
251 CIRCQ_INIT(&cc->cc_wheel[b]);
252 } else {
253 /* Boot CPU, one time only. */
254 callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
255 callout_softclock, NULL);
256 if (callout_sih == NULL)
257 panic("callout_init_cpu (2)");
258 }
259
260 sleepq_init(&cc->cc_sleepq, &cc->cc_lock);
261
262 snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
263 cpu_index(ci));
264 evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
265 NULL, "callout", cc->cc_name1);
266
267 snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
268 cpu_index(ci));
269 evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
270 NULL, "callout", cc->cc_name2);
271
272 ci->ci_data.cpu_callout = cc;
273 }
274
275 /*
276 * callout_init:
277 *
278 * Initialize a callout structure. This must be quick, so we fill
279 * only the minimum number of fields.
280 */
281 void
282 callout_init(callout_t *cs, u_int flags)
283 {
284 callout_impl_t *c = (callout_impl_t *)cs;
285 struct callout_cpu *cc;
286
287 KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
288
289 cc = curcpu()->ci_data.cpu_callout;
290 c->c_func = NULL;
291 c->c_magic = CALLOUT_MAGIC;
292 if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
293 c->c_flags = flags;
294 c->c_cpu = cc;
295 return;
296 }
297 c->c_flags = flags | CALLOUT_BOUND;
298 c->c_cpu = &callout_cpu0;
299 }
300
301 /*
302 * callout_destroy:
303 *
304 * Destroy a callout structure. The callout must be stopped.
305 */
306 void
307 callout_destroy(callout_t *cs)
308 {
309 callout_impl_t *c = (callout_impl_t *)cs;
310
311 /*
312 * It's not necessary to lock in order to see the correct value
313 * of c->c_flags. If the callout could potentially have been
314 * running, the current thread should have stopped it.
315 */
316 KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
317 KASSERT(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c);
318 KASSERT(c->c_magic == CALLOUT_MAGIC);
319 c->c_magic = 0;
320 }
321
322 /*
323 * callout_schedule_locked:
324 *
325 * Schedule a callout to run. The function and argument must
326 * already be set in the callout structure. Must be called with
327 * callout_lock.
328 */
329 static void
330 callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
331 {
332 struct callout_cpu *cc, *occ;
333 int old_time;
334
335 KASSERT(to_ticks >= 0);
336 KASSERT(c->c_func != NULL);
337
338 /* Initialize the time here, it won't change. */
339 occ = c->c_cpu;
340 c->c_flags &= ~CALLOUT_FIRED;
341
342 /*
343 * If this timeout is already scheduled and now is moved
344 * earlier, reschedule it now. Otherwise leave it in place
345 * and let it be rescheduled later.
346 */
347 if ((c->c_flags & CALLOUT_PENDING) != 0) {
348 /* Leave on existing CPU. */
349 old_time = c->c_time;
350 c->c_time = to_ticks + occ->cc_ticks;
351 if (c->c_time - old_time < 0) {
352 CIRCQ_REMOVE(&c->c_list);
353 CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
354 }
355 mutex_spin_exit(lock);
356 return;
357 }
358
359 cc = curcpu()->ci_data.cpu_callout;
360 if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
361 !mutex_tryenter(&cc->cc_lock)) {
362 /* Leave on existing CPU. */
363 c->c_time = to_ticks + occ->cc_ticks;
364 c->c_flags |= CALLOUT_PENDING;
365 CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
366 } else {
367 /* Move to this CPU. */
368 c->c_cpu = cc;
369 c->c_time = to_ticks + cc->cc_ticks;
370 c->c_flags |= CALLOUT_PENDING;
371 CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
372 mutex_spin_exit(&cc->cc_lock);
373 }
374 mutex_spin_exit(lock);
375 }
376
377 /*
378 * callout_reset:
379 *
380 * Reset a callout structure with a new function and argument, and
381 * schedule it to run.
382 */
383 void
384 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
385 {
386 callout_impl_t *c = (callout_impl_t *)cs;
387 kmutex_t *lock;
388
389 KASSERT(c->c_magic == CALLOUT_MAGIC);
390
391 lock = callout_lock(c);
392 c->c_func = func;
393 c->c_arg = arg;
394 callout_schedule_locked(c, lock, to_ticks);
395 }
396
397 /*
398 * callout_schedule:
399 *
400 * Schedule a callout to run. The function and argument must
401 * already be set in the callout structure.
402 */
403 void
404 callout_schedule(callout_t *cs, int to_ticks)
405 {
406 callout_impl_t *c = (callout_impl_t *)cs;
407 kmutex_t *lock;
408
409 KASSERT(c->c_magic == CALLOUT_MAGIC);
410
411 lock = callout_lock(c);
412 callout_schedule_locked(c, lock, to_ticks);
413 }
414
415 /*
416 * callout_stop:
417 *
418 * Try to cancel a pending callout. It may be too late: the callout
419 * could be running on another CPU. If called from interrupt context,
420 * the callout could already be in progress at a lower priority.
421 */
422 bool
423 callout_stop(callout_t *cs)
424 {
425 callout_impl_t *c = (callout_impl_t *)cs;
426 struct callout_cpu *cc;
427 kmutex_t *lock;
428 bool expired;
429
430 KASSERT(c->c_magic == CALLOUT_MAGIC);
431
432 lock = callout_lock(c);
433
434 if ((c->c_flags & CALLOUT_PENDING) != 0)
435 CIRCQ_REMOVE(&c->c_list);
436 expired = ((c->c_flags & CALLOUT_FIRED) != 0);
437 c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
438
439 cc = c->c_cpu;
440 if (cc->cc_active == c) {
441 /*
442 * This is for non-MPSAFE callouts only. To synchronize
443 * effectively we must be called with kernel_lock held.
444 * It's also taken in callout_softclock.
445 */
446 cc->cc_cancel = c;
447 }
448
449 mutex_spin_exit(lock);
450
451 return expired;
452 }
453
454 /*
455 * callout_halt:
456 *
457 * Cancel a pending callout. If in-flight, block until it completes.
458 * May not be called from a hard interrupt handler. If the callout
459 * can take locks, the caller of callout_halt() must not hold any of
460 * those locks, otherwise the two could deadlock. If 'interlock' is
461 * non-NULL and we must wait for the callout to complete, it will be
462 * released and re-acquired before returning.
463 */
464 bool
465 callout_halt(callout_t *cs, kmutex_t *interlock)
466 {
467 callout_impl_t *c = (callout_impl_t *)cs;
468 struct callout_cpu *cc;
469 struct lwp *l;
470 kmutex_t *lock, *relock;
471 bool expired;
472
473 KASSERT(c->c_magic == CALLOUT_MAGIC);
474 KASSERT(!cpu_intr_p());
475
476 lock = callout_lock(c);
477 relock = NULL;
478
479 expired = ((c->c_flags & CALLOUT_FIRED) != 0);
480 if ((c->c_flags & CALLOUT_PENDING) != 0)
481 CIRCQ_REMOVE(&c->c_list);
482 c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
483
484 l = curlwp;
485 for (;;) {
486 cc = c->c_cpu;
487 if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
488 break;
489 if (interlock != NULL) {
490 /*
491 * Avoid potential scheduler lock order problems by
492 * dropping the interlock without the callout lock
493 * held.
494 */
495 mutex_spin_exit(lock);
496 mutex_exit(interlock);
497 relock = interlock;
498 interlock = NULL;
499 } else {
500 /* XXX Better to do priority inheritance. */
501 KASSERT(l->l_wchan == NULL);
502 cc->cc_nwait++;
503 cc->cc_ev_block.ev_count++;
504 l->l_kpriority = true;
505 sleepq_enter(&cc->cc_sleepq, l);
506 sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
507 &sleep_syncobj);
508 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
509 sleepq_block(0, false);
510 }
511 lock = callout_lock(c);
512 }
513
514 mutex_spin_exit(lock);
515 if (__predict_false(relock != NULL))
516 mutex_enter(relock);
517
518 return expired;
519 }
520
521 #ifdef notyet
522 /*
523 * callout_bind:
524 *
525 * Bind a callout so that it will only execute on one CPU.
526 * The callout must be stopped, and must be MPSAFE.
527 *
528 * XXX Disabled for now until it is decided how to handle
529 * offlined CPUs. We may want weak+strong binding.
530 */
531 void
532 callout_bind(callout_t *cs, struct cpu_info *ci)
533 {
534 callout_impl_t *c = (callout_impl_t *)cs;
535 struct callout_cpu *cc;
536 kmutex_t *lock;
537
538 KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
539 KASSERT(c->c_cpu->cc_active != c);
540 KASSERT(c->c_magic == CALLOUT_MAGIC);
541 KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
542
543 lock = callout_lock(c);
544 cc = ci->ci_data.cpu_callout;
545 c->c_flags |= CALLOUT_BOUND;
546 if (c->c_cpu != cc) {
547 /*
548 * Assigning c_cpu effectively unlocks the callout
549 * structure, as we don't hold the new CPU's lock.
550 * Issue memory barrier to prevent accesses being
551 * reordered.
552 */
553 membar_exit();
554 c->c_cpu = cc;
555 }
556 mutex_spin_exit(lock);
557 }
558 #endif
559
560 void
561 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
562 {
563 callout_impl_t *c = (callout_impl_t *)cs;
564 kmutex_t *lock;
565
566 KASSERT(c->c_magic == CALLOUT_MAGIC);
567
568 lock = callout_lock(c);
569 c->c_func = func;
570 c->c_arg = arg;
571 mutex_spin_exit(lock);
572 }
573
574 bool
575 callout_expired(callout_t *cs)
576 {
577 callout_impl_t *c = (callout_impl_t *)cs;
578 kmutex_t *lock;
579 bool rv;
580
581 KASSERT(c->c_magic == CALLOUT_MAGIC);
582
583 lock = callout_lock(c);
584 rv = ((c->c_flags & CALLOUT_FIRED) != 0);
585 mutex_spin_exit(lock);
586
587 return rv;
588 }
589
590 bool
591 callout_active(callout_t *cs)
592 {
593 callout_impl_t *c = (callout_impl_t *)cs;
594 kmutex_t *lock;
595 bool rv;
596
597 KASSERT(c->c_magic == CALLOUT_MAGIC);
598
599 lock = callout_lock(c);
600 rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
601 mutex_spin_exit(lock);
602
603 return rv;
604 }
605
606 bool
607 callout_pending(callout_t *cs)
608 {
609 callout_impl_t *c = (callout_impl_t *)cs;
610 kmutex_t *lock;
611 bool rv;
612
613 KASSERT(c->c_magic == CALLOUT_MAGIC);
614
615 lock = callout_lock(c);
616 rv = ((c->c_flags & CALLOUT_PENDING) != 0);
617 mutex_spin_exit(lock);
618
619 return rv;
620 }
621
622 bool
623 callout_invoking(callout_t *cs)
624 {
625 callout_impl_t *c = (callout_impl_t *)cs;
626 kmutex_t *lock;
627 bool rv;
628
629 KASSERT(c->c_magic == CALLOUT_MAGIC);
630
631 lock = callout_lock(c);
632 rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
633 mutex_spin_exit(lock);
634
635 return rv;
636 }
637
638 void
639 callout_ack(callout_t *cs)
640 {
641 callout_impl_t *c = (callout_impl_t *)cs;
642 kmutex_t *lock;
643
644 KASSERT(c->c_magic == CALLOUT_MAGIC);
645
646 lock = callout_lock(c);
647 c->c_flags &= ~CALLOUT_INVOKING;
648 mutex_spin_exit(lock);
649 }
650
651 /*
652 * callout_hardclock:
653 *
654 * Called from hardclock() once every tick. We schedule a soft
655 * interrupt if there is work to be done.
656 */
657 void
658 callout_hardclock(void)
659 {
660 struct callout_cpu *cc;
661 int needsoftclock, ticks;
662
663 cc = curcpu()->ci_data.cpu_callout;
664 mutex_spin_enter(&cc->cc_lock);
665
666 ticks = ++cc->cc_ticks;
667
668 MOVEBUCKET(cc, 0, ticks);
669 if (MASKWHEEL(0, ticks) == 0) {
670 MOVEBUCKET(cc, 1, ticks);
671 if (MASKWHEEL(1, ticks) == 0) {
672 MOVEBUCKET(cc, 2, ticks);
673 if (MASKWHEEL(2, ticks) == 0)
674 MOVEBUCKET(cc, 3, ticks);
675 }
676 }
677
678 needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
679 mutex_spin_exit(&cc->cc_lock);
680
681 if (needsoftclock)
682 softint_schedule(callout_sih);
683 }
684
685 /*
686 * callout_softclock:
687 *
688 * Soft interrupt handler, scheduled above if there is work to
689 * be done. Callouts are made in soft interrupt context.
690 */
691 static void
692 callout_softclock(void *v)
693 {
694 callout_impl_t *c;
695 struct callout_cpu *cc;
696 void (*func)(void *);
697 void *arg;
698 int mpsafe, count, ticks, delta;
699 lwp_t *l;
700
701 l = curlwp;
702 KASSERT(l->l_cpu == curcpu());
703 cc = l->l_cpu->ci_data.cpu_callout;
704
705 mutex_spin_enter(&cc->cc_lock);
706 cc->cc_lwp = l;
707 while (!CIRCQ_EMPTY(&cc->cc_todo)) {
708 c = CIRCQ_FIRST(&cc->cc_todo);
709 KASSERT(c->c_magic == CALLOUT_MAGIC);
710 KASSERT(c->c_func != NULL);
711 KASSERT(c->c_cpu == cc);
712 KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
713 KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
714 CIRCQ_REMOVE(&c->c_list);
715
716 /* If due run it, otherwise insert it into the right bucket. */
717 ticks = cc->cc_ticks;
718 delta = c->c_time - ticks;
719 if (delta > 0) {
720 CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
721 continue;
722 }
723 if (delta < 0)
724 cc->cc_ev_late.ev_count++;
725
726 c->c_flags ^= (CALLOUT_PENDING | CALLOUT_FIRED);
727 mpsafe = (c->c_flags & CALLOUT_MPSAFE);
728 func = c->c_func;
729 arg = c->c_arg;
730 cc->cc_active = c;
731
732 mutex_spin_exit(&cc->cc_lock);
733 if (!mpsafe) {
734 KERNEL_LOCK(1, NULL);
735 (*func)(arg);
736 KERNEL_UNLOCK_ONE(NULL);
737 } else
738 (*func)(arg);
739 mutex_spin_enter(&cc->cc_lock);
740
741 /*
742 * We can't touch 'c' here because it might be
743 * freed already. If LWPs waiting for callout
744 * to complete, awaken them.
745 */
746 cc->cc_active = NULL;
747 if ((count = cc->cc_nwait) != 0) {
748 cc->cc_nwait = 0;
749 /* sleepq_wake() drops the lock. */
750 sleepq_wake(&cc->cc_sleepq, cc, count);
751 mutex_spin_enter(&cc->cc_lock);
752 }
753 }
754 cc->cc_lwp = NULL;
755 mutex_spin_exit(&cc->cc_lock);
756 }
757
758 #ifdef DDB
759 static void
760 db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *bucket)
761 {
762 callout_impl_t *c;
763 db_expr_t offset;
764 const char *name;
765 static char question[] = "?";
766 int b;
767
768 if (CIRCQ_EMPTY(bucket))
769 return;
770
771 for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
772 db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
773 &offset);
774 name = name ? name : question;
775 b = (bucket - cc->cc_wheel);
776 if (b < 0)
777 b = -WHEELSIZE;
778 db_printf("%9d %2d/%-4d %16lx %s\n",
779 c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
780 (u_long)c->c_arg, name);
781 if (CIRCQ_LAST(&c->c_list, bucket))
782 break;
783 }
784 }
785
786 void
787 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
788 {
789 CPU_INFO_ITERATOR cii;
790 struct callout_cpu *cc;
791 struct cpu_info *ci;
792 int b;
793
794 db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
795 db_printf(" ticks wheel arg func\n");
796
797 /*
798 * Don't lock the callwheel; all the other CPUs are paused
799 * anyhow, and we might be called in a circumstance where
800 * some other CPU was paused while holding the lock.
801 */
802 for (CPU_INFO_FOREACH(cii, ci)) {
803 cc = ci->ci_data.cpu_callout;
804 db_show_callout_bucket(cc, &cc->cc_todo);
805 }
806 for (b = 0; b < BUCKETS; b++) {
807 for (CPU_INFO_FOREACH(cii, ci)) {
808 cc = ci->ci_data.cpu_callout;
809 db_show_callout_bucket(cc, &cc->cc_wheel[b]);
810 }
811 }
812 }
813 #endif /* DDB */
814