kern_timeout.c revision 1.45 1 /* $NetBSD: kern_timeout.c,v 1.45 2010/12/18 01:36:19 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
34 * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 *
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. The name of the author may not be used to endorse or promote products
47 * derived from this software without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
50 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
51 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
52 * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
53 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.45 2010/12/18 01:36:19 rmind Exp $");
63
64 /*
65 * Timeouts are kept in a hierarchical timing wheel. The c_time is the
66 * value of c_cpu->cc_ticks when the timeout should be called. There are
67 * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
68 * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
69 * a Timer Facility" by George Varghese and Tony Lauck.
70 *
71 * Some of the "math" in here is a bit tricky. We have to beware of
72 * wrapping ints.
73 *
74 * We use the fact that any element added to the queue must be added with
75 * a positive time. That means that any element `to' on the queue cannot
76 * be scheduled to timeout further in time than INT_MAX, but c->c_time can
77 * be positive or negative so comparing it with anything is dangerous.
78 * The only way we can use the c->c_time value in any predictable way is
79 * when we calculate how far in the future `to' will timeout - "c->c_time
80 * - c->c_cpu->cc_ticks". The result will always be positive for future
81 * timeouts and 0 or negative for due timeouts.
82 */
83
84 #define _CALLOUT_PRIVATE
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/callout.h>
90 #include <sys/lwp.h>
91 #include <sys/mutex.h>
92 #include <sys/proc.h>
93 #include <sys/sleepq.h>
94 #include <sys/syncobj.h>
95 #include <sys/evcnt.h>
96 #include <sys/intr.h>
97 #include <sys/cpu.h>
98 #include <sys/kmem.h>
99
100 #ifdef DDB
101 #include <machine/db_machdep.h>
102 #include <ddb/db_interface.h>
103 #include <ddb/db_access.h>
104 #include <ddb/db_sym.h>
105 #include <ddb/db_output.h>
106 #endif
107
108 #define BUCKETS 1024
109 #define WHEELSIZE 256
110 #define WHEELMASK 255
111 #define WHEELBITS 8
112
113 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
114
115 #define BUCKET(cc, rel, abs) \
116 (((rel) <= (1 << (2*WHEELBITS))) \
117 ? ((rel) <= (1 << WHEELBITS)) \
118 ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))] \
119 : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE] \
120 : ((rel) <= (1 << (3*WHEELBITS))) \
121 ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE] \
122 : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
123
124 #define MOVEBUCKET(cc, wheel, time) \
125 CIRCQ_APPEND(&(cc)->cc_todo, \
126 &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
127
128 /*
129 * Circular queue definitions.
130 */
131
132 #define CIRCQ_INIT(list) \
133 do { \
134 (list)->cq_next_l = (list); \
135 (list)->cq_prev_l = (list); \
136 } while (/*CONSTCOND*/0)
137
138 #define CIRCQ_INSERT(elem, list) \
139 do { \
140 (elem)->cq_prev_e = (list)->cq_prev_e; \
141 (elem)->cq_next_l = (list); \
142 (list)->cq_prev_l->cq_next_l = (elem); \
143 (list)->cq_prev_l = (elem); \
144 } while (/*CONSTCOND*/0)
145
146 #define CIRCQ_APPEND(fst, snd) \
147 do { \
148 if (!CIRCQ_EMPTY(snd)) { \
149 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l; \
150 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l; \
151 (snd)->cq_prev_l->cq_next_l = (fst); \
152 (fst)->cq_prev_l = (snd)->cq_prev_l; \
153 CIRCQ_INIT(snd); \
154 } \
155 } while (/*CONSTCOND*/0)
156
157 #define CIRCQ_REMOVE(elem) \
158 do { \
159 (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e; \
160 (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e; \
161 } while (/*CONSTCOND*/0)
162
163 #define CIRCQ_FIRST(list) ((list)->cq_next_e)
164 #define CIRCQ_NEXT(elem) ((elem)->cq_next_e)
165 #define CIRCQ_LAST(elem,list) ((elem)->cq_next_l == (list))
166 #define CIRCQ_EMPTY(list) ((list)->cq_next_l == (list))
167
168 static void callout_softclock(void *);
169
170 struct callout_cpu {
171 kmutex_t *cc_lock;
172 sleepq_t cc_sleepq;
173 u_int cc_nwait;
174 u_int cc_ticks;
175 lwp_t *cc_lwp;
176 callout_impl_t *cc_active;
177 callout_impl_t *cc_cancel;
178 struct evcnt cc_ev_late;
179 struct evcnt cc_ev_block;
180 struct callout_circq cc_todo; /* Worklist */
181 struct callout_circq cc_wheel[BUCKETS]; /* Queues of timeouts */
182 char cc_name1[12];
183 char cc_name2[12];
184 };
185
186 static struct callout_cpu callout_cpu0;
187 static void *callout_sih;
188
189 static inline kmutex_t *
190 callout_lock(callout_impl_t *c)
191 {
192 struct callout_cpu *cc;
193 kmutex_t *lock;
194
195 for (;;) {
196 cc = c->c_cpu;
197 lock = cc->cc_lock;
198 mutex_spin_enter(lock);
199 if (__predict_true(cc == c->c_cpu))
200 return lock;
201 mutex_spin_exit(lock);
202 }
203 }
204
205 /*
206 * callout_startup:
207 *
208 * Initialize the callout facility, called at system startup time.
209 * Do just enough to allow callouts to be safely registered.
210 */
211 void
212 callout_startup(void)
213 {
214 struct callout_cpu *cc;
215 int b;
216
217 KASSERT(curcpu()->ci_data.cpu_callout == NULL);
218
219 cc = &callout_cpu0;
220 cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
221 CIRCQ_INIT(&cc->cc_todo);
222 for (b = 0; b < BUCKETS; b++)
223 CIRCQ_INIT(&cc->cc_wheel[b]);
224 curcpu()->ci_data.cpu_callout = cc;
225 }
226
227 /*
228 * callout_init_cpu:
229 *
230 * Per-CPU initialization.
231 */
232 void
233 callout_init_cpu(struct cpu_info *ci)
234 {
235 struct callout_cpu *cc;
236 int b;
237
238 CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
239
240 if ((cc = ci->ci_data.cpu_callout) == NULL) {
241 cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
242 if (cc == NULL)
243 panic("callout_init_cpu (1)");
244 cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
245 CIRCQ_INIT(&cc->cc_todo);
246 for (b = 0; b < BUCKETS; b++)
247 CIRCQ_INIT(&cc->cc_wheel[b]);
248 } else {
249 /* Boot CPU, one time only. */
250 callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
251 callout_softclock, NULL);
252 if (callout_sih == NULL)
253 panic("callout_init_cpu (2)");
254 }
255
256 sleepq_init(&cc->cc_sleepq);
257
258 snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
259 cpu_index(ci));
260 evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
261 NULL, "callout", cc->cc_name1);
262
263 snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
264 cpu_index(ci));
265 evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
266 NULL, "callout", cc->cc_name2);
267
268 ci->ci_data.cpu_callout = cc;
269 }
270
271 /*
272 * callout_init:
273 *
274 * Initialize a callout structure. This must be quick, so we fill
275 * only the minimum number of fields.
276 */
277 void
278 callout_init(callout_t *cs, u_int flags)
279 {
280 callout_impl_t *c = (callout_impl_t *)cs;
281 struct callout_cpu *cc;
282
283 KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
284
285 cc = curcpu()->ci_data.cpu_callout;
286 c->c_func = NULL;
287 c->c_magic = CALLOUT_MAGIC;
288 if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
289 c->c_flags = flags;
290 c->c_cpu = cc;
291 return;
292 }
293 c->c_flags = flags | CALLOUT_BOUND;
294 c->c_cpu = &callout_cpu0;
295 }
296
297 /*
298 * callout_destroy:
299 *
300 * Destroy a callout structure. The callout must be stopped.
301 */
302 void
303 callout_destroy(callout_t *cs)
304 {
305 callout_impl_t *c = (callout_impl_t *)cs;
306
307 /*
308 * It's not necessary to lock in order to see the correct value
309 * of c->c_flags. If the callout could potentially have been
310 * running, the current thread should have stopped it.
311 */
312 KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
313 KASSERT(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c);
314 KASSERT(c->c_magic == CALLOUT_MAGIC);
315 c->c_magic = 0;
316 }
317
318 /*
319 * callout_schedule_locked:
320 *
321 * Schedule a callout to run. The function and argument must
322 * already be set in the callout structure. Must be called with
323 * callout_lock.
324 */
325 static void
326 callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
327 {
328 struct callout_cpu *cc, *occ;
329 int old_time;
330
331 KASSERT(to_ticks >= 0);
332 KASSERT(c->c_func != NULL);
333
334 /* Initialize the time here, it won't change. */
335 occ = c->c_cpu;
336 c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
337
338 /*
339 * If this timeout is already scheduled and now is moved
340 * earlier, reschedule it now. Otherwise leave it in place
341 * and let it be rescheduled later.
342 */
343 if ((c->c_flags & CALLOUT_PENDING) != 0) {
344 /* Leave on existing CPU. */
345 old_time = c->c_time;
346 c->c_time = to_ticks + occ->cc_ticks;
347 if (c->c_time - old_time < 0) {
348 CIRCQ_REMOVE(&c->c_list);
349 CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
350 }
351 mutex_spin_exit(lock);
352 return;
353 }
354
355 cc = curcpu()->ci_data.cpu_callout;
356 if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
357 !mutex_tryenter(cc->cc_lock)) {
358 /* Leave on existing CPU. */
359 c->c_time = to_ticks + occ->cc_ticks;
360 c->c_flags |= CALLOUT_PENDING;
361 CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
362 } else {
363 /* Move to this CPU. */
364 c->c_cpu = cc;
365 c->c_time = to_ticks + cc->cc_ticks;
366 c->c_flags |= CALLOUT_PENDING;
367 CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
368 mutex_spin_exit(cc->cc_lock);
369 }
370 mutex_spin_exit(lock);
371 }
372
373 /*
374 * callout_reset:
375 *
376 * Reset a callout structure with a new function and argument, and
377 * schedule it to run.
378 */
379 void
380 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
381 {
382 callout_impl_t *c = (callout_impl_t *)cs;
383 kmutex_t *lock;
384
385 KASSERT(c->c_magic == CALLOUT_MAGIC);
386 KASSERT(func != NULL);
387
388 lock = callout_lock(c);
389 c->c_func = func;
390 c->c_arg = arg;
391 callout_schedule_locked(c, lock, to_ticks);
392 }
393
394 /*
395 * callout_schedule:
396 *
397 * Schedule a callout to run. The function and argument must
398 * already be set in the callout structure.
399 */
400 void
401 callout_schedule(callout_t *cs, int to_ticks)
402 {
403 callout_impl_t *c = (callout_impl_t *)cs;
404 kmutex_t *lock;
405
406 KASSERT(c->c_magic == CALLOUT_MAGIC);
407
408 lock = callout_lock(c);
409 callout_schedule_locked(c, lock, to_ticks);
410 }
411
412 /*
413 * callout_stop:
414 *
415 * Try to cancel a pending callout. It may be too late: the callout
416 * could be running on another CPU. If called from interrupt context,
417 * the callout could already be in progress at a lower priority.
418 */
419 bool
420 callout_stop(callout_t *cs)
421 {
422 callout_impl_t *c = (callout_impl_t *)cs;
423 struct callout_cpu *cc;
424 kmutex_t *lock;
425 bool expired;
426
427 KASSERT(c->c_magic == CALLOUT_MAGIC);
428
429 lock = callout_lock(c);
430
431 if ((c->c_flags & CALLOUT_PENDING) != 0)
432 CIRCQ_REMOVE(&c->c_list);
433 expired = ((c->c_flags & CALLOUT_FIRED) != 0);
434 c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
435
436 cc = c->c_cpu;
437 if (cc->cc_active == c) {
438 /*
439 * This is for non-MPSAFE callouts only. To synchronize
440 * effectively we must be called with kernel_lock held.
441 * It's also taken in callout_softclock.
442 */
443 cc->cc_cancel = c;
444 }
445
446 mutex_spin_exit(lock);
447
448 return expired;
449 }
450
451 /*
452 * callout_halt:
453 *
454 * Cancel a pending callout. If in-flight, block until it completes.
455 * May not be called from a hard interrupt handler. If the callout
456 * can take locks, the caller of callout_halt() must not hold any of
457 * those locks, otherwise the two could deadlock. If 'interlock' is
458 * non-NULL and we must wait for the callout to complete, it will be
459 * released and re-acquired before returning.
460 */
461 bool
462 callout_halt(callout_t *cs, void *interlock)
463 {
464 callout_impl_t *c = (callout_impl_t *)cs;
465 struct callout_cpu *cc;
466 struct lwp *l;
467 kmutex_t *lock, *relock;
468 bool expired;
469
470 KASSERT(c->c_magic == CALLOUT_MAGIC);
471 KASSERT(!cpu_intr_p());
472
473 lock = callout_lock(c);
474 relock = NULL;
475
476 expired = ((c->c_flags & CALLOUT_FIRED) != 0);
477 if ((c->c_flags & CALLOUT_PENDING) != 0)
478 CIRCQ_REMOVE(&c->c_list);
479 c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
480
481 l = curlwp;
482 for (;;) {
483 cc = c->c_cpu;
484 if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
485 break;
486 if (interlock != NULL) {
487 /*
488 * Avoid potential scheduler lock order problems by
489 * dropping the interlock without the callout lock
490 * held.
491 */
492 mutex_spin_exit(lock);
493 mutex_exit(interlock);
494 relock = interlock;
495 interlock = NULL;
496 } else {
497 /* XXX Better to do priority inheritance. */
498 KASSERT(l->l_wchan == NULL);
499 cc->cc_nwait++;
500 cc->cc_ev_block.ev_count++;
501 l->l_kpriority = true;
502 sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
503 sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
504 &sleep_syncobj);
505 sleepq_block(0, false);
506 }
507 lock = callout_lock(c);
508 }
509
510 mutex_spin_exit(lock);
511 if (__predict_false(relock != NULL))
512 mutex_enter(relock);
513
514 return expired;
515 }
516
517 #ifdef notyet
518 /*
519 * callout_bind:
520 *
521 * Bind a callout so that it will only execute on one CPU.
522 * The callout must be stopped, and must be MPSAFE.
523 *
524 * XXX Disabled for now until it is decided how to handle
525 * offlined CPUs. We may want weak+strong binding.
526 */
527 void
528 callout_bind(callout_t *cs, struct cpu_info *ci)
529 {
530 callout_impl_t *c = (callout_impl_t *)cs;
531 struct callout_cpu *cc;
532 kmutex_t *lock;
533
534 KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
535 KASSERT(c->c_cpu->cc_active != c);
536 KASSERT(c->c_magic == CALLOUT_MAGIC);
537 KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
538
539 lock = callout_lock(c);
540 cc = ci->ci_data.cpu_callout;
541 c->c_flags |= CALLOUT_BOUND;
542 if (c->c_cpu != cc) {
543 /*
544 * Assigning c_cpu effectively unlocks the callout
545 * structure, as we don't hold the new CPU's lock.
546 * Issue memory barrier to prevent accesses being
547 * reordered.
548 */
549 membar_exit();
550 c->c_cpu = cc;
551 }
552 mutex_spin_exit(lock);
553 }
554 #endif
555
556 void
557 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
558 {
559 callout_impl_t *c = (callout_impl_t *)cs;
560 kmutex_t *lock;
561
562 KASSERT(c->c_magic == CALLOUT_MAGIC);
563 KASSERT(func != NULL);
564
565 lock = callout_lock(c);
566 c->c_func = func;
567 c->c_arg = arg;
568 mutex_spin_exit(lock);
569 }
570
571 bool
572 callout_expired(callout_t *cs)
573 {
574 callout_impl_t *c = (callout_impl_t *)cs;
575 kmutex_t *lock;
576 bool rv;
577
578 KASSERT(c->c_magic == CALLOUT_MAGIC);
579
580 lock = callout_lock(c);
581 rv = ((c->c_flags & CALLOUT_FIRED) != 0);
582 mutex_spin_exit(lock);
583
584 return rv;
585 }
586
587 bool
588 callout_active(callout_t *cs)
589 {
590 callout_impl_t *c = (callout_impl_t *)cs;
591 kmutex_t *lock;
592 bool rv;
593
594 KASSERT(c->c_magic == CALLOUT_MAGIC);
595
596 lock = callout_lock(c);
597 rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
598 mutex_spin_exit(lock);
599
600 return rv;
601 }
602
603 bool
604 callout_pending(callout_t *cs)
605 {
606 callout_impl_t *c = (callout_impl_t *)cs;
607 kmutex_t *lock;
608 bool rv;
609
610 KASSERT(c->c_magic == CALLOUT_MAGIC);
611
612 lock = callout_lock(c);
613 rv = ((c->c_flags & CALLOUT_PENDING) != 0);
614 mutex_spin_exit(lock);
615
616 return rv;
617 }
618
619 bool
620 callout_invoking(callout_t *cs)
621 {
622 callout_impl_t *c = (callout_impl_t *)cs;
623 kmutex_t *lock;
624 bool rv;
625
626 KASSERT(c->c_magic == CALLOUT_MAGIC);
627
628 lock = callout_lock(c);
629 rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
630 mutex_spin_exit(lock);
631
632 return rv;
633 }
634
635 void
636 callout_ack(callout_t *cs)
637 {
638 callout_impl_t *c = (callout_impl_t *)cs;
639 kmutex_t *lock;
640
641 KASSERT(c->c_magic == CALLOUT_MAGIC);
642
643 lock = callout_lock(c);
644 c->c_flags &= ~CALLOUT_INVOKING;
645 mutex_spin_exit(lock);
646 }
647
648 /*
649 * callout_hardclock:
650 *
651 * Called from hardclock() once every tick. We schedule a soft
652 * interrupt if there is work to be done.
653 */
654 void
655 callout_hardclock(void)
656 {
657 struct callout_cpu *cc;
658 int needsoftclock, ticks;
659
660 cc = curcpu()->ci_data.cpu_callout;
661 mutex_spin_enter(cc->cc_lock);
662
663 ticks = ++cc->cc_ticks;
664
665 MOVEBUCKET(cc, 0, ticks);
666 if (MASKWHEEL(0, ticks) == 0) {
667 MOVEBUCKET(cc, 1, ticks);
668 if (MASKWHEEL(1, ticks) == 0) {
669 MOVEBUCKET(cc, 2, ticks);
670 if (MASKWHEEL(2, ticks) == 0)
671 MOVEBUCKET(cc, 3, ticks);
672 }
673 }
674
675 needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
676 mutex_spin_exit(cc->cc_lock);
677
678 if (needsoftclock)
679 softint_schedule(callout_sih);
680 }
681
682 /*
683 * callout_softclock:
684 *
685 * Soft interrupt handler, scheduled above if there is work to
686 * be done. Callouts are made in soft interrupt context.
687 */
688 static void
689 callout_softclock(void *v)
690 {
691 callout_impl_t *c;
692 struct callout_cpu *cc;
693 void (*func)(void *);
694 void *arg;
695 int mpsafe, count, ticks, delta;
696 lwp_t *l;
697
698 l = curlwp;
699 KASSERT(l->l_cpu == curcpu());
700 cc = l->l_cpu->ci_data.cpu_callout;
701
702 mutex_spin_enter(cc->cc_lock);
703 cc->cc_lwp = l;
704 while (!CIRCQ_EMPTY(&cc->cc_todo)) {
705 c = CIRCQ_FIRST(&cc->cc_todo);
706 KASSERT(c->c_magic == CALLOUT_MAGIC);
707 KASSERT(c->c_func != NULL);
708 KASSERT(c->c_cpu == cc);
709 KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
710 KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
711 CIRCQ_REMOVE(&c->c_list);
712
713 /* If due run it, otherwise insert it into the right bucket. */
714 ticks = cc->cc_ticks;
715 delta = c->c_time - ticks;
716 if (delta > 0) {
717 CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
718 continue;
719 }
720 if (delta < 0)
721 cc->cc_ev_late.ev_count++;
722
723 c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
724 (CALLOUT_FIRED | CALLOUT_INVOKING);
725 mpsafe = (c->c_flags & CALLOUT_MPSAFE);
726 func = c->c_func;
727 arg = c->c_arg;
728 cc->cc_active = c;
729
730 mutex_spin_exit(cc->cc_lock);
731 KASSERT(func != NULL);
732 if (__predict_false(!mpsafe)) {
733 KERNEL_LOCK(1, NULL);
734 (*func)(arg);
735 KERNEL_UNLOCK_ONE(NULL);
736 } else
737 (*func)(arg);
738 mutex_spin_enter(cc->cc_lock);
739
740 /*
741 * We can't touch 'c' here because it might be
742 * freed already. If LWPs waiting for callout
743 * to complete, awaken them.
744 */
745 cc->cc_active = NULL;
746 if ((count = cc->cc_nwait) != 0) {
747 cc->cc_nwait = 0;
748 /* sleepq_wake() drops the lock. */
749 sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
750 mutex_spin_enter(cc->cc_lock);
751 }
752 }
753 cc->cc_lwp = NULL;
754 mutex_spin_exit(cc->cc_lock);
755 }
756
757 #ifdef DDB
758 static void
759 db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *bucket)
760 {
761 callout_impl_t *c;
762 db_expr_t offset;
763 const char *name;
764 static char question[] = "?";
765 int b;
766
767 if (CIRCQ_EMPTY(bucket))
768 return;
769
770 for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
771 db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
772 &offset);
773 name = name ? name : question;
774 b = (bucket - cc->cc_wheel);
775 if (b < 0)
776 b = -WHEELSIZE;
777 db_printf("%9d %2d/%-4d %16lx %s\n",
778 c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
779 (u_long)c->c_arg, name);
780 if (CIRCQ_LAST(&c->c_list, bucket))
781 break;
782 }
783 }
784
785 void
786 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
787 {
788 CPU_INFO_ITERATOR cii;
789 struct callout_cpu *cc;
790 struct cpu_info *ci;
791 int b;
792
793 db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
794 db_printf(" ticks wheel arg func\n");
795
796 /*
797 * Don't lock the callwheel; all the other CPUs are paused
798 * anyhow, and we might be called in a circumstance where
799 * some other CPU was paused while holding the lock.
800 */
801 for (CPU_INFO_FOREACH(cii, ci)) {
802 cc = ci->ci_data.cpu_callout;
803 db_show_callout_bucket(cc, &cc->cc_todo);
804 }
805 for (b = 0; b < BUCKETS; b++) {
806 for (CPU_INFO_FOREACH(cii, ci)) {
807 cc = ci->ci_data.cpu_callout;
808 db_show_callout_bucket(cc, &cc->cc_wheel[b]);
809 }
810 }
811 }
812 #endif /* DDB */
813