Home | History | Annotate | Line # | Download | only in kern
kern_timeout.c revision 1.43.2.1
      1 /*	$NetBSD: kern_timeout.c,v 1.43.2.1 2009/04/28 07:37:00 skrll Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
     34  * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
     35  * All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  *
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. The name of the author may not be used to endorse or promote products
     47  *    derived from this software without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
     50  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
     51  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     52  * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     53  * EXEMPLARY, OR CONSEQUENTIAL  DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 #include <sys/cdefs.h>
     62 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.43.2.1 2009/04/28 07:37:00 skrll Exp $");
     63 
     64 /*
     65  * Timeouts are kept in a hierarchical timing wheel.  The c_time is the
     66  * value of c_cpu->cc_ticks when the timeout should be called.  There are
     67  * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
     68  * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
     69  * a Timer Facility" by George Varghese and Tony Lauck.
     70  *
     71  * Some of the "math" in here is a bit tricky.  We have to beware of
     72  * wrapping ints.
     73  *
     74  * We use the fact that any element added to the queue must be added with
     75  * a positive time.  That means that any element `to' on the queue cannot
     76  * be scheduled to timeout further in time than INT_MAX, but c->c_time can
     77  * be positive or negative so comparing it with anything is dangerous.
     78  * The only way we can use the c->c_time value in any predictable way is
     79  * when we calculate how far in the future `to' will timeout - "c->c_time
     80  * - c->c_cpu->cc_ticks".  The result will always be positive for future
     81  * timeouts and 0 or negative for due timeouts.
     82  */
     83 
     84 #define	_CALLOUT_PRIVATE
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/kernel.h>
     89 #include <sys/callout.h>
     90 #include <sys/mutex.h>
     91 #include <sys/proc.h>
     92 #include <sys/sleepq.h>
     93 #include <sys/syncobj.h>
     94 #include <sys/evcnt.h>
     95 #include <sys/intr.h>
     96 #include <sys/cpu.h>
     97 #include <sys/kmem.h>
     98 
     99 #ifdef DDB
    100 #include <machine/db_machdep.h>
    101 #include <ddb/db_interface.h>
    102 #include <ddb/db_access.h>
    103 #include <ddb/db_sym.h>
    104 #include <ddb/db_output.h>
    105 #endif
    106 
    107 #define BUCKETS		1024
    108 #define WHEELSIZE	256
    109 #define WHEELMASK	255
    110 #define WHEELBITS	8
    111 
    112 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
    113 
    114 #define BUCKET(cc, rel, abs)						\
    115     (((rel) <= (1 << (2*WHEELBITS)))					\
    116     	? ((rel) <= (1 << WHEELBITS))					\
    117             ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))]			\
    118             : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE]		\
    119         : ((rel) <= (1 << (3*WHEELBITS)))				\
    120             ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE]	\
    121             : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
    122 
    123 #define MOVEBUCKET(cc, wheel, time)					\
    124     CIRCQ_APPEND(&(cc)->cc_todo,					\
    125         &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
    126 
    127 /*
    128  * Circular queue definitions.
    129  */
    130 
    131 #define CIRCQ_INIT(list)						\
    132 do {									\
    133         (list)->cq_next_l = (list);					\
    134         (list)->cq_prev_l = (list);					\
    135 } while (/*CONSTCOND*/0)
    136 
    137 #define CIRCQ_INSERT(elem, list)					\
    138 do {									\
    139         (elem)->cq_prev_e = (list)->cq_prev_e;				\
    140         (elem)->cq_next_l = (list);					\
    141         (list)->cq_prev_l->cq_next_l = (elem);				\
    142         (list)->cq_prev_l = (elem);					\
    143 } while (/*CONSTCOND*/0)
    144 
    145 #define CIRCQ_APPEND(fst, snd)						\
    146 do {									\
    147         if (!CIRCQ_EMPTY(snd)) {					\
    148                 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l;		\
    149                 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l;		\
    150                 (snd)->cq_prev_l->cq_next_l = (fst);			\
    151                 (fst)->cq_prev_l = (snd)->cq_prev_l;			\
    152                 CIRCQ_INIT(snd);					\
    153         }								\
    154 } while (/*CONSTCOND*/0)
    155 
    156 #define CIRCQ_REMOVE(elem)						\
    157 do {									\
    158         (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e;		\
    159         (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e;		\
    160 } while (/*CONSTCOND*/0)
    161 
    162 #define CIRCQ_FIRST(list)	((list)->cq_next_e)
    163 #define CIRCQ_NEXT(elem)	((elem)->cq_next_e)
    164 #define CIRCQ_LAST(elem,list)	((elem)->cq_next_l == (list))
    165 #define CIRCQ_EMPTY(list)	((list)->cq_next_l == (list))
    166 
    167 static void	callout_softclock(void *);
    168 
    169 struct callout_cpu {
    170 	kmutex_t	*cc_lock;
    171 	sleepq_t	cc_sleepq;
    172 	u_int		cc_nwait;
    173 	u_int		cc_ticks;
    174 	lwp_t		*cc_lwp;
    175 	callout_impl_t	*cc_active;
    176 	callout_impl_t	*cc_cancel;
    177 	struct evcnt	cc_ev_late;
    178 	struct evcnt	cc_ev_block;
    179 	struct callout_circq cc_todo;		/* Worklist */
    180 	struct callout_circq cc_wheel[BUCKETS];	/* Queues of timeouts */
    181 	char		cc_name1[12];
    182 	char		cc_name2[12];
    183 };
    184 
    185 static struct callout_cpu callout_cpu0;
    186 static void *callout_sih;
    187 
    188 static inline kmutex_t *
    189 callout_lock(callout_impl_t *c)
    190 {
    191 	struct callout_cpu *cc;
    192 	kmutex_t *lock;
    193 
    194 	for (;;) {
    195 		cc = c->c_cpu;
    196 		lock = cc->cc_lock;
    197 		mutex_spin_enter(lock);
    198 		if (__predict_true(cc == c->c_cpu))
    199 			return lock;
    200 		mutex_spin_exit(lock);
    201 	}
    202 }
    203 
    204 /*
    205  * callout_startup:
    206  *
    207  *	Initialize the callout facility, called at system startup time.
    208  *	Do just enough to allow callouts to be safely registered.
    209  */
    210 void
    211 callout_startup(void)
    212 {
    213 	struct callout_cpu *cc;
    214 	int b;
    215 
    216 	KASSERT(curcpu()->ci_data.cpu_callout == NULL);
    217 
    218 	cc = &callout_cpu0;
    219 	cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    220 	CIRCQ_INIT(&cc->cc_todo);
    221 	for (b = 0; b < BUCKETS; b++)
    222 		CIRCQ_INIT(&cc->cc_wheel[b]);
    223 	curcpu()->ci_data.cpu_callout = cc;
    224 }
    225 
    226 /*
    227  * callout_init_cpu:
    228  *
    229  *	Per-CPU initialization.
    230  */
    231 void
    232 callout_init_cpu(struct cpu_info *ci)
    233 {
    234 	struct callout_cpu *cc;
    235 	int b;
    236 
    237 	CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
    238 
    239 	if ((cc = ci->ci_data.cpu_callout) == NULL) {
    240 		cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
    241 		if (cc == NULL)
    242 			panic("callout_init_cpu (1)");
    243 		cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    244 		CIRCQ_INIT(&cc->cc_todo);
    245 		for (b = 0; b < BUCKETS; b++)
    246 			CIRCQ_INIT(&cc->cc_wheel[b]);
    247 	} else {
    248 		/* Boot CPU, one time only. */
    249 		callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    250 		    callout_softclock, NULL);
    251 		if (callout_sih == NULL)
    252 			panic("callout_init_cpu (2)");
    253 	}
    254 
    255 	sleepq_init(&cc->cc_sleepq);
    256 
    257 	snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
    258 	    cpu_index(ci));
    259 	evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
    260 	    NULL, "callout", cc->cc_name1);
    261 
    262 	snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
    263 	    cpu_index(ci));
    264 	evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
    265 	    NULL, "callout", cc->cc_name2);
    266 
    267 	ci->ci_data.cpu_callout = cc;
    268 }
    269 
    270 /*
    271  * callout_init:
    272  *
    273  *	Initialize a callout structure.  This must be quick, so we fill
    274  *	only the minimum number of fields.
    275  */
    276 void
    277 callout_init(callout_t *cs, u_int flags)
    278 {
    279 	callout_impl_t *c = (callout_impl_t *)cs;
    280 	struct callout_cpu *cc;
    281 
    282 	KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
    283 
    284 	cc = curcpu()->ci_data.cpu_callout;
    285 	c->c_func = NULL;
    286 	c->c_magic = CALLOUT_MAGIC;
    287 	if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
    288 		c->c_flags = flags;
    289 		c->c_cpu = cc;
    290 		return;
    291 	}
    292 	c->c_flags = flags | CALLOUT_BOUND;
    293 	c->c_cpu = &callout_cpu0;
    294 }
    295 
    296 /*
    297  * callout_destroy:
    298  *
    299  *	Destroy a callout structure.  The callout must be stopped.
    300  */
    301 void
    302 callout_destroy(callout_t *cs)
    303 {
    304 	callout_impl_t *c = (callout_impl_t *)cs;
    305 
    306 	/*
    307 	 * It's not necessary to lock in order to see the correct value
    308 	 * of c->c_flags.  If the callout could potentially have been
    309 	 * running, the current thread should have stopped it.
    310 	 */
    311 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
    312 	KASSERT(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c);
    313 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    314 	c->c_magic = 0;
    315 }
    316 
    317 /*
    318  * callout_schedule_locked:
    319  *
    320  *	Schedule a callout to run.  The function and argument must
    321  *	already be set in the callout structure.  Must be called with
    322  *	callout_lock.
    323  */
    324 static void
    325 callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
    326 {
    327 	struct callout_cpu *cc, *occ;
    328 	int old_time;
    329 
    330 	KASSERT(to_ticks >= 0);
    331 	KASSERT(c->c_func != NULL);
    332 
    333 	/* Initialize the time here, it won't change. */
    334 	occ = c->c_cpu;
    335 	c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
    336 
    337 	/*
    338 	 * If this timeout is already scheduled and now is moved
    339 	 * earlier, reschedule it now.  Otherwise leave it in place
    340 	 * and let it be rescheduled later.
    341 	 */
    342 	if ((c->c_flags & CALLOUT_PENDING) != 0) {
    343 		/* Leave on existing CPU. */
    344 		old_time = c->c_time;
    345 		c->c_time = to_ticks + occ->cc_ticks;
    346 		if (c->c_time - old_time < 0) {
    347 			CIRCQ_REMOVE(&c->c_list);
    348 			CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    349 		}
    350 		mutex_spin_exit(lock);
    351 		return;
    352 	}
    353 
    354 	cc = curcpu()->ci_data.cpu_callout;
    355 	if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
    356 	    !mutex_tryenter(cc->cc_lock)) {
    357 		/* Leave on existing CPU. */
    358 		c->c_time = to_ticks + occ->cc_ticks;
    359 		c->c_flags |= CALLOUT_PENDING;
    360 		CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    361 	} else {
    362 		/* Move to this CPU. */
    363 		c->c_cpu = cc;
    364 		c->c_time = to_ticks + cc->cc_ticks;
    365 		c->c_flags |= CALLOUT_PENDING;
    366 		CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
    367 		mutex_spin_exit(cc->cc_lock);
    368 	}
    369 	mutex_spin_exit(lock);
    370 }
    371 
    372 /*
    373  * callout_reset:
    374  *
    375  *	Reset a callout structure with a new function and argument, and
    376  *	schedule it to run.
    377  */
    378 void
    379 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
    380 {
    381 	callout_impl_t *c = (callout_impl_t *)cs;
    382 	kmutex_t *lock;
    383 
    384 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    385 	KASSERT(func != NULL);
    386 
    387 	lock = callout_lock(c);
    388 	c->c_func = func;
    389 	c->c_arg = arg;
    390 	callout_schedule_locked(c, lock, to_ticks);
    391 }
    392 
    393 /*
    394  * callout_schedule:
    395  *
    396  *	Schedule a callout to run.  The function and argument must
    397  *	already be set in the callout structure.
    398  */
    399 void
    400 callout_schedule(callout_t *cs, int to_ticks)
    401 {
    402 	callout_impl_t *c = (callout_impl_t *)cs;
    403 	kmutex_t *lock;
    404 
    405 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    406 
    407 	lock = callout_lock(c);
    408 	callout_schedule_locked(c, lock, to_ticks);
    409 }
    410 
    411 /*
    412  * callout_stop:
    413  *
    414  *	Try to cancel a pending callout.  It may be too late: the callout
    415  *	could be running on another CPU.  If called from interrupt context,
    416  *	the callout could already be in progress at a lower priority.
    417  */
    418 bool
    419 callout_stop(callout_t *cs)
    420 {
    421 	callout_impl_t *c = (callout_impl_t *)cs;
    422 	struct callout_cpu *cc;
    423 	kmutex_t *lock;
    424 	bool expired;
    425 
    426 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    427 
    428 	lock = callout_lock(c);
    429 
    430 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    431 		CIRCQ_REMOVE(&c->c_list);
    432 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    433 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    434 
    435 	cc = c->c_cpu;
    436 	if (cc->cc_active == c) {
    437 		/*
    438 		 * This is for non-MPSAFE callouts only.  To synchronize
    439 		 * effectively we must be called with kernel_lock held.
    440 		 * It's also taken in callout_softclock.
    441 		 */
    442 		cc->cc_cancel = c;
    443 	}
    444 
    445 	mutex_spin_exit(lock);
    446 
    447 	return expired;
    448 }
    449 
    450 /*
    451  * callout_halt:
    452  *
    453  *	Cancel a pending callout.  If in-flight, block until it completes.
    454  *	May not be called from a hard interrupt handler.  If the callout
    455  * 	can take locks, the caller of callout_halt() must not hold any of
    456  *	those locks, otherwise the two could deadlock.  If 'interlock' is
    457  *	non-NULL and we must wait for the callout to complete, it will be
    458  *	released and re-acquired before returning.
    459  */
    460 bool
    461 callout_halt(callout_t *cs, void *interlock)
    462 {
    463 	callout_impl_t *c = (callout_impl_t *)cs;
    464 	struct callout_cpu *cc;
    465 	struct lwp *l;
    466 	kmutex_t *lock, *relock;
    467 	bool expired;
    468 
    469 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    470 	KASSERT(!cpu_intr_p());
    471 
    472 	lock = callout_lock(c);
    473 	relock = NULL;
    474 
    475 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    476 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    477 		CIRCQ_REMOVE(&c->c_list);
    478 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    479 
    480 	l = curlwp;
    481 	for (;;) {
    482 		cc = c->c_cpu;
    483 		if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
    484 			break;
    485 		if (interlock != NULL) {
    486 			/*
    487 			 * Avoid potential scheduler lock order problems by
    488 			 * dropping the interlock without the callout lock
    489 			 * held.
    490 			 */
    491 			mutex_spin_exit(lock);
    492 			mutex_exit(interlock);
    493 			relock = interlock;
    494 			interlock = NULL;
    495 		} else {
    496 			/* XXX Better to do priority inheritance. */
    497 			KASSERT(l->l_wchan == NULL);
    498 			cc->cc_nwait++;
    499 			cc->cc_ev_block.ev_count++;
    500 			l->l_kpriority = true;
    501 			sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
    502 			sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
    503 			    &sleep_syncobj);
    504 			sleepq_block(0, false);
    505 		}
    506 		lock = callout_lock(c);
    507 	}
    508 
    509 	mutex_spin_exit(lock);
    510 	if (__predict_false(relock != NULL))
    511 		mutex_enter(relock);
    512 
    513 	return expired;
    514 }
    515 
    516 #ifdef notyet
    517 /*
    518  * callout_bind:
    519  *
    520  *	Bind a callout so that it will only execute on one CPU.
    521  *	The callout must be stopped, and must be MPSAFE.
    522  *
    523  *	XXX Disabled for now until it is decided how to handle
    524  *	offlined CPUs.  We may want weak+strong binding.
    525  */
    526 void
    527 callout_bind(callout_t *cs, struct cpu_info *ci)
    528 {
    529 	callout_impl_t *c = (callout_impl_t *)cs;
    530 	struct callout_cpu *cc;
    531 	kmutex_t *lock;
    532 
    533 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
    534 	KASSERT(c->c_cpu->cc_active != c);
    535 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    536 	KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
    537 
    538 	lock = callout_lock(c);
    539 	cc = ci->ci_data.cpu_callout;
    540 	c->c_flags |= CALLOUT_BOUND;
    541 	if (c->c_cpu != cc) {
    542 		/*
    543 		 * Assigning c_cpu effectively unlocks the callout
    544 		 * structure, as we don't hold the new CPU's lock.
    545 		 * Issue memory barrier to prevent accesses being
    546 		 * reordered.
    547 		 */
    548 		membar_exit();
    549 		c->c_cpu = cc;
    550 	}
    551 	mutex_spin_exit(lock);
    552 }
    553 #endif
    554 
    555 void
    556 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
    557 {
    558 	callout_impl_t *c = (callout_impl_t *)cs;
    559 	kmutex_t *lock;
    560 
    561 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    562 	KASSERT(func != NULL);
    563 
    564 	lock = callout_lock(c);
    565 	c->c_func = func;
    566 	c->c_arg = arg;
    567 	mutex_spin_exit(lock);
    568 }
    569 
    570 bool
    571 callout_expired(callout_t *cs)
    572 {
    573 	callout_impl_t *c = (callout_impl_t *)cs;
    574 	kmutex_t *lock;
    575 	bool rv;
    576 
    577 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    578 
    579 	lock = callout_lock(c);
    580 	rv = ((c->c_flags & CALLOUT_FIRED) != 0);
    581 	mutex_spin_exit(lock);
    582 
    583 	return rv;
    584 }
    585 
    586 bool
    587 callout_active(callout_t *cs)
    588 {
    589 	callout_impl_t *c = (callout_impl_t *)cs;
    590 	kmutex_t *lock;
    591 	bool rv;
    592 
    593 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    594 
    595 	lock = callout_lock(c);
    596 	rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
    597 	mutex_spin_exit(lock);
    598 
    599 	return rv;
    600 }
    601 
    602 bool
    603 callout_pending(callout_t *cs)
    604 {
    605 	callout_impl_t *c = (callout_impl_t *)cs;
    606 	kmutex_t *lock;
    607 	bool rv;
    608 
    609 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    610 
    611 	lock = callout_lock(c);
    612 	rv = ((c->c_flags & CALLOUT_PENDING) != 0);
    613 	mutex_spin_exit(lock);
    614 
    615 	return rv;
    616 }
    617 
    618 bool
    619 callout_invoking(callout_t *cs)
    620 {
    621 	callout_impl_t *c = (callout_impl_t *)cs;
    622 	kmutex_t *lock;
    623 	bool rv;
    624 
    625 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    626 
    627 	lock = callout_lock(c);
    628 	rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
    629 	mutex_spin_exit(lock);
    630 
    631 	return rv;
    632 }
    633 
    634 void
    635 callout_ack(callout_t *cs)
    636 {
    637 	callout_impl_t *c = (callout_impl_t *)cs;
    638 	kmutex_t *lock;
    639 
    640 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    641 
    642 	lock = callout_lock(c);
    643 	c->c_flags &= ~CALLOUT_INVOKING;
    644 	mutex_spin_exit(lock);
    645 }
    646 
    647 /*
    648  * callout_hardclock:
    649  *
    650  *	Called from hardclock() once every tick.  We schedule a soft
    651  *	interrupt if there is work to be done.
    652  */
    653 void
    654 callout_hardclock(void)
    655 {
    656 	struct callout_cpu *cc;
    657 	int needsoftclock, ticks;
    658 
    659 	cc = curcpu()->ci_data.cpu_callout;
    660 	mutex_spin_enter(cc->cc_lock);
    661 
    662 	ticks = ++cc->cc_ticks;
    663 
    664 	MOVEBUCKET(cc, 0, ticks);
    665 	if (MASKWHEEL(0, ticks) == 0) {
    666 		MOVEBUCKET(cc, 1, ticks);
    667 		if (MASKWHEEL(1, ticks) == 0) {
    668 			MOVEBUCKET(cc, 2, ticks);
    669 			if (MASKWHEEL(2, ticks) == 0)
    670 				MOVEBUCKET(cc, 3, ticks);
    671 		}
    672 	}
    673 
    674 	needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
    675 	mutex_spin_exit(cc->cc_lock);
    676 
    677 	if (needsoftclock)
    678 		softint_schedule(callout_sih);
    679 }
    680 
    681 /*
    682  * callout_softclock:
    683  *
    684  *	Soft interrupt handler, scheduled above if there is work to
    685  * 	be done.  Callouts are made in soft interrupt context.
    686  */
    687 static void
    688 callout_softclock(void *v)
    689 {
    690 	callout_impl_t *c;
    691 	struct callout_cpu *cc;
    692 	void (*func)(void *);
    693 	void *arg;
    694 	int mpsafe, count, ticks, delta;
    695 	lwp_t *l;
    696 
    697 	l = curlwp;
    698 	KASSERT(l->l_cpu == curcpu());
    699 	cc = l->l_cpu->ci_data.cpu_callout;
    700 
    701 	mutex_spin_enter(cc->cc_lock);
    702 	cc->cc_lwp = l;
    703 	while (!CIRCQ_EMPTY(&cc->cc_todo)) {
    704 		c = CIRCQ_FIRST(&cc->cc_todo);
    705 		KASSERT(c->c_magic == CALLOUT_MAGIC);
    706 		KASSERT(c->c_func != NULL);
    707 		KASSERT(c->c_cpu == cc);
    708 		KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
    709 		KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
    710 		CIRCQ_REMOVE(&c->c_list);
    711 
    712 		/* If due run it, otherwise insert it into the right bucket. */
    713 		ticks = cc->cc_ticks;
    714 		delta = c->c_time - ticks;
    715 		if (delta > 0) {
    716 			CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
    717 			continue;
    718 		}
    719 		if (delta < 0)
    720 			cc->cc_ev_late.ev_count++;
    721 
    722 		c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
    723 		    (CALLOUT_FIRED | CALLOUT_INVOKING);
    724 		mpsafe = (c->c_flags & CALLOUT_MPSAFE);
    725 		func = c->c_func;
    726 		arg = c->c_arg;
    727 		cc->cc_active = c;
    728 
    729 		mutex_spin_exit(cc->cc_lock);
    730 		KASSERT(func != NULL);
    731 		if (__predict_false(!mpsafe)) {
    732 			KERNEL_LOCK(1, NULL);
    733 			(*func)(arg);
    734 			KERNEL_UNLOCK_ONE(NULL);
    735 		} else
    736 			(*func)(arg);
    737 		mutex_spin_enter(cc->cc_lock);
    738 
    739 		/*
    740 		 * We can't touch 'c' here because it might be
    741 		 * freed already.  If LWPs waiting for callout
    742 		 * to complete, awaken them.
    743 		 */
    744 		cc->cc_active = NULL;
    745 		if ((count = cc->cc_nwait) != 0) {
    746 			cc->cc_nwait = 0;
    747 			/* sleepq_wake() drops the lock. */
    748 			sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
    749 			mutex_spin_enter(cc->cc_lock);
    750 		}
    751 	}
    752 	cc->cc_lwp = NULL;
    753 	mutex_spin_exit(cc->cc_lock);
    754 }
    755 
    756 #ifdef DDB
    757 static void
    758 db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *bucket)
    759 {
    760 	callout_impl_t *c;
    761 	db_expr_t offset;
    762 	const char *name;
    763 	static char question[] = "?";
    764 	int b;
    765 
    766 	if (CIRCQ_EMPTY(bucket))
    767 		return;
    768 
    769 	for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
    770 		db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
    771 		    &offset);
    772 		name = name ? name : question;
    773 		b = (bucket - cc->cc_wheel);
    774 		if (b < 0)
    775 			b = -WHEELSIZE;
    776 		db_printf("%9d %2d/%-4d %16lx  %s\n",
    777 		    c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
    778 		    (u_long)c->c_arg, name);
    779 		if (CIRCQ_LAST(&c->c_list, bucket))
    780 			break;
    781 	}
    782 }
    783 
    784 void
    785 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
    786 {
    787 	CPU_INFO_ITERATOR cii;
    788 	struct callout_cpu *cc;
    789 	struct cpu_info *ci;
    790 	int b;
    791 
    792 	db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
    793 	db_printf("    ticks  wheel               arg  func\n");
    794 
    795 	/*
    796 	 * Don't lock the callwheel; all the other CPUs are paused
    797 	 * anyhow, and we might be called in a circumstance where
    798 	 * some other CPU was paused while holding the lock.
    799 	 */
    800 	for (CPU_INFO_FOREACH(cii, ci)) {
    801 		cc = ci->ci_data.cpu_callout;
    802 		db_show_callout_bucket(cc, &cc->cc_todo);
    803 	}
    804 	for (b = 0; b < BUCKETS; b++) {
    805 		for (CPU_INFO_FOREACH(cii, ci)) {
    806 			cc = ci->ci_data.cpu_callout;
    807 			db_show_callout_bucket(cc, &cc->cc_wheel[b]);
    808 		}
    809 	}
    810 }
    811 #endif /* DDB */
    812