Home | History | Annotate | Line # | Download | only in kern
kern_timeout.c revision 1.45.18.1
      1 /*	$NetBSD: kern_timeout.c,v 1.45.18.1 2014/08/20 00:04:29 tls Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
     34  * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
     35  * All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  *
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. The name of the author may not be used to endorse or promote products
     47  *    derived from this software without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
     50  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
     51  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     52  * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     53  * EXEMPLARY, OR CONSEQUENTIAL  DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 #include <sys/cdefs.h>
     62 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.45.18.1 2014/08/20 00:04:29 tls Exp $");
     63 
     64 /*
     65  * Timeouts are kept in a hierarchical timing wheel.  The c_time is the
     66  * value of c_cpu->cc_ticks when the timeout should be called.  There are
     67  * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
     68  * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
     69  * a Timer Facility" by George Varghese and Tony Lauck.
     70  *
     71  * Some of the "math" in here is a bit tricky.  We have to beware of
     72  * wrapping ints.
     73  *
     74  * We use the fact that any element added to the queue must be added with
     75  * a positive time.  That means that any element `to' on the queue cannot
     76  * be scheduled to timeout further in time than INT_MAX, but c->c_time can
     77  * be positive or negative so comparing it with anything is dangerous.
     78  * The only way we can use the c->c_time value in any predictable way is
     79  * when we calculate how far in the future `to' will timeout - "c->c_time
     80  * - c->c_cpu->cc_ticks".  The result will always be positive for future
     81  * timeouts and 0 or negative for due timeouts.
     82  */
     83 
     84 #define	_CALLOUT_PRIVATE
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/kernel.h>
     89 #include <sys/callout.h>
     90 #include <sys/lwp.h>
     91 #include <sys/mutex.h>
     92 #include <sys/proc.h>
     93 #include <sys/sleepq.h>
     94 #include <sys/syncobj.h>
     95 #include <sys/evcnt.h>
     96 #include <sys/intr.h>
     97 #include <sys/cpu.h>
     98 #include <sys/kmem.h>
     99 
    100 #ifdef DDB
    101 #include <machine/db_machdep.h>
    102 #include <ddb/db_interface.h>
    103 #include <ddb/db_access.h>
    104 #include <ddb/db_sym.h>
    105 #include <ddb/db_output.h>
    106 #endif
    107 
    108 #define BUCKETS		1024
    109 #define WHEELSIZE	256
    110 #define WHEELMASK	255
    111 #define WHEELBITS	8
    112 
    113 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
    114 
    115 #define BUCKET(cc, rel, abs)						\
    116     (((rel) <= (1 << (2*WHEELBITS)))					\
    117     	? ((rel) <= (1 << WHEELBITS))					\
    118             ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))]			\
    119             : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE]		\
    120         : ((rel) <= (1 << (3*WHEELBITS)))				\
    121             ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE]	\
    122             : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
    123 
    124 #define MOVEBUCKET(cc, wheel, time)					\
    125     CIRCQ_APPEND(&(cc)->cc_todo,					\
    126         &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
    127 
    128 /*
    129  * Circular queue definitions.
    130  */
    131 
    132 #define CIRCQ_INIT(list)						\
    133 do {									\
    134         (list)->cq_next_l = (list);					\
    135         (list)->cq_prev_l = (list);					\
    136 } while (/*CONSTCOND*/0)
    137 
    138 #define CIRCQ_INSERT(elem, list)					\
    139 do {									\
    140         (elem)->cq_prev_e = (list)->cq_prev_e;				\
    141         (elem)->cq_next_l = (list);					\
    142         (list)->cq_prev_l->cq_next_l = (elem);				\
    143         (list)->cq_prev_l = (elem);					\
    144 } while (/*CONSTCOND*/0)
    145 
    146 #define CIRCQ_APPEND(fst, snd)						\
    147 do {									\
    148         if (!CIRCQ_EMPTY(snd)) {					\
    149                 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l;		\
    150                 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l;		\
    151                 (snd)->cq_prev_l->cq_next_l = (fst);			\
    152                 (fst)->cq_prev_l = (snd)->cq_prev_l;			\
    153                 CIRCQ_INIT(snd);					\
    154         }								\
    155 } while (/*CONSTCOND*/0)
    156 
    157 #define CIRCQ_REMOVE(elem)						\
    158 do {									\
    159         (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e;		\
    160         (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e;		\
    161 } while (/*CONSTCOND*/0)
    162 
    163 #define CIRCQ_FIRST(list)	((list)->cq_next_e)
    164 #define CIRCQ_NEXT(elem)	((elem)->cq_next_e)
    165 #define CIRCQ_LAST(elem,list)	((elem)->cq_next_l == (list))
    166 #define CIRCQ_EMPTY(list)	((list)->cq_next_l == (list))
    167 
    168 static void	callout_softclock(void *);
    169 
    170 struct callout_cpu {
    171 	kmutex_t	*cc_lock;
    172 	sleepq_t	cc_sleepq;
    173 	u_int		cc_nwait;
    174 	u_int		cc_ticks;
    175 	lwp_t		*cc_lwp;
    176 	callout_impl_t	*cc_active;
    177 	callout_impl_t	*cc_cancel;
    178 	struct evcnt	cc_ev_late;
    179 	struct evcnt	cc_ev_block;
    180 	struct callout_circq cc_todo;		/* Worklist */
    181 	struct callout_circq cc_wheel[BUCKETS];	/* Queues of timeouts */
    182 	char		cc_name1[12];
    183 	char		cc_name2[12];
    184 };
    185 
    186 static struct callout_cpu callout_cpu0;
    187 static void *callout_sih;
    188 
    189 static inline kmutex_t *
    190 callout_lock(callout_impl_t *c)
    191 {
    192 	struct callout_cpu *cc;
    193 	kmutex_t *lock;
    194 
    195 	for (;;) {
    196 		cc = c->c_cpu;
    197 		lock = cc->cc_lock;
    198 		mutex_spin_enter(lock);
    199 		if (__predict_true(cc == c->c_cpu))
    200 			return lock;
    201 		mutex_spin_exit(lock);
    202 	}
    203 }
    204 
    205 /*
    206  * callout_startup:
    207  *
    208  *	Initialize the callout facility, called at system startup time.
    209  *	Do just enough to allow callouts to be safely registered.
    210  */
    211 void
    212 callout_startup(void)
    213 {
    214 	struct callout_cpu *cc;
    215 	int b;
    216 
    217 	KASSERT(curcpu()->ci_data.cpu_callout == NULL);
    218 
    219 	cc = &callout_cpu0;
    220 	cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    221 	CIRCQ_INIT(&cc->cc_todo);
    222 	for (b = 0; b < BUCKETS; b++)
    223 		CIRCQ_INIT(&cc->cc_wheel[b]);
    224 	curcpu()->ci_data.cpu_callout = cc;
    225 }
    226 
    227 /*
    228  * callout_init_cpu:
    229  *
    230  *	Per-CPU initialization.
    231  */
    232 CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
    233 
    234 void
    235 callout_init_cpu(struct cpu_info *ci)
    236 {
    237 	struct callout_cpu *cc;
    238 	int b;
    239 
    240 	if ((cc = ci->ci_data.cpu_callout) == NULL) {
    241 		cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
    242 		if (cc == NULL)
    243 			panic("callout_init_cpu (1)");
    244 		cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    245 		CIRCQ_INIT(&cc->cc_todo);
    246 		for (b = 0; b < BUCKETS; b++)
    247 			CIRCQ_INIT(&cc->cc_wheel[b]);
    248 	} else {
    249 		/* Boot CPU, one time only. */
    250 		callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    251 		    callout_softclock, NULL);
    252 		if (callout_sih == NULL)
    253 			panic("callout_init_cpu (2)");
    254 	}
    255 
    256 	sleepq_init(&cc->cc_sleepq);
    257 
    258 	snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
    259 	    cpu_index(ci));
    260 	evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
    261 	    NULL, "callout", cc->cc_name1);
    262 
    263 	snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
    264 	    cpu_index(ci));
    265 	evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
    266 	    NULL, "callout", cc->cc_name2);
    267 
    268 	ci->ci_data.cpu_callout = cc;
    269 }
    270 
    271 /*
    272  * callout_init:
    273  *
    274  *	Initialize a callout structure.  This must be quick, so we fill
    275  *	only the minimum number of fields.
    276  */
    277 void
    278 callout_init(callout_t *cs, u_int flags)
    279 {
    280 	callout_impl_t *c = (callout_impl_t *)cs;
    281 	struct callout_cpu *cc;
    282 
    283 	KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
    284 
    285 	cc = curcpu()->ci_data.cpu_callout;
    286 	c->c_func = NULL;
    287 	c->c_magic = CALLOUT_MAGIC;
    288 	if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
    289 		c->c_flags = flags;
    290 		c->c_cpu = cc;
    291 		return;
    292 	}
    293 	c->c_flags = flags | CALLOUT_BOUND;
    294 	c->c_cpu = &callout_cpu0;
    295 }
    296 
    297 /*
    298  * callout_destroy:
    299  *
    300  *	Destroy a callout structure.  The callout must be stopped.
    301  */
    302 void
    303 callout_destroy(callout_t *cs)
    304 {
    305 	callout_impl_t *c = (callout_impl_t *)cs;
    306 
    307 	/*
    308 	 * It's not necessary to lock in order to see the correct value
    309 	 * of c->c_flags.  If the callout could potentially have been
    310 	 * running, the current thread should have stopped it.
    311 	 */
    312 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
    313 	KASSERT(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c);
    314 	KASSERTMSG(c->c_magic == CALLOUT_MAGIC,
    315 	    "callout %p: c_magic (%#x) != CALLOUT_MAGIC (%#x)",
    316 	    c, c->c_magic, CALLOUT_MAGIC);
    317 	c->c_magic = 0;
    318 }
    319 
    320 /*
    321  * callout_schedule_locked:
    322  *
    323  *	Schedule a callout to run.  The function and argument must
    324  *	already be set in the callout structure.  Must be called with
    325  *	callout_lock.
    326  */
    327 static void
    328 callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
    329 {
    330 	struct callout_cpu *cc, *occ;
    331 	int old_time;
    332 
    333 	KASSERT(to_ticks >= 0);
    334 	KASSERT(c->c_func != NULL);
    335 
    336 	/* Initialize the time here, it won't change. */
    337 	occ = c->c_cpu;
    338 	c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
    339 
    340 	/*
    341 	 * If this timeout is already scheduled and now is moved
    342 	 * earlier, reschedule it now.  Otherwise leave it in place
    343 	 * and let it be rescheduled later.
    344 	 */
    345 	if ((c->c_flags & CALLOUT_PENDING) != 0) {
    346 		/* Leave on existing CPU. */
    347 		old_time = c->c_time;
    348 		c->c_time = to_ticks + occ->cc_ticks;
    349 		if (c->c_time - old_time < 0) {
    350 			CIRCQ_REMOVE(&c->c_list);
    351 			CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    352 		}
    353 		mutex_spin_exit(lock);
    354 		return;
    355 	}
    356 
    357 	cc = curcpu()->ci_data.cpu_callout;
    358 	if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
    359 	    !mutex_tryenter(cc->cc_lock)) {
    360 		/* Leave on existing CPU. */
    361 		c->c_time = to_ticks + occ->cc_ticks;
    362 		c->c_flags |= CALLOUT_PENDING;
    363 		CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    364 	} else {
    365 		/* Move to this CPU. */
    366 		c->c_cpu = cc;
    367 		c->c_time = to_ticks + cc->cc_ticks;
    368 		c->c_flags |= CALLOUT_PENDING;
    369 		CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
    370 		mutex_spin_exit(cc->cc_lock);
    371 	}
    372 	mutex_spin_exit(lock);
    373 }
    374 
    375 /*
    376  * callout_reset:
    377  *
    378  *	Reset a callout structure with a new function and argument, and
    379  *	schedule it to run.
    380  */
    381 void
    382 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
    383 {
    384 	callout_impl_t *c = (callout_impl_t *)cs;
    385 	kmutex_t *lock;
    386 
    387 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    388 	KASSERT(func != NULL);
    389 
    390 	lock = callout_lock(c);
    391 	c->c_func = func;
    392 	c->c_arg = arg;
    393 	callout_schedule_locked(c, lock, to_ticks);
    394 }
    395 
    396 /*
    397  * callout_schedule:
    398  *
    399  *	Schedule a callout to run.  The function and argument must
    400  *	already be set in the callout structure.
    401  */
    402 void
    403 callout_schedule(callout_t *cs, int to_ticks)
    404 {
    405 	callout_impl_t *c = (callout_impl_t *)cs;
    406 	kmutex_t *lock;
    407 
    408 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    409 
    410 	lock = callout_lock(c);
    411 	callout_schedule_locked(c, lock, to_ticks);
    412 }
    413 
    414 /*
    415  * callout_stop:
    416  *
    417  *	Try to cancel a pending callout.  It may be too late: the callout
    418  *	could be running on another CPU.  If called from interrupt context,
    419  *	the callout could already be in progress at a lower priority.
    420  */
    421 bool
    422 callout_stop(callout_t *cs)
    423 {
    424 	callout_impl_t *c = (callout_impl_t *)cs;
    425 	struct callout_cpu *cc;
    426 	kmutex_t *lock;
    427 	bool expired;
    428 
    429 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    430 
    431 	lock = callout_lock(c);
    432 
    433 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    434 		CIRCQ_REMOVE(&c->c_list);
    435 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    436 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    437 
    438 	cc = c->c_cpu;
    439 	if (cc->cc_active == c) {
    440 		/*
    441 		 * This is for non-MPSAFE callouts only.  To synchronize
    442 		 * effectively we must be called with kernel_lock held.
    443 		 * It's also taken in callout_softclock.
    444 		 */
    445 		cc->cc_cancel = c;
    446 	}
    447 
    448 	mutex_spin_exit(lock);
    449 
    450 	return expired;
    451 }
    452 
    453 /*
    454  * callout_halt:
    455  *
    456  *	Cancel a pending callout.  If in-flight, block until it completes.
    457  *	May not be called from a hard interrupt handler.  If the callout
    458  * 	can take locks, the caller of callout_halt() must not hold any of
    459  *	those locks, otherwise the two could deadlock.  If 'interlock' is
    460  *	non-NULL and we must wait for the callout to complete, it will be
    461  *	released and re-acquired before returning.
    462  */
    463 bool
    464 callout_halt(callout_t *cs, void *interlock)
    465 {
    466 	callout_impl_t *c = (callout_impl_t *)cs;
    467 	struct callout_cpu *cc;
    468 	struct lwp *l;
    469 	kmutex_t *lock, *relock;
    470 	bool expired;
    471 
    472 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    473 	KASSERT(!cpu_intr_p());
    474 
    475 	lock = callout_lock(c);
    476 	relock = NULL;
    477 
    478 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    479 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    480 		CIRCQ_REMOVE(&c->c_list);
    481 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    482 
    483 	l = curlwp;
    484 	for (;;) {
    485 		cc = c->c_cpu;
    486 		if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
    487 			break;
    488 		if (interlock != NULL) {
    489 			/*
    490 			 * Avoid potential scheduler lock order problems by
    491 			 * dropping the interlock without the callout lock
    492 			 * held.
    493 			 */
    494 			mutex_spin_exit(lock);
    495 			mutex_exit(interlock);
    496 			relock = interlock;
    497 			interlock = NULL;
    498 		} else {
    499 			/* XXX Better to do priority inheritance. */
    500 			KASSERT(l->l_wchan == NULL);
    501 			cc->cc_nwait++;
    502 			cc->cc_ev_block.ev_count++;
    503 			l->l_kpriority = true;
    504 			sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
    505 			sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
    506 			    &sleep_syncobj);
    507 			sleepq_block(0, false);
    508 		}
    509 		lock = callout_lock(c);
    510 	}
    511 
    512 	mutex_spin_exit(lock);
    513 	if (__predict_false(relock != NULL))
    514 		mutex_enter(relock);
    515 
    516 	return expired;
    517 }
    518 
    519 #ifdef notyet
    520 /*
    521  * callout_bind:
    522  *
    523  *	Bind a callout so that it will only execute on one CPU.
    524  *	The callout must be stopped, and must be MPSAFE.
    525  *
    526  *	XXX Disabled for now until it is decided how to handle
    527  *	offlined CPUs.  We may want weak+strong binding.
    528  */
    529 void
    530 callout_bind(callout_t *cs, struct cpu_info *ci)
    531 {
    532 	callout_impl_t *c = (callout_impl_t *)cs;
    533 	struct callout_cpu *cc;
    534 	kmutex_t *lock;
    535 
    536 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
    537 	KASSERT(c->c_cpu->cc_active != c);
    538 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    539 	KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
    540 
    541 	lock = callout_lock(c);
    542 	cc = ci->ci_data.cpu_callout;
    543 	c->c_flags |= CALLOUT_BOUND;
    544 	if (c->c_cpu != cc) {
    545 		/*
    546 		 * Assigning c_cpu effectively unlocks the callout
    547 		 * structure, as we don't hold the new CPU's lock.
    548 		 * Issue memory barrier to prevent accesses being
    549 		 * reordered.
    550 		 */
    551 		membar_exit();
    552 		c->c_cpu = cc;
    553 	}
    554 	mutex_spin_exit(lock);
    555 }
    556 #endif
    557 
    558 void
    559 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
    560 {
    561 	callout_impl_t *c = (callout_impl_t *)cs;
    562 	kmutex_t *lock;
    563 
    564 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    565 	KASSERT(func != NULL);
    566 
    567 	lock = callout_lock(c);
    568 	c->c_func = func;
    569 	c->c_arg = arg;
    570 	mutex_spin_exit(lock);
    571 }
    572 
    573 bool
    574 callout_expired(callout_t *cs)
    575 {
    576 	callout_impl_t *c = (callout_impl_t *)cs;
    577 	kmutex_t *lock;
    578 	bool rv;
    579 
    580 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    581 
    582 	lock = callout_lock(c);
    583 	rv = ((c->c_flags & CALLOUT_FIRED) != 0);
    584 	mutex_spin_exit(lock);
    585 
    586 	return rv;
    587 }
    588 
    589 bool
    590 callout_active(callout_t *cs)
    591 {
    592 	callout_impl_t *c = (callout_impl_t *)cs;
    593 	kmutex_t *lock;
    594 	bool rv;
    595 
    596 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    597 
    598 	lock = callout_lock(c);
    599 	rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
    600 	mutex_spin_exit(lock);
    601 
    602 	return rv;
    603 }
    604 
    605 bool
    606 callout_pending(callout_t *cs)
    607 {
    608 	callout_impl_t *c = (callout_impl_t *)cs;
    609 	kmutex_t *lock;
    610 	bool rv;
    611 
    612 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    613 
    614 	lock = callout_lock(c);
    615 	rv = ((c->c_flags & CALLOUT_PENDING) != 0);
    616 	mutex_spin_exit(lock);
    617 
    618 	return rv;
    619 }
    620 
    621 bool
    622 callout_invoking(callout_t *cs)
    623 {
    624 	callout_impl_t *c = (callout_impl_t *)cs;
    625 	kmutex_t *lock;
    626 	bool rv;
    627 
    628 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    629 
    630 	lock = callout_lock(c);
    631 	rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
    632 	mutex_spin_exit(lock);
    633 
    634 	return rv;
    635 }
    636 
    637 void
    638 callout_ack(callout_t *cs)
    639 {
    640 	callout_impl_t *c = (callout_impl_t *)cs;
    641 	kmutex_t *lock;
    642 
    643 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    644 
    645 	lock = callout_lock(c);
    646 	c->c_flags &= ~CALLOUT_INVOKING;
    647 	mutex_spin_exit(lock);
    648 }
    649 
    650 /*
    651  * callout_hardclock:
    652  *
    653  *	Called from hardclock() once every tick.  We schedule a soft
    654  *	interrupt if there is work to be done.
    655  */
    656 void
    657 callout_hardclock(void)
    658 {
    659 	struct callout_cpu *cc;
    660 	int needsoftclock, ticks;
    661 
    662 	cc = curcpu()->ci_data.cpu_callout;
    663 	mutex_spin_enter(cc->cc_lock);
    664 
    665 	ticks = ++cc->cc_ticks;
    666 
    667 	MOVEBUCKET(cc, 0, ticks);
    668 	if (MASKWHEEL(0, ticks) == 0) {
    669 		MOVEBUCKET(cc, 1, ticks);
    670 		if (MASKWHEEL(1, ticks) == 0) {
    671 			MOVEBUCKET(cc, 2, ticks);
    672 			if (MASKWHEEL(2, ticks) == 0)
    673 				MOVEBUCKET(cc, 3, ticks);
    674 		}
    675 	}
    676 
    677 	needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
    678 	mutex_spin_exit(cc->cc_lock);
    679 
    680 	if (needsoftclock)
    681 		softint_schedule(callout_sih);
    682 }
    683 
    684 /*
    685  * callout_softclock:
    686  *
    687  *	Soft interrupt handler, scheduled above if there is work to
    688  * 	be done.  Callouts are made in soft interrupt context.
    689  */
    690 static void
    691 callout_softclock(void *v)
    692 {
    693 	callout_impl_t *c;
    694 	struct callout_cpu *cc;
    695 	void (*func)(void *);
    696 	void *arg;
    697 	int mpsafe, count, ticks, delta;
    698 	lwp_t *l;
    699 
    700 	l = curlwp;
    701 	KASSERT(l->l_cpu == curcpu());
    702 	cc = l->l_cpu->ci_data.cpu_callout;
    703 
    704 	mutex_spin_enter(cc->cc_lock);
    705 	cc->cc_lwp = l;
    706 	while (!CIRCQ_EMPTY(&cc->cc_todo)) {
    707 		c = CIRCQ_FIRST(&cc->cc_todo);
    708 		KASSERT(c->c_magic == CALLOUT_MAGIC);
    709 		KASSERT(c->c_func != NULL);
    710 		KASSERT(c->c_cpu == cc);
    711 		KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
    712 		KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
    713 		CIRCQ_REMOVE(&c->c_list);
    714 
    715 		/* If due run it, otherwise insert it into the right bucket. */
    716 		ticks = cc->cc_ticks;
    717 		delta = c->c_time - ticks;
    718 		if (delta > 0) {
    719 			CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
    720 			continue;
    721 		}
    722 		if (delta < 0)
    723 			cc->cc_ev_late.ev_count++;
    724 
    725 		c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
    726 		    (CALLOUT_FIRED | CALLOUT_INVOKING);
    727 		mpsafe = (c->c_flags & CALLOUT_MPSAFE);
    728 		func = c->c_func;
    729 		arg = c->c_arg;
    730 		cc->cc_active = c;
    731 
    732 		mutex_spin_exit(cc->cc_lock);
    733 		KASSERT(func != NULL);
    734 		if (__predict_false(!mpsafe)) {
    735 			KERNEL_LOCK(1, NULL);
    736 			(*func)(arg);
    737 			KERNEL_UNLOCK_ONE(NULL);
    738 		} else
    739 			(*func)(arg);
    740 		mutex_spin_enter(cc->cc_lock);
    741 
    742 		/*
    743 		 * We can't touch 'c' here because it might be
    744 		 * freed already.  If LWPs waiting for callout
    745 		 * to complete, awaken them.
    746 		 */
    747 		cc->cc_active = NULL;
    748 		if ((count = cc->cc_nwait) != 0) {
    749 			cc->cc_nwait = 0;
    750 			/* sleepq_wake() drops the lock. */
    751 			sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
    752 			mutex_spin_enter(cc->cc_lock);
    753 		}
    754 	}
    755 	cc->cc_lwp = NULL;
    756 	mutex_spin_exit(cc->cc_lock);
    757 }
    758 
    759 #ifdef DDB
    760 static void
    761 db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *bucket)
    762 {
    763 	callout_impl_t *c;
    764 	db_expr_t offset;
    765 	const char *name;
    766 	static char question[] = "?";
    767 	int b;
    768 
    769 	if (CIRCQ_EMPTY(bucket))
    770 		return;
    771 
    772 	for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
    773 		db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
    774 		    &offset);
    775 		name = name ? name : question;
    776 		b = (bucket - cc->cc_wheel);
    777 		if (b < 0)
    778 			b = -WHEELSIZE;
    779 		db_printf("%9d %2d/%-4d %16lx  %s\n",
    780 		    c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
    781 		    (u_long)c->c_arg, name);
    782 		if (CIRCQ_LAST(&c->c_list, bucket))
    783 			break;
    784 	}
    785 }
    786 
    787 void
    788 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
    789 {
    790 	CPU_INFO_ITERATOR cii;
    791 	struct callout_cpu *cc;
    792 	struct cpu_info *ci;
    793 	int b;
    794 
    795 	db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
    796 	db_printf("    ticks  wheel               arg  func\n");
    797 
    798 	/*
    799 	 * Don't lock the callwheel; all the other CPUs are paused
    800 	 * anyhow, and we might be called in a circumstance where
    801 	 * some other CPU was paused while holding the lock.
    802 	 */
    803 	for (CPU_INFO_FOREACH(cii, ci)) {
    804 		cc = ci->ci_data.cpu_callout;
    805 		db_show_callout_bucket(cc, &cc->cc_todo);
    806 	}
    807 	for (b = 0; b < BUCKETS; b++) {
    808 		for (CPU_INFO_FOREACH(cii, ci)) {
    809 			cc = ci->ci_data.cpu_callout;
    810 			db_show_callout_bucket(cc, &cc->cc_wheel[b]);
    811 		}
    812 	}
    813 }
    814 #endif /* DDB */
    815