Home | History | Annotate | Line # | Download | only in kern
kern_timeout.c revision 1.44.4.1
      1 /*	$NetBSD: kern_timeout.c,v 1.44.4.1 2011/03/05 20:55:17 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
     34  * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
     35  * All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  *
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. The name of the author may not be used to endorse or promote products
     47  *    derived from this software without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
     50  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
     51  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     52  * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     53  * EXEMPLARY, OR CONSEQUENTIAL  DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 #include <sys/cdefs.h>
     62 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.44.4.1 2011/03/05 20:55:17 rmind Exp $");
     63 
     64 /*
     65  * Timeouts are kept in a hierarchical timing wheel.  The c_time is the
     66  * value of c_cpu->cc_ticks when the timeout should be called.  There are
     67  * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
     68  * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
     69  * a Timer Facility" by George Varghese and Tony Lauck.
     70  *
     71  * Some of the "math" in here is a bit tricky.  We have to beware of
     72  * wrapping ints.
     73  *
     74  * We use the fact that any element added to the queue must be added with
     75  * a positive time.  That means that any element `to' on the queue cannot
     76  * be scheduled to timeout further in time than INT_MAX, but c->c_time can
     77  * be positive or negative so comparing it with anything is dangerous.
     78  * The only way we can use the c->c_time value in any predictable way is
     79  * when we calculate how far in the future `to' will timeout - "c->c_time
     80  * - c->c_cpu->cc_ticks".  The result will always be positive for future
     81  * timeouts and 0 or negative for due timeouts.
     82  */
     83 
     84 #define	_CALLOUT_PRIVATE
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/kernel.h>
     89 #include <sys/callout.h>
     90 #include <sys/lwp.h>
     91 #include <sys/mutex.h>
     92 #include <sys/proc.h>
     93 #include <sys/sleepq.h>
     94 #include <sys/syncobj.h>
     95 #include <sys/evcnt.h>
     96 #include <sys/intr.h>
     97 #include <sys/cpu.h>
     98 #include <sys/kmem.h>
     99 
    100 #ifdef DDB
    101 #include <machine/db_machdep.h>
    102 #include <ddb/db_interface.h>
    103 #include <ddb/db_access.h>
    104 #include <ddb/db_sym.h>
    105 #include <ddb/db_output.h>
    106 #endif
    107 
    108 #define BUCKETS		1024
    109 #define WHEELSIZE	256
    110 #define WHEELMASK	255
    111 #define WHEELBITS	8
    112 
    113 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
    114 
    115 #define BUCKET(cc, rel, abs)						\
    116     (((rel) <= (1 << (2*WHEELBITS)))					\
    117     	? ((rel) <= (1 << WHEELBITS))					\
    118             ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))]			\
    119             : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE]		\
    120         : ((rel) <= (1 << (3*WHEELBITS)))				\
    121             ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE]	\
    122             : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
    123 
    124 #define MOVEBUCKET(cc, wheel, time)					\
    125     CIRCQ_APPEND(&(cc)->cc_todo,					\
    126         &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
    127 
    128 /*
    129  * Circular queue definitions.
    130  */
    131 
    132 #define CIRCQ_INIT(list)						\
    133 do {									\
    134         (list)->cq_next_l = (list);					\
    135         (list)->cq_prev_l = (list);					\
    136 } while (/*CONSTCOND*/0)
    137 
    138 #define CIRCQ_INSERT(elem, list)					\
    139 do {									\
    140         (elem)->cq_prev_e = (list)->cq_prev_e;				\
    141         (elem)->cq_next_l = (list);					\
    142         (list)->cq_prev_l->cq_next_l = (elem);				\
    143         (list)->cq_prev_l = (elem);					\
    144 } while (/*CONSTCOND*/0)
    145 
    146 #define CIRCQ_APPEND(fst, snd)						\
    147 do {									\
    148         if (!CIRCQ_EMPTY(snd)) {					\
    149                 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l;		\
    150                 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l;		\
    151                 (snd)->cq_prev_l->cq_next_l = (fst);			\
    152                 (fst)->cq_prev_l = (snd)->cq_prev_l;			\
    153                 CIRCQ_INIT(snd);					\
    154         }								\
    155 } while (/*CONSTCOND*/0)
    156 
    157 #define CIRCQ_REMOVE(elem)						\
    158 do {									\
    159         (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e;		\
    160         (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e;		\
    161 } while (/*CONSTCOND*/0)
    162 
    163 #define CIRCQ_FIRST(list)	((list)->cq_next_e)
    164 #define CIRCQ_NEXT(elem)	((elem)->cq_next_e)
    165 #define CIRCQ_LAST(elem,list)	((elem)->cq_next_l == (list))
    166 #define CIRCQ_EMPTY(list)	((list)->cq_next_l == (list))
    167 
    168 static void	callout_softclock(void *);
    169 
    170 struct callout_cpu {
    171 	kmutex_t	*cc_lock;
    172 	sleepq_t	cc_sleepq;
    173 	u_int		cc_nwait;
    174 	u_int		cc_ticks;
    175 	lwp_t		*cc_lwp;
    176 	callout_impl_t	*cc_active;
    177 	callout_impl_t	*cc_cancel;
    178 	struct evcnt	cc_ev_late;
    179 	struct evcnt	cc_ev_block;
    180 	struct callout_circq cc_todo;		/* Worklist */
    181 	struct callout_circq cc_wheel[BUCKETS];	/* Queues of timeouts */
    182 	char		cc_name1[12];
    183 	char		cc_name2[12];
    184 };
    185 
    186 static struct callout_cpu callout_cpu0;
    187 static void *callout_sih;
    188 
    189 static inline kmutex_t *
    190 callout_lock(callout_impl_t *c)
    191 {
    192 	struct callout_cpu *cc;
    193 	kmutex_t *lock;
    194 
    195 	for (;;) {
    196 		cc = c->c_cpu;
    197 		lock = cc->cc_lock;
    198 		mutex_spin_enter(lock);
    199 		if (__predict_true(cc == c->c_cpu))
    200 			return lock;
    201 		mutex_spin_exit(lock);
    202 	}
    203 }
    204 
    205 /*
    206  * callout_startup:
    207  *
    208  *	Initialize the callout facility, called at system startup time.
    209  *	Do just enough to allow callouts to be safely registered.
    210  */
    211 void
    212 callout_startup(void)
    213 {
    214 	struct callout_cpu *cc;
    215 	int b;
    216 
    217 	KASSERT(curcpu()->ci_data.cpu_callout == NULL);
    218 
    219 	cc = &callout_cpu0;
    220 	cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    221 	CIRCQ_INIT(&cc->cc_todo);
    222 	for (b = 0; b < BUCKETS; b++)
    223 		CIRCQ_INIT(&cc->cc_wheel[b]);
    224 	curcpu()->ci_data.cpu_callout = cc;
    225 }
    226 
    227 /*
    228  * callout_init_cpu:
    229  *
    230  *	Per-CPU initialization.
    231  */
    232 void
    233 callout_init_cpu(struct cpu_info *ci)
    234 {
    235 	struct callout_cpu *cc;
    236 	int b;
    237 
    238 	CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
    239 
    240 	if ((cc = ci->ci_data.cpu_callout) == NULL) {
    241 		cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
    242 		if (cc == NULL)
    243 			panic("callout_init_cpu (1)");
    244 		cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    245 		CIRCQ_INIT(&cc->cc_todo);
    246 		for (b = 0; b < BUCKETS; b++)
    247 			CIRCQ_INIT(&cc->cc_wheel[b]);
    248 	} else {
    249 		/* Boot CPU, one time only. */
    250 		callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    251 		    callout_softclock, NULL);
    252 		if (callout_sih == NULL)
    253 			panic("callout_init_cpu (2)");
    254 	}
    255 
    256 	sleepq_init(&cc->cc_sleepq);
    257 
    258 	snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
    259 	    cpu_index(ci));
    260 	evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
    261 	    NULL, "callout", cc->cc_name1);
    262 
    263 	snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
    264 	    cpu_index(ci));
    265 	evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
    266 	    NULL, "callout", cc->cc_name2);
    267 
    268 	ci->ci_data.cpu_callout = cc;
    269 }
    270 
    271 /*
    272  * callout_init:
    273  *
    274  *	Initialize a callout structure.  This must be quick, so we fill
    275  *	only the minimum number of fields.
    276  */
    277 void
    278 callout_init(callout_t *cs, u_int flags)
    279 {
    280 	callout_impl_t *c = (callout_impl_t *)cs;
    281 	struct callout_cpu *cc;
    282 
    283 	KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
    284 
    285 	cc = curcpu()->ci_data.cpu_callout;
    286 	c->c_func = NULL;
    287 	c->c_magic = CALLOUT_MAGIC;
    288 	if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
    289 		c->c_flags = flags;
    290 		c->c_cpu = cc;
    291 		return;
    292 	}
    293 	c->c_flags = flags | CALLOUT_BOUND;
    294 	c->c_cpu = &callout_cpu0;
    295 }
    296 
    297 /*
    298  * callout_destroy:
    299  *
    300  *	Destroy a callout structure.  The callout must be stopped.
    301  */
    302 void
    303 callout_destroy(callout_t *cs)
    304 {
    305 	callout_impl_t *c = (callout_impl_t *)cs;
    306 
    307 	/*
    308 	 * It's not necessary to lock in order to see the correct value
    309 	 * of c->c_flags.  If the callout could potentially have been
    310 	 * running, the current thread should have stopped it.
    311 	 */
    312 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
    313 	KASSERT(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c);
    314 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    315 	c->c_magic = 0;
    316 }
    317 
    318 /*
    319  * callout_schedule_locked:
    320  *
    321  *	Schedule a callout to run.  The function and argument must
    322  *	already be set in the callout structure.  Must be called with
    323  *	callout_lock.
    324  */
    325 static void
    326 callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
    327 {
    328 	struct callout_cpu *cc, *occ;
    329 	int old_time;
    330 
    331 	KASSERT(to_ticks >= 0);
    332 	KASSERT(c->c_func != NULL);
    333 
    334 	/* Initialize the time here, it won't change. */
    335 	occ = c->c_cpu;
    336 	c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
    337 
    338 	/*
    339 	 * If this timeout is already scheduled and now is moved
    340 	 * earlier, reschedule it now.  Otherwise leave it in place
    341 	 * and let it be rescheduled later.
    342 	 */
    343 	if ((c->c_flags & CALLOUT_PENDING) != 0) {
    344 		/* Leave on existing CPU. */
    345 		old_time = c->c_time;
    346 		c->c_time = to_ticks + occ->cc_ticks;
    347 		if (c->c_time - old_time < 0) {
    348 			CIRCQ_REMOVE(&c->c_list);
    349 			CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    350 		}
    351 		mutex_spin_exit(lock);
    352 		return;
    353 	}
    354 
    355 	cc = curcpu()->ci_data.cpu_callout;
    356 	if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
    357 	    !mutex_tryenter(cc->cc_lock)) {
    358 		/* Leave on existing CPU. */
    359 		c->c_time = to_ticks + occ->cc_ticks;
    360 		c->c_flags |= CALLOUT_PENDING;
    361 		CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    362 	} else {
    363 		/* Move to this CPU. */
    364 		c->c_cpu = cc;
    365 		c->c_time = to_ticks + cc->cc_ticks;
    366 		c->c_flags |= CALLOUT_PENDING;
    367 		CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
    368 		mutex_spin_exit(cc->cc_lock);
    369 	}
    370 	mutex_spin_exit(lock);
    371 }
    372 
    373 /*
    374  * callout_reset:
    375  *
    376  *	Reset a callout structure with a new function and argument, and
    377  *	schedule it to run.
    378  */
    379 void
    380 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
    381 {
    382 	callout_impl_t *c = (callout_impl_t *)cs;
    383 	kmutex_t *lock;
    384 
    385 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    386 	KASSERT(func != NULL);
    387 
    388 	lock = callout_lock(c);
    389 	c->c_func = func;
    390 	c->c_arg = arg;
    391 	callout_schedule_locked(c, lock, to_ticks);
    392 }
    393 
    394 /*
    395  * callout_schedule:
    396  *
    397  *	Schedule a callout to run.  The function and argument must
    398  *	already be set in the callout structure.
    399  */
    400 void
    401 callout_schedule(callout_t *cs, int to_ticks)
    402 {
    403 	callout_impl_t *c = (callout_impl_t *)cs;
    404 	kmutex_t *lock;
    405 
    406 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    407 
    408 	lock = callout_lock(c);
    409 	callout_schedule_locked(c, lock, to_ticks);
    410 }
    411 
    412 /*
    413  * callout_stop:
    414  *
    415  *	Try to cancel a pending callout.  It may be too late: the callout
    416  *	could be running on another CPU.  If called from interrupt context,
    417  *	the callout could already be in progress at a lower priority.
    418  */
    419 bool
    420 callout_stop(callout_t *cs)
    421 {
    422 	callout_impl_t *c = (callout_impl_t *)cs;
    423 	struct callout_cpu *cc;
    424 	kmutex_t *lock;
    425 	bool expired;
    426 
    427 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    428 
    429 	lock = callout_lock(c);
    430 
    431 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    432 		CIRCQ_REMOVE(&c->c_list);
    433 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    434 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    435 
    436 	cc = c->c_cpu;
    437 	if (cc->cc_active == c) {
    438 		/*
    439 		 * This is for non-MPSAFE callouts only.  To synchronize
    440 		 * effectively we must be called with kernel_lock held.
    441 		 * It's also taken in callout_softclock.
    442 		 */
    443 		cc->cc_cancel = c;
    444 	}
    445 
    446 	mutex_spin_exit(lock);
    447 
    448 	return expired;
    449 }
    450 
    451 /*
    452  * callout_halt:
    453  *
    454  *	Cancel a pending callout.  If in-flight, block until it completes.
    455  *	May not be called from a hard interrupt handler.  If the callout
    456  * 	can take locks, the caller of callout_halt() must not hold any of
    457  *	those locks, otherwise the two could deadlock.  If 'interlock' is
    458  *	non-NULL and we must wait for the callout to complete, it will be
    459  *	released and re-acquired before returning.
    460  */
    461 bool
    462 callout_halt(callout_t *cs, void *interlock)
    463 {
    464 	callout_impl_t *c = (callout_impl_t *)cs;
    465 	struct callout_cpu *cc;
    466 	struct lwp *l;
    467 	kmutex_t *lock, *relock;
    468 	bool expired;
    469 
    470 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    471 	KASSERT(!cpu_intr_p());
    472 
    473 	lock = callout_lock(c);
    474 	relock = NULL;
    475 
    476 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    477 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    478 		CIRCQ_REMOVE(&c->c_list);
    479 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    480 
    481 	l = curlwp;
    482 	for (;;) {
    483 		cc = c->c_cpu;
    484 		if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
    485 			break;
    486 		if (interlock != NULL) {
    487 			/*
    488 			 * Avoid potential scheduler lock order problems by
    489 			 * dropping the interlock without the callout lock
    490 			 * held.
    491 			 */
    492 			mutex_spin_exit(lock);
    493 			mutex_exit(interlock);
    494 			relock = interlock;
    495 			interlock = NULL;
    496 		} else {
    497 			/* XXX Better to do priority inheritance. */
    498 			KASSERT(l->l_wchan == NULL);
    499 			cc->cc_nwait++;
    500 			cc->cc_ev_block.ev_count++;
    501 			l->l_kpriority = true;
    502 			sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
    503 			sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
    504 			    &sleep_syncobj);
    505 			sleepq_block(0, false);
    506 		}
    507 		lock = callout_lock(c);
    508 	}
    509 
    510 	mutex_spin_exit(lock);
    511 	if (__predict_false(relock != NULL))
    512 		mutex_enter(relock);
    513 
    514 	return expired;
    515 }
    516 
    517 #ifdef notyet
    518 /*
    519  * callout_bind:
    520  *
    521  *	Bind a callout so that it will only execute on one CPU.
    522  *	The callout must be stopped, and must be MPSAFE.
    523  *
    524  *	XXX Disabled for now until it is decided how to handle
    525  *	offlined CPUs.  We may want weak+strong binding.
    526  */
    527 void
    528 callout_bind(callout_t *cs, struct cpu_info *ci)
    529 {
    530 	callout_impl_t *c = (callout_impl_t *)cs;
    531 	struct callout_cpu *cc;
    532 	kmutex_t *lock;
    533 
    534 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
    535 	KASSERT(c->c_cpu->cc_active != c);
    536 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    537 	KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
    538 
    539 	lock = callout_lock(c);
    540 	cc = ci->ci_data.cpu_callout;
    541 	c->c_flags |= CALLOUT_BOUND;
    542 	if (c->c_cpu != cc) {
    543 		/*
    544 		 * Assigning c_cpu effectively unlocks the callout
    545 		 * structure, as we don't hold the new CPU's lock.
    546 		 * Issue memory barrier to prevent accesses being
    547 		 * reordered.
    548 		 */
    549 		membar_exit();
    550 		c->c_cpu = cc;
    551 	}
    552 	mutex_spin_exit(lock);
    553 }
    554 #endif
    555 
    556 void
    557 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
    558 {
    559 	callout_impl_t *c = (callout_impl_t *)cs;
    560 	kmutex_t *lock;
    561 
    562 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    563 	KASSERT(func != NULL);
    564 
    565 	lock = callout_lock(c);
    566 	c->c_func = func;
    567 	c->c_arg = arg;
    568 	mutex_spin_exit(lock);
    569 }
    570 
    571 bool
    572 callout_expired(callout_t *cs)
    573 {
    574 	callout_impl_t *c = (callout_impl_t *)cs;
    575 	kmutex_t *lock;
    576 	bool rv;
    577 
    578 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    579 
    580 	lock = callout_lock(c);
    581 	rv = ((c->c_flags & CALLOUT_FIRED) != 0);
    582 	mutex_spin_exit(lock);
    583 
    584 	return rv;
    585 }
    586 
    587 bool
    588 callout_active(callout_t *cs)
    589 {
    590 	callout_impl_t *c = (callout_impl_t *)cs;
    591 	kmutex_t *lock;
    592 	bool rv;
    593 
    594 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    595 
    596 	lock = callout_lock(c);
    597 	rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
    598 	mutex_spin_exit(lock);
    599 
    600 	return rv;
    601 }
    602 
    603 bool
    604 callout_pending(callout_t *cs)
    605 {
    606 	callout_impl_t *c = (callout_impl_t *)cs;
    607 	kmutex_t *lock;
    608 	bool rv;
    609 
    610 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    611 
    612 	lock = callout_lock(c);
    613 	rv = ((c->c_flags & CALLOUT_PENDING) != 0);
    614 	mutex_spin_exit(lock);
    615 
    616 	return rv;
    617 }
    618 
    619 bool
    620 callout_invoking(callout_t *cs)
    621 {
    622 	callout_impl_t *c = (callout_impl_t *)cs;
    623 	kmutex_t *lock;
    624 	bool rv;
    625 
    626 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    627 
    628 	lock = callout_lock(c);
    629 	rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
    630 	mutex_spin_exit(lock);
    631 
    632 	return rv;
    633 }
    634 
    635 void
    636 callout_ack(callout_t *cs)
    637 {
    638 	callout_impl_t *c = (callout_impl_t *)cs;
    639 	kmutex_t *lock;
    640 
    641 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    642 
    643 	lock = callout_lock(c);
    644 	c->c_flags &= ~CALLOUT_INVOKING;
    645 	mutex_spin_exit(lock);
    646 }
    647 
    648 /*
    649  * callout_hardclock:
    650  *
    651  *	Called from hardclock() once every tick.  We schedule a soft
    652  *	interrupt if there is work to be done.
    653  */
    654 void
    655 callout_hardclock(void)
    656 {
    657 	struct callout_cpu *cc;
    658 	int needsoftclock, ticks;
    659 
    660 	cc = curcpu()->ci_data.cpu_callout;
    661 	mutex_spin_enter(cc->cc_lock);
    662 
    663 	ticks = ++cc->cc_ticks;
    664 
    665 	MOVEBUCKET(cc, 0, ticks);
    666 	if (MASKWHEEL(0, ticks) == 0) {
    667 		MOVEBUCKET(cc, 1, ticks);
    668 		if (MASKWHEEL(1, ticks) == 0) {
    669 			MOVEBUCKET(cc, 2, ticks);
    670 			if (MASKWHEEL(2, ticks) == 0)
    671 				MOVEBUCKET(cc, 3, ticks);
    672 		}
    673 	}
    674 
    675 	needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
    676 	mutex_spin_exit(cc->cc_lock);
    677 
    678 	if (needsoftclock)
    679 		softint_schedule(callout_sih);
    680 }
    681 
    682 /*
    683  * callout_softclock:
    684  *
    685  *	Soft interrupt handler, scheduled above if there is work to
    686  * 	be done.  Callouts are made in soft interrupt context.
    687  */
    688 static void
    689 callout_softclock(void *v)
    690 {
    691 	callout_impl_t *c;
    692 	struct callout_cpu *cc;
    693 	void (*func)(void *);
    694 	void *arg;
    695 	int mpsafe, count, ticks, delta;
    696 	lwp_t *l;
    697 
    698 	l = curlwp;
    699 	KASSERT(l->l_cpu == curcpu());
    700 	cc = l->l_cpu->ci_data.cpu_callout;
    701 
    702 	mutex_spin_enter(cc->cc_lock);
    703 	cc->cc_lwp = l;
    704 	while (!CIRCQ_EMPTY(&cc->cc_todo)) {
    705 		c = CIRCQ_FIRST(&cc->cc_todo);
    706 		KASSERT(c->c_magic == CALLOUT_MAGIC);
    707 		KASSERT(c->c_func != NULL);
    708 		KASSERT(c->c_cpu == cc);
    709 		KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
    710 		KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
    711 		CIRCQ_REMOVE(&c->c_list);
    712 
    713 		/* If due run it, otherwise insert it into the right bucket. */
    714 		ticks = cc->cc_ticks;
    715 		delta = c->c_time - ticks;
    716 		if (delta > 0) {
    717 			CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
    718 			continue;
    719 		}
    720 		if (delta < 0)
    721 			cc->cc_ev_late.ev_count++;
    722 
    723 		c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
    724 		    (CALLOUT_FIRED | CALLOUT_INVOKING);
    725 		mpsafe = (c->c_flags & CALLOUT_MPSAFE);
    726 		func = c->c_func;
    727 		arg = c->c_arg;
    728 		cc->cc_active = c;
    729 
    730 		mutex_spin_exit(cc->cc_lock);
    731 		KASSERT(func != NULL);
    732 		if (__predict_false(!mpsafe)) {
    733 			KERNEL_LOCK(1, NULL);
    734 			(*func)(arg);
    735 			KERNEL_UNLOCK_ONE(NULL);
    736 		} else
    737 			(*func)(arg);
    738 		mutex_spin_enter(cc->cc_lock);
    739 
    740 		/*
    741 		 * We can't touch 'c' here because it might be
    742 		 * freed already.  If LWPs waiting for callout
    743 		 * to complete, awaken them.
    744 		 */
    745 		cc->cc_active = NULL;
    746 		if ((count = cc->cc_nwait) != 0) {
    747 			cc->cc_nwait = 0;
    748 			/* sleepq_wake() drops the lock. */
    749 			sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
    750 			mutex_spin_enter(cc->cc_lock);
    751 		}
    752 	}
    753 	cc->cc_lwp = NULL;
    754 	mutex_spin_exit(cc->cc_lock);
    755 }
    756 
    757 #ifdef DDB
    758 static void
    759 db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *bucket)
    760 {
    761 	callout_impl_t *c;
    762 	db_expr_t offset;
    763 	const char *name;
    764 	static char question[] = "?";
    765 	int b;
    766 
    767 	if (CIRCQ_EMPTY(bucket))
    768 		return;
    769 
    770 	for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
    771 		db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
    772 		    &offset);
    773 		name = name ? name : question;
    774 		b = (bucket - cc->cc_wheel);
    775 		if (b < 0)
    776 			b = -WHEELSIZE;
    777 		db_printf("%9d %2d/%-4d %16lx  %s\n",
    778 		    c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
    779 		    (u_long)c->c_arg, name);
    780 		if (CIRCQ_LAST(&c->c_list, bucket))
    781 			break;
    782 	}
    783 }
    784 
    785 void
    786 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
    787 {
    788 	CPU_INFO_ITERATOR cii;
    789 	struct callout_cpu *cc;
    790 	struct cpu_info *ci;
    791 	int b;
    792 
    793 	db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
    794 	db_printf("    ticks  wheel               arg  func\n");
    795 
    796 	/*
    797 	 * Don't lock the callwheel; all the other CPUs are paused
    798 	 * anyhow, and we might be called in a circumstance where
    799 	 * some other CPU was paused while holding the lock.
    800 	 */
    801 	for (CPU_INFO_FOREACH(cii, ci)) {
    802 		cc = ci->ci_data.cpu_callout;
    803 		db_show_callout_bucket(cc, &cc->cc_todo);
    804 	}
    805 	for (b = 0; b < BUCKETS; b++) {
    806 		for (CPU_INFO_FOREACH(cii, ci)) {
    807 			cc = ci->ci_data.cpu_callout;
    808 			db_show_callout_bucket(cc, &cc->cc_wheel[b]);
    809 		}
    810 	}
    811 }
    812 #endif /* DDB */
    813