Home | History | Annotate | Line # | Download | only in kern
kern_timeout.c revision 1.39.2.2
      1 /*	$NetBSD: kern_timeout.c,v 1.39.2.2 2008/09/18 04:31:43 wrstuden Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
     34  * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
     35  * All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  *
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. The name of the author may not be used to endorse or promote products
     47  *    derived from this software without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
     50  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
     51  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     52  * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     53  * EXEMPLARY, OR CONSEQUENTIAL  DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 #include <sys/cdefs.h>
     62 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.39.2.2 2008/09/18 04:31:43 wrstuden Exp $");
     63 
     64 /*
     65  * Timeouts are kept in a hierarchical timing wheel.  The c_time is the
     66  * value of c_cpu->cc_ticks when the timeout should be called.  There are
     67  * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
     68  * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
     69  * a Timer Facility" by George Varghese and Tony Lauck.
     70  *
     71  * Some of the "math" in here is a bit tricky.  We have to beware of
     72  * wrapping ints.
     73  *
     74  * We use the fact that any element added to the queue must be added with
     75  * a positive time.  That means that any element `to' on the queue cannot
     76  * be scheduled to timeout further in time than INT_MAX, but c->c_time can
     77  * be positive or negative so comparing it with anything is dangerous.
     78  * The only way we can use the c->c_time value in any predictable way is
     79  * when we calculate how far in the future `to' will timeout - "c->c_time
     80  * - c->c_cpu->cc_ticks".  The result will always be positive for future
     81  * timeouts and 0 or negative for due timeouts.
     82  */
     83 
     84 #define	_CALLOUT_PRIVATE
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/kernel.h>
     89 #include <sys/callout.h>
     90 #include <sys/mutex.h>
     91 #include <sys/proc.h>
     92 #include <sys/sleepq.h>
     93 #include <sys/syncobj.h>
     94 #include <sys/evcnt.h>
     95 #include <sys/intr.h>
     96 #include <sys/cpu.h>
     97 #include <sys/kmem.h>
     98 
     99 #ifdef DDB
    100 #include <machine/db_machdep.h>
    101 #include <ddb/db_interface.h>
    102 #include <ddb/db_access.h>
    103 #include <ddb/db_sym.h>
    104 #include <ddb/db_output.h>
    105 #endif
    106 
    107 #define BUCKETS		1024
    108 #define WHEELSIZE	256
    109 #define WHEELMASK	255
    110 #define WHEELBITS	8
    111 
    112 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
    113 
    114 #define BUCKET(cc, rel, abs)						\
    115     (((rel) <= (1 << (2*WHEELBITS)))					\
    116     	? ((rel) <= (1 << WHEELBITS))					\
    117             ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))]			\
    118             : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE]		\
    119         : ((rel) <= (1 << (3*WHEELBITS)))				\
    120             ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE]	\
    121             : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
    122 
    123 #define MOVEBUCKET(cc, wheel, time)					\
    124     CIRCQ_APPEND(&(cc)->cc_todo,					\
    125         &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
    126 
    127 /*
    128  * Circular queue definitions.
    129  */
    130 
    131 #define CIRCQ_INIT(list)						\
    132 do {									\
    133         (list)->cq_next_l = (list);					\
    134         (list)->cq_prev_l = (list);					\
    135 } while (/*CONSTCOND*/0)
    136 
    137 #define CIRCQ_INSERT(elem, list)					\
    138 do {									\
    139         (elem)->cq_prev_e = (list)->cq_prev_e;				\
    140         (elem)->cq_next_l = (list);					\
    141         (list)->cq_prev_l->cq_next_l = (elem);				\
    142         (list)->cq_prev_l = (elem);					\
    143 } while (/*CONSTCOND*/0)
    144 
    145 #define CIRCQ_APPEND(fst, snd)						\
    146 do {									\
    147         if (!CIRCQ_EMPTY(snd)) {					\
    148                 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l;		\
    149                 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l;		\
    150                 (snd)->cq_prev_l->cq_next_l = (fst);			\
    151                 (fst)->cq_prev_l = (snd)->cq_prev_l;			\
    152                 CIRCQ_INIT(snd);					\
    153         }								\
    154 } while (/*CONSTCOND*/0)
    155 
    156 #define CIRCQ_REMOVE(elem)						\
    157 do {									\
    158         (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e;		\
    159         (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e;		\
    160 } while (/*CONSTCOND*/0)
    161 
    162 #define CIRCQ_FIRST(list)	((list)->cq_next_e)
    163 #define CIRCQ_NEXT(elem)	((elem)->cq_next_e)
    164 #define CIRCQ_LAST(elem,list)	((elem)->cq_next_l == (list))
    165 #define CIRCQ_EMPTY(list)	((list)->cq_next_l == (list))
    166 
    167 static void	callout_softclock(void *);
    168 
    169 struct callout_cpu {
    170 	kmutex_t	cc_lock;
    171 	sleepq_t	cc_sleepq;
    172 	u_int		cc_nwait;
    173 	u_int		cc_ticks;
    174 	lwp_t		*cc_lwp;
    175 	callout_impl_t	*cc_active;
    176 	callout_impl_t	*cc_cancel;
    177 	struct evcnt	cc_ev_late;
    178 	struct evcnt	cc_ev_block;
    179 	struct callout_circq cc_todo;		/* Worklist */
    180 	struct callout_circq cc_wheel[BUCKETS];	/* Queues of timeouts */
    181 	char		cc_name1[12];
    182 	char		cc_name2[12];
    183 };
    184 
    185 static struct callout_cpu callout_cpu0;
    186 static void *callout_sih;
    187 
    188 static inline kmutex_t *
    189 callout_lock(callout_impl_t *c)
    190 {
    191 	kmutex_t *lock;
    192 
    193 	for (;;) {
    194 		lock = &c->c_cpu->cc_lock;
    195 		mutex_spin_enter(lock);
    196 		if (__predict_true(lock == &c->c_cpu->cc_lock))
    197 			return lock;
    198 		mutex_spin_exit(lock);
    199 	}
    200 }
    201 
    202 /*
    203  * callout_startup:
    204  *
    205  *	Initialize the callout facility, called at system startup time.
    206  *	Do just enough to allow callouts to be safely registered.
    207  */
    208 void
    209 callout_startup(void)
    210 {
    211 	struct callout_cpu *cc;
    212 	int b;
    213 
    214 	KASSERT(curcpu()->ci_data.cpu_callout == NULL);
    215 
    216 	cc = &callout_cpu0;
    217 	mutex_init(&cc->cc_lock, MUTEX_DEFAULT, IPL_SCHED);
    218 	CIRCQ_INIT(&cc->cc_todo);
    219 	for (b = 0; b < BUCKETS; b++)
    220 		CIRCQ_INIT(&cc->cc_wheel[b]);
    221 	curcpu()->ci_data.cpu_callout = cc;
    222 }
    223 
    224 /*
    225  * callout_init_cpu:
    226  *
    227  *	Per-CPU initialization.
    228  */
    229 void
    230 callout_init_cpu(struct cpu_info *ci)
    231 {
    232 	struct callout_cpu *cc;
    233 	int b;
    234 
    235 	CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
    236 
    237 	if ((cc = ci->ci_data.cpu_callout) == NULL) {
    238 		cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
    239 		if (cc == NULL)
    240 			panic("callout_init_cpu (1)");
    241 		mutex_init(&cc->cc_lock, MUTEX_DEFAULT, IPL_SCHED);
    242 		CIRCQ_INIT(&cc->cc_todo);
    243 		for (b = 0; b < BUCKETS; b++)
    244 			CIRCQ_INIT(&cc->cc_wheel[b]);
    245 	} else {
    246 		/* Boot CPU, one time only. */
    247 		callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    248 		    callout_softclock, NULL);
    249 		if (callout_sih == NULL)
    250 			panic("callout_init_cpu (2)");
    251 	}
    252 
    253 	sleepq_init(&cc->cc_sleepq);
    254 
    255 	snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
    256 	    cpu_index(ci));
    257 	evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
    258 	    NULL, "callout", cc->cc_name1);
    259 
    260 	snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
    261 	    cpu_index(ci));
    262 	evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
    263 	    NULL, "callout", cc->cc_name2);
    264 
    265 	ci->ci_data.cpu_callout = cc;
    266 }
    267 
    268 /*
    269  * callout_init:
    270  *
    271  *	Initialize a callout structure.  This must be quick, so we fill
    272  *	only the minimum number of fields.
    273  */
    274 void
    275 callout_init(callout_t *cs, u_int flags)
    276 {
    277 	callout_impl_t *c = (callout_impl_t *)cs;
    278 	struct callout_cpu *cc;
    279 
    280 	KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
    281 
    282 	cc = curcpu()->ci_data.cpu_callout;
    283 	c->c_func = NULL;
    284 	c->c_magic = CALLOUT_MAGIC;
    285 	if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
    286 		c->c_flags = flags;
    287 		c->c_cpu = cc;
    288 		return;
    289 	}
    290 	c->c_flags = flags | CALLOUT_BOUND;
    291 	c->c_cpu = &callout_cpu0;
    292 }
    293 
    294 /*
    295  * callout_destroy:
    296  *
    297  *	Destroy a callout structure.  The callout must be stopped.
    298  */
    299 void
    300 callout_destroy(callout_t *cs)
    301 {
    302 	callout_impl_t *c = (callout_impl_t *)cs;
    303 
    304 	/*
    305 	 * It's not necessary to lock in order to see the correct value
    306 	 * of c->c_flags.  If the callout could potentially have been
    307 	 * running, the current thread should have stopped it.
    308 	 */
    309 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
    310 	KASSERT(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c);
    311 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    312 	c->c_magic = 0;
    313 }
    314 
    315 /*
    316  * callout_schedule_locked:
    317  *
    318  *	Schedule a callout to run.  The function and argument must
    319  *	already be set in the callout structure.  Must be called with
    320  *	callout_lock.
    321  */
    322 static void
    323 callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
    324 {
    325 	struct callout_cpu *cc, *occ;
    326 	int old_time;
    327 
    328 	KASSERT(to_ticks >= 0);
    329 	KASSERT(c->c_func != NULL);
    330 
    331 	/* Initialize the time here, it won't change. */
    332 	occ = c->c_cpu;
    333 	c->c_flags &= ~CALLOUT_FIRED;
    334 
    335 	/*
    336 	 * If this timeout is already scheduled and now is moved
    337 	 * earlier, reschedule it now.  Otherwise leave it in place
    338 	 * and let it be rescheduled later.
    339 	 */
    340 	if ((c->c_flags & CALLOUT_PENDING) != 0) {
    341 		/* Leave on existing CPU. */
    342 		old_time = c->c_time;
    343 		c->c_time = to_ticks + occ->cc_ticks;
    344 		if (c->c_time - old_time < 0) {
    345 			CIRCQ_REMOVE(&c->c_list);
    346 			CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    347 		}
    348 		mutex_spin_exit(lock);
    349 		return;
    350 	}
    351 
    352 	cc = curcpu()->ci_data.cpu_callout;
    353 	if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
    354 	    !mutex_tryenter(&cc->cc_lock)) {
    355 		/* Leave on existing CPU. */
    356 		c->c_time = to_ticks + occ->cc_ticks;
    357 		c->c_flags |= CALLOUT_PENDING;
    358 		CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    359 	} else {
    360 		/* Move to this CPU. */
    361 		c->c_cpu = cc;
    362 		c->c_time = to_ticks + cc->cc_ticks;
    363 		c->c_flags |= CALLOUT_PENDING;
    364 		CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
    365 		mutex_spin_exit(&cc->cc_lock);
    366 	}
    367 	mutex_spin_exit(lock);
    368 }
    369 
    370 /*
    371  * callout_reset:
    372  *
    373  *	Reset a callout structure with a new function and argument, and
    374  *	schedule it to run.
    375  */
    376 void
    377 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
    378 {
    379 	callout_impl_t *c = (callout_impl_t *)cs;
    380 	kmutex_t *lock;
    381 
    382 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    383 	KASSERT(func != NULL);
    384 
    385 	lock = callout_lock(c);
    386 	c->c_func = func;
    387 	c->c_arg = arg;
    388 	callout_schedule_locked(c, lock, to_ticks);
    389 }
    390 
    391 /*
    392  * callout_schedule:
    393  *
    394  *	Schedule a callout to run.  The function and argument must
    395  *	already be set in the callout structure.
    396  */
    397 void
    398 callout_schedule(callout_t *cs, int to_ticks)
    399 {
    400 	callout_impl_t *c = (callout_impl_t *)cs;
    401 	kmutex_t *lock;
    402 
    403 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    404 
    405 	lock = callout_lock(c);
    406 	callout_schedule_locked(c, lock, to_ticks);
    407 }
    408 
    409 /*
    410  * callout_stop:
    411  *
    412  *	Try to cancel a pending callout.  It may be too late: the callout
    413  *	could be running on another CPU.  If called from interrupt context,
    414  *	the callout could already be in progress at a lower priority.
    415  */
    416 bool
    417 callout_stop(callout_t *cs)
    418 {
    419 	callout_impl_t *c = (callout_impl_t *)cs;
    420 	struct callout_cpu *cc;
    421 	kmutex_t *lock;
    422 	bool expired;
    423 
    424 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    425 
    426 	lock = callout_lock(c);
    427 
    428 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    429 		CIRCQ_REMOVE(&c->c_list);
    430 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    431 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    432 
    433 	cc = c->c_cpu;
    434 	if (cc->cc_active == c) {
    435 		/*
    436 		 * This is for non-MPSAFE callouts only.  To synchronize
    437 		 * effectively we must be called with kernel_lock held.
    438 		 * It's also taken in callout_softclock.
    439 		 */
    440 		cc->cc_cancel = c;
    441 	}
    442 
    443 	mutex_spin_exit(lock);
    444 
    445 	return expired;
    446 }
    447 
    448 /*
    449  * callout_halt:
    450  *
    451  *	Cancel a pending callout.  If in-flight, block until it completes.
    452  *	May not be called from a hard interrupt handler.  If the callout
    453  * 	can take locks, the caller of callout_halt() must not hold any of
    454  *	those locks, otherwise the two could deadlock.  If 'interlock' is
    455  *	non-NULL and we must wait for the callout to complete, it will be
    456  *	released and re-acquired before returning.
    457  */
    458 bool
    459 callout_halt(callout_t *cs, void *interlock)
    460 {
    461 	callout_impl_t *c = (callout_impl_t *)cs;
    462 	struct callout_cpu *cc;
    463 	struct lwp *l;
    464 	kmutex_t *lock, *relock;
    465 	bool expired;
    466 
    467 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    468 	KASSERT(!cpu_intr_p());
    469 
    470 	lock = callout_lock(c);
    471 	relock = NULL;
    472 
    473 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    474 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    475 		CIRCQ_REMOVE(&c->c_list);
    476 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    477 
    478 	l = curlwp;
    479 	for (;;) {
    480 		cc = c->c_cpu;
    481 		if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
    482 			break;
    483 		if (interlock != NULL) {
    484 			/*
    485 			 * Avoid potential scheduler lock order problems by
    486 			 * dropping the interlock without the callout lock
    487 			 * held.
    488 			 */
    489 			mutex_spin_exit(lock);
    490 			mutex_exit(interlock);
    491 			relock = interlock;
    492 			interlock = NULL;
    493 		} else {
    494 			/* XXX Better to do priority inheritance. */
    495 			KASSERT(l->l_wchan == NULL);
    496 			cc->cc_nwait++;
    497 			cc->cc_ev_block.ev_count++;
    498 			l->l_kpriority = true;
    499 			sleepq_enter(&cc->cc_sleepq, l, &cc->cc_lock);
    500 			sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
    501 			    &sleep_syncobj);
    502 			sleepq_block(0, false);
    503 		}
    504 		lock = callout_lock(c);
    505 	}
    506 
    507 	mutex_spin_exit(lock);
    508 	if (__predict_false(relock != NULL))
    509 		mutex_enter(relock);
    510 
    511 	return expired;
    512 }
    513 
    514 #ifdef notyet
    515 /*
    516  * callout_bind:
    517  *
    518  *	Bind a callout so that it will only execute on one CPU.
    519  *	The callout must be stopped, and must be MPSAFE.
    520  *
    521  *	XXX Disabled for now until it is decided how to handle
    522  *	offlined CPUs.  We may want weak+strong binding.
    523  */
    524 void
    525 callout_bind(callout_t *cs, struct cpu_info *ci)
    526 {
    527 	callout_impl_t *c = (callout_impl_t *)cs;
    528 	struct callout_cpu *cc;
    529 	kmutex_t *lock;
    530 
    531 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
    532 	KASSERT(c->c_cpu->cc_active != c);
    533 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    534 	KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
    535 
    536 	lock = callout_lock(c);
    537 	cc = ci->ci_data.cpu_callout;
    538 	c->c_flags |= CALLOUT_BOUND;
    539 	if (c->c_cpu != cc) {
    540 		/*
    541 		 * Assigning c_cpu effectively unlocks the callout
    542 		 * structure, as we don't hold the new CPU's lock.
    543 		 * Issue memory barrier to prevent accesses being
    544 		 * reordered.
    545 		 */
    546 		membar_exit();
    547 		c->c_cpu = cc;
    548 	}
    549 	mutex_spin_exit(lock);
    550 }
    551 #endif
    552 
    553 void
    554 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
    555 {
    556 	callout_impl_t *c = (callout_impl_t *)cs;
    557 	kmutex_t *lock;
    558 
    559 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    560 	KASSERT(func != NULL);
    561 
    562 	lock = callout_lock(c);
    563 	c->c_func = func;
    564 	c->c_arg = arg;
    565 	mutex_spin_exit(lock);
    566 }
    567 
    568 bool
    569 callout_expired(callout_t *cs)
    570 {
    571 	callout_impl_t *c = (callout_impl_t *)cs;
    572 	kmutex_t *lock;
    573 	bool rv;
    574 
    575 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    576 
    577 	lock = callout_lock(c);
    578 	rv = ((c->c_flags & CALLOUT_FIRED) != 0);
    579 	mutex_spin_exit(lock);
    580 
    581 	return rv;
    582 }
    583 
    584 bool
    585 callout_active(callout_t *cs)
    586 {
    587 	callout_impl_t *c = (callout_impl_t *)cs;
    588 	kmutex_t *lock;
    589 	bool rv;
    590 
    591 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    592 
    593 	lock = callout_lock(c);
    594 	rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
    595 	mutex_spin_exit(lock);
    596 
    597 	return rv;
    598 }
    599 
    600 bool
    601 callout_pending(callout_t *cs)
    602 {
    603 	callout_impl_t *c = (callout_impl_t *)cs;
    604 	kmutex_t *lock;
    605 	bool rv;
    606 
    607 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    608 
    609 	lock = callout_lock(c);
    610 	rv = ((c->c_flags & CALLOUT_PENDING) != 0);
    611 	mutex_spin_exit(lock);
    612 
    613 	return rv;
    614 }
    615 
    616 bool
    617 callout_invoking(callout_t *cs)
    618 {
    619 	callout_impl_t *c = (callout_impl_t *)cs;
    620 	kmutex_t *lock;
    621 	bool rv;
    622 
    623 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    624 
    625 	lock = callout_lock(c);
    626 	rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
    627 	mutex_spin_exit(lock);
    628 
    629 	return rv;
    630 }
    631 
    632 void
    633 callout_ack(callout_t *cs)
    634 {
    635 	callout_impl_t *c = (callout_impl_t *)cs;
    636 	kmutex_t *lock;
    637 
    638 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    639 
    640 	lock = callout_lock(c);
    641 	c->c_flags &= ~CALLOUT_INVOKING;
    642 	mutex_spin_exit(lock);
    643 }
    644 
    645 /*
    646  * callout_hardclock:
    647  *
    648  *	Called from hardclock() once every tick.  We schedule a soft
    649  *	interrupt if there is work to be done.
    650  */
    651 void
    652 callout_hardclock(void)
    653 {
    654 	struct callout_cpu *cc;
    655 	int needsoftclock, ticks;
    656 
    657 	cc = curcpu()->ci_data.cpu_callout;
    658 	mutex_spin_enter(&cc->cc_lock);
    659 
    660 	ticks = ++cc->cc_ticks;
    661 
    662 	MOVEBUCKET(cc, 0, ticks);
    663 	if (MASKWHEEL(0, ticks) == 0) {
    664 		MOVEBUCKET(cc, 1, ticks);
    665 		if (MASKWHEEL(1, ticks) == 0) {
    666 			MOVEBUCKET(cc, 2, ticks);
    667 			if (MASKWHEEL(2, ticks) == 0)
    668 				MOVEBUCKET(cc, 3, ticks);
    669 		}
    670 	}
    671 
    672 	needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
    673 	mutex_spin_exit(&cc->cc_lock);
    674 
    675 	if (needsoftclock)
    676 		softint_schedule(callout_sih);
    677 }
    678 
    679 /*
    680  * callout_softclock:
    681  *
    682  *	Soft interrupt handler, scheduled above if there is work to
    683  * 	be done.  Callouts are made in soft interrupt context.
    684  */
    685 static void
    686 callout_softclock(void *v)
    687 {
    688 	callout_impl_t *c;
    689 	struct callout_cpu *cc;
    690 	void (*func)(void *);
    691 	void *arg;
    692 	int mpsafe, count, ticks, delta;
    693 	lwp_t *l;
    694 
    695 	l = curlwp;
    696 	KASSERT(l->l_cpu == curcpu());
    697 	cc = l->l_cpu->ci_data.cpu_callout;
    698 
    699 	mutex_spin_enter(&cc->cc_lock);
    700 	cc->cc_lwp = l;
    701 	while (!CIRCQ_EMPTY(&cc->cc_todo)) {
    702 		c = CIRCQ_FIRST(&cc->cc_todo);
    703 		KASSERT(c->c_magic == CALLOUT_MAGIC);
    704 		KASSERT(c->c_func != NULL);
    705 		KASSERT(c->c_cpu == cc);
    706 		KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
    707 		KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
    708 		CIRCQ_REMOVE(&c->c_list);
    709 
    710 		/* If due run it, otherwise insert it into the right bucket. */
    711 		ticks = cc->cc_ticks;
    712 		delta = c->c_time - ticks;
    713 		if (delta > 0) {
    714 			CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
    715 			continue;
    716 		}
    717 		if (delta < 0)
    718 			cc->cc_ev_late.ev_count++;
    719 
    720 		c->c_flags ^= (CALLOUT_PENDING | CALLOUT_FIRED);
    721 		mpsafe = (c->c_flags & CALLOUT_MPSAFE);
    722 		func = c->c_func;
    723 		arg = c->c_arg;
    724 		cc->cc_active = c;
    725 
    726 		mutex_spin_exit(&cc->cc_lock);
    727 		KASSERT(func != NULL);
    728 		if (!mpsafe) {
    729 			KERNEL_LOCK(1, NULL);
    730 			(*func)(arg);
    731 			KERNEL_UNLOCK_ONE(NULL);
    732 		} else
    733 			(*func)(arg);
    734 		mutex_spin_enter(&cc->cc_lock);
    735 
    736 		/*
    737 		 * We can't touch 'c' here because it might be
    738 		 * freed already.  If LWPs waiting for callout
    739 		 * to complete, awaken them.
    740 		 */
    741 		cc->cc_active = NULL;
    742 		if ((count = cc->cc_nwait) != 0) {
    743 			cc->cc_nwait = 0;
    744 			/* sleepq_wake() drops the lock. */
    745 			sleepq_wake(&cc->cc_sleepq, cc, count, &cc->cc_lock);
    746 			mutex_spin_enter(&cc->cc_lock);
    747 		}
    748 	}
    749 	cc->cc_lwp = NULL;
    750 	mutex_spin_exit(&cc->cc_lock);
    751 }
    752 
    753 #ifdef DDB
    754 static void
    755 db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *bucket)
    756 {
    757 	callout_impl_t *c;
    758 	db_expr_t offset;
    759 	const char *name;
    760 	static char question[] = "?";
    761 	int b;
    762 
    763 	if (CIRCQ_EMPTY(bucket))
    764 		return;
    765 
    766 	for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
    767 		db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
    768 		    &offset);
    769 		name = name ? name : question;
    770 		b = (bucket - cc->cc_wheel);
    771 		if (b < 0)
    772 			b = -WHEELSIZE;
    773 		db_printf("%9d %2d/%-4d %16lx  %s\n",
    774 		    c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
    775 		    (u_long)c->c_arg, name);
    776 		if (CIRCQ_LAST(&c->c_list, bucket))
    777 			break;
    778 	}
    779 }
    780 
    781 void
    782 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
    783 {
    784 	CPU_INFO_ITERATOR cii;
    785 	struct callout_cpu *cc;
    786 	struct cpu_info *ci;
    787 	int b;
    788 
    789 	db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
    790 	db_printf("    ticks  wheel               arg  func\n");
    791 
    792 	/*
    793 	 * Don't lock the callwheel; all the other CPUs are paused
    794 	 * anyhow, and we might be called in a circumstance where
    795 	 * some other CPU was paused while holding the lock.
    796 	 */
    797 	for (CPU_INFO_FOREACH(cii, ci)) {
    798 		cc = ci->ci_data.cpu_callout;
    799 		db_show_callout_bucket(cc, &cc->cc_todo);
    800 	}
    801 	for (b = 0; b < BUCKETS; b++) {
    802 		for (CPU_INFO_FOREACH(cii, ci)) {
    803 			cc = ci->ci_data.cpu_callout;
    804 			db_show_callout_bucket(cc, &cc->cc_wheel[b]);
    805 		}
    806 	}
    807 }
    808 #endif /* DDB */
    809