kern_timeout.c revision 1.45.18.1 1 /* $NetBSD: kern_timeout.c,v 1.45.18.1 2014/08/20 00:04:29 tls Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
34 * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 *
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. The name of the author may not be used to endorse or promote products
47 * derived from this software without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
50 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
51 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
52 * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
53 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.45.18.1 2014/08/20 00:04:29 tls Exp $");
63
64 /*
65 * Timeouts are kept in a hierarchical timing wheel. The c_time is the
66 * value of c_cpu->cc_ticks when the timeout should be called. There are
67 * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
68 * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
69 * a Timer Facility" by George Varghese and Tony Lauck.
70 *
71 * Some of the "math" in here is a bit tricky. We have to beware of
72 * wrapping ints.
73 *
74 * We use the fact that any element added to the queue must be added with
75 * a positive time. That means that any element `to' on the queue cannot
76 * be scheduled to timeout further in time than INT_MAX, but c->c_time can
77 * be positive or negative so comparing it with anything is dangerous.
78 * The only way we can use the c->c_time value in any predictable way is
79 * when we calculate how far in the future `to' will timeout - "c->c_time
80 * - c->c_cpu->cc_ticks". The result will always be positive for future
81 * timeouts and 0 or negative for due timeouts.
82 */
83
84 #define _CALLOUT_PRIVATE
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/callout.h>
90 #include <sys/lwp.h>
91 #include <sys/mutex.h>
92 #include <sys/proc.h>
93 #include <sys/sleepq.h>
94 #include <sys/syncobj.h>
95 #include <sys/evcnt.h>
96 #include <sys/intr.h>
97 #include <sys/cpu.h>
98 #include <sys/kmem.h>
99
100 #ifdef DDB
101 #include <machine/db_machdep.h>
102 #include <ddb/db_interface.h>
103 #include <ddb/db_access.h>
104 #include <ddb/db_sym.h>
105 #include <ddb/db_output.h>
106 #endif
107
108 #define BUCKETS 1024
109 #define WHEELSIZE 256
110 #define WHEELMASK 255
111 #define WHEELBITS 8
112
113 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
114
115 #define BUCKET(cc, rel, abs) \
116 (((rel) <= (1 << (2*WHEELBITS))) \
117 ? ((rel) <= (1 << WHEELBITS)) \
118 ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))] \
119 : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE] \
120 : ((rel) <= (1 << (3*WHEELBITS))) \
121 ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE] \
122 : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
123
124 #define MOVEBUCKET(cc, wheel, time) \
125 CIRCQ_APPEND(&(cc)->cc_todo, \
126 &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
127
128 /*
129 * Circular queue definitions.
130 */
131
132 #define CIRCQ_INIT(list) \
133 do { \
134 (list)->cq_next_l = (list); \
135 (list)->cq_prev_l = (list); \
136 } while (/*CONSTCOND*/0)
137
138 #define CIRCQ_INSERT(elem, list) \
139 do { \
140 (elem)->cq_prev_e = (list)->cq_prev_e; \
141 (elem)->cq_next_l = (list); \
142 (list)->cq_prev_l->cq_next_l = (elem); \
143 (list)->cq_prev_l = (elem); \
144 } while (/*CONSTCOND*/0)
145
146 #define CIRCQ_APPEND(fst, snd) \
147 do { \
148 if (!CIRCQ_EMPTY(snd)) { \
149 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l; \
150 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l; \
151 (snd)->cq_prev_l->cq_next_l = (fst); \
152 (fst)->cq_prev_l = (snd)->cq_prev_l; \
153 CIRCQ_INIT(snd); \
154 } \
155 } while (/*CONSTCOND*/0)
156
157 #define CIRCQ_REMOVE(elem) \
158 do { \
159 (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e; \
160 (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e; \
161 } while (/*CONSTCOND*/0)
162
163 #define CIRCQ_FIRST(list) ((list)->cq_next_e)
164 #define CIRCQ_NEXT(elem) ((elem)->cq_next_e)
165 #define CIRCQ_LAST(elem,list) ((elem)->cq_next_l == (list))
166 #define CIRCQ_EMPTY(list) ((list)->cq_next_l == (list))
167
168 static void callout_softclock(void *);
169
170 struct callout_cpu {
171 kmutex_t *cc_lock;
172 sleepq_t cc_sleepq;
173 u_int cc_nwait;
174 u_int cc_ticks;
175 lwp_t *cc_lwp;
176 callout_impl_t *cc_active;
177 callout_impl_t *cc_cancel;
178 struct evcnt cc_ev_late;
179 struct evcnt cc_ev_block;
180 struct callout_circq cc_todo; /* Worklist */
181 struct callout_circq cc_wheel[BUCKETS]; /* Queues of timeouts */
182 char cc_name1[12];
183 char cc_name2[12];
184 };
185
186 static struct callout_cpu callout_cpu0;
187 static void *callout_sih;
188
189 static inline kmutex_t *
190 callout_lock(callout_impl_t *c)
191 {
192 struct callout_cpu *cc;
193 kmutex_t *lock;
194
195 for (;;) {
196 cc = c->c_cpu;
197 lock = cc->cc_lock;
198 mutex_spin_enter(lock);
199 if (__predict_true(cc == c->c_cpu))
200 return lock;
201 mutex_spin_exit(lock);
202 }
203 }
204
205 /*
206 * callout_startup:
207 *
208 * Initialize the callout facility, called at system startup time.
209 * Do just enough to allow callouts to be safely registered.
210 */
211 void
212 callout_startup(void)
213 {
214 struct callout_cpu *cc;
215 int b;
216
217 KASSERT(curcpu()->ci_data.cpu_callout == NULL);
218
219 cc = &callout_cpu0;
220 cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
221 CIRCQ_INIT(&cc->cc_todo);
222 for (b = 0; b < BUCKETS; b++)
223 CIRCQ_INIT(&cc->cc_wheel[b]);
224 curcpu()->ci_data.cpu_callout = cc;
225 }
226
227 /*
228 * callout_init_cpu:
229 *
230 * Per-CPU initialization.
231 */
232 CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
233
234 void
235 callout_init_cpu(struct cpu_info *ci)
236 {
237 struct callout_cpu *cc;
238 int b;
239
240 if ((cc = ci->ci_data.cpu_callout) == NULL) {
241 cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
242 if (cc == NULL)
243 panic("callout_init_cpu (1)");
244 cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
245 CIRCQ_INIT(&cc->cc_todo);
246 for (b = 0; b < BUCKETS; b++)
247 CIRCQ_INIT(&cc->cc_wheel[b]);
248 } else {
249 /* Boot CPU, one time only. */
250 callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
251 callout_softclock, NULL);
252 if (callout_sih == NULL)
253 panic("callout_init_cpu (2)");
254 }
255
256 sleepq_init(&cc->cc_sleepq);
257
258 snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
259 cpu_index(ci));
260 evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
261 NULL, "callout", cc->cc_name1);
262
263 snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
264 cpu_index(ci));
265 evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
266 NULL, "callout", cc->cc_name2);
267
268 ci->ci_data.cpu_callout = cc;
269 }
270
271 /*
272 * callout_init:
273 *
274 * Initialize a callout structure. This must be quick, so we fill
275 * only the minimum number of fields.
276 */
277 void
278 callout_init(callout_t *cs, u_int flags)
279 {
280 callout_impl_t *c = (callout_impl_t *)cs;
281 struct callout_cpu *cc;
282
283 KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
284
285 cc = curcpu()->ci_data.cpu_callout;
286 c->c_func = NULL;
287 c->c_magic = CALLOUT_MAGIC;
288 if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
289 c->c_flags = flags;
290 c->c_cpu = cc;
291 return;
292 }
293 c->c_flags = flags | CALLOUT_BOUND;
294 c->c_cpu = &callout_cpu0;
295 }
296
297 /*
298 * callout_destroy:
299 *
300 * Destroy a callout structure. The callout must be stopped.
301 */
302 void
303 callout_destroy(callout_t *cs)
304 {
305 callout_impl_t *c = (callout_impl_t *)cs;
306
307 /*
308 * It's not necessary to lock in order to see the correct value
309 * of c->c_flags. If the callout could potentially have been
310 * running, the current thread should have stopped it.
311 */
312 KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
313 KASSERT(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c);
314 KASSERTMSG(c->c_magic == CALLOUT_MAGIC,
315 "callout %p: c_magic (%#x) != CALLOUT_MAGIC (%#x)",
316 c, c->c_magic, CALLOUT_MAGIC);
317 c->c_magic = 0;
318 }
319
320 /*
321 * callout_schedule_locked:
322 *
323 * Schedule a callout to run. The function and argument must
324 * already be set in the callout structure. Must be called with
325 * callout_lock.
326 */
327 static void
328 callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
329 {
330 struct callout_cpu *cc, *occ;
331 int old_time;
332
333 KASSERT(to_ticks >= 0);
334 KASSERT(c->c_func != NULL);
335
336 /* Initialize the time here, it won't change. */
337 occ = c->c_cpu;
338 c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
339
340 /*
341 * If this timeout is already scheduled and now is moved
342 * earlier, reschedule it now. Otherwise leave it in place
343 * and let it be rescheduled later.
344 */
345 if ((c->c_flags & CALLOUT_PENDING) != 0) {
346 /* Leave on existing CPU. */
347 old_time = c->c_time;
348 c->c_time = to_ticks + occ->cc_ticks;
349 if (c->c_time - old_time < 0) {
350 CIRCQ_REMOVE(&c->c_list);
351 CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
352 }
353 mutex_spin_exit(lock);
354 return;
355 }
356
357 cc = curcpu()->ci_data.cpu_callout;
358 if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
359 !mutex_tryenter(cc->cc_lock)) {
360 /* Leave on existing CPU. */
361 c->c_time = to_ticks + occ->cc_ticks;
362 c->c_flags |= CALLOUT_PENDING;
363 CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
364 } else {
365 /* Move to this CPU. */
366 c->c_cpu = cc;
367 c->c_time = to_ticks + cc->cc_ticks;
368 c->c_flags |= CALLOUT_PENDING;
369 CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
370 mutex_spin_exit(cc->cc_lock);
371 }
372 mutex_spin_exit(lock);
373 }
374
375 /*
376 * callout_reset:
377 *
378 * Reset a callout structure with a new function and argument, and
379 * schedule it to run.
380 */
381 void
382 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
383 {
384 callout_impl_t *c = (callout_impl_t *)cs;
385 kmutex_t *lock;
386
387 KASSERT(c->c_magic == CALLOUT_MAGIC);
388 KASSERT(func != NULL);
389
390 lock = callout_lock(c);
391 c->c_func = func;
392 c->c_arg = arg;
393 callout_schedule_locked(c, lock, to_ticks);
394 }
395
396 /*
397 * callout_schedule:
398 *
399 * Schedule a callout to run. The function and argument must
400 * already be set in the callout structure.
401 */
402 void
403 callout_schedule(callout_t *cs, int to_ticks)
404 {
405 callout_impl_t *c = (callout_impl_t *)cs;
406 kmutex_t *lock;
407
408 KASSERT(c->c_magic == CALLOUT_MAGIC);
409
410 lock = callout_lock(c);
411 callout_schedule_locked(c, lock, to_ticks);
412 }
413
414 /*
415 * callout_stop:
416 *
417 * Try to cancel a pending callout. It may be too late: the callout
418 * could be running on another CPU. If called from interrupt context,
419 * the callout could already be in progress at a lower priority.
420 */
421 bool
422 callout_stop(callout_t *cs)
423 {
424 callout_impl_t *c = (callout_impl_t *)cs;
425 struct callout_cpu *cc;
426 kmutex_t *lock;
427 bool expired;
428
429 KASSERT(c->c_magic == CALLOUT_MAGIC);
430
431 lock = callout_lock(c);
432
433 if ((c->c_flags & CALLOUT_PENDING) != 0)
434 CIRCQ_REMOVE(&c->c_list);
435 expired = ((c->c_flags & CALLOUT_FIRED) != 0);
436 c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
437
438 cc = c->c_cpu;
439 if (cc->cc_active == c) {
440 /*
441 * This is for non-MPSAFE callouts only. To synchronize
442 * effectively we must be called with kernel_lock held.
443 * It's also taken in callout_softclock.
444 */
445 cc->cc_cancel = c;
446 }
447
448 mutex_spin_exit(lock);
449
450 return expired;
451 }
452
453 /*
454 * callout_halt:
455 *
456 * Cancel a pending callout. If in-flight, block until it completes.
457 * May not be called from a hard interrupt handler. If the callout
458 * can take locks, the caller of callout_halt() must not hold any of
459 * those locks, otherwise the two could deadlock. If 'interlock' is
460 * non-NULL and we must wait for the callout to complete, it will be
461 * released and re-acquired before returning.
462 */
463 bool
464 callout_halt(callout_t *cs, void *interlock)
465 {
466 callout_impl_t *c = (callout_impl_t *)cs;
467 struct callout_cpu *cc;
468 struct lwp *l;
469 kmutex_t *lock, *relock;
470 bool expired;
471
472 KASSERT(c->c_magic == CALLOUT_MAGIC);
473 KASSERT(!cpu_intr_p());
474
475 lock = callout_lock(c);
476 relock = NULL;
477
478 expired = ((c->c_flags & CALLOUT_FIRED) != 0);
479 if ((c->c_flags & CALLOUT_PENDING) != 0)
480 CIRCQ_REMOVE(&c->c_list);
481 c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
482
483 l = curlwp;
484 for (;;) {
485 cc = c->c_cpu;
486 if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
487 break;
488 if (interlock != NULL) {
489 /*
490 * Avoid potential scheduler lock order problems by
491 * dropping the interlock without the callout lock
492 * held.
493 */
494 mutex_spin_exit(lock);
495 mutex_exit(interlock);
496 relock = interlock;
497 interlock = NULL;
498 } else {
499 /* XXX Better to do priority inheritance. */
500 KASSERT(l->l_wchan == NULL);
501 cc->cc_nwait++;
502 cc->cc_ev_block.ev_count++;
503 l->l_kpriority = true;
504 sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
505 sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
506 &sleep_syncobj);
507 sleepq_block(0, false);
508 }
509 lock = callout_lock(c);
510 }
511
512 mutex_spin_exit(lock);
513 if (__predict_false(relock != NULL))
514 mutex_enter(relock);
515
516 return expired;
517 }
518
519 #ifdef notyet
520 /*
521 * callout_bind:
522 *
523 * Bind a callout so that it will only execute on one CPU.
524 * The callout must be stopped, and must be MPSAFE.
525 *
526 * XXX Disabled for now until it is decided how to handle
527 * offlined CPUs. We may want weak+strong binding.
528 */
529 void
530 callout_bind(callout_t *cs, struct cpu_info *ci)
531 {
532 callout_impl_t *c = (callout_impl_t *)cs;
533 struct callout_cpu *cc;
534 kmutex_t *lock;
535
536 KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
537 KASSERT(c->c_cpu->cc_active != c);
538 KASSERT(c->c_magic == CALLOUT_MAGIC);
539 KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
540
541 lock = callout_lock(c);
542 cc = ci->ci_data.cpu_callout;
543 c->c_flags |= CALLOUT_BOUND;
544 if (c->c_cpu != cc) {
545 /*
546 * Assigning c_cpu effectively unlocks the callout
547 * structure, as we don't hold the new CPU's lock.
548 * Issue memory barrier to prevent accesses being
549 * reordered.
550 */
551 membar_exit();
552 c->c_cpu = cc;
553 }
554 mutex_spin_exit(lock);
555 }
556 #endif
557
558 void
559 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
560 {
561 callout_impl_t *c = (callout_impl_t *)cs;
562 kmutex_t *lock;
563
564 KASSERT(c->c_magic == CALLOUT_MAGIC);
565 KASSERT(func != NULL);
566
567 lock = callout_lock(c);
568 c->c_func = func;
569 c->c_arg = arg;
570 mutex_spin_exit(lock);
571 }
572
573 bool
574 callout_expired(callout_t *cs)
575 {
576 callout_impl_t *c = (callout_impl_t *)cs;
577 kmutex_t *lock;
578 bool rv;
579
580 KASSERT(c->c_magic == CALLOUT_MAGIC);
581
582 lock = callout_lock(c);
583 rv = ((c->c_flags & CALLOUT_FIRED) != 0);
584 mutex_spin_exit(lock);
585
586 return rv;
587 }
588
589 bool
590 callout_active(callout_t *cs)
591 {
592 callout_impl_t *c = (callout_impl_t *)cs;
593 kmutex_t *lock;
594 bool rv;
595
596 KASSERT(c->c_magic == CALLOUT_MAGIC);
597
598 lock = callout_lock(c);
599 rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
600 mutex_spin_exit(lock);
601
602 return rv;
603 }
604
605 bool
606 callout_pending(callout_t *cs)
607 {
608 callout_impl_t *c = (callout_impl_t *)cs;
609 kmutex_t *lock;
610 bool rv;
611
612 KASSERT(c->c_magic == CALLOUT_MAGIC);
613
614 lock = callout_lock(c);
615 rv = ((c->c_flags & CALLOUT_PENDING) != 0);
616 mutex_spin_exit(lock);
617
618 return rv;
619 }
620
621 bool
622 callout_invoking(callout_t *cs)
623 {
624 callout_impl_t *c = (callout_impl_t *)cs;
625 kmutex_t *lock;
626 bool rv;
627
628 KASSERT(c->c_magic == CALLOUT_MAGIC);
629
630 lock = callout_lock(c);
631 rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
632 mutex_spin_exit(lock);
633
634 return rv;
635 }
636
637 void
638 callout_ack(callout_t *cs)
639 {
640 callout_impl_t *c = (callout_impl_t *)cs;
641 kmutex_t *lock;
642
643 KASSERT(c->c_magic == CALLOUT_MAGIC);
644
645 lock = callout_lock(c);
646 c->c_flags &= ~CALLOUT_INVOKING;
647 mutex_spin_exit(lock);
648 }
649
650 /*
651 * callout_hardclock:
652 *
653 * Called from hardclock() once every tick. We schedule a soft
654 * interrupt if there is work to be done.
655 */
656 void
657 callout_hardclock(void)
658 {
659 struct callout_cpu *cc;
660 int needsoftclock, ticks;
661
662 cc = curcpu()->ci_data.cpu_callout;
663 mutex_spin_enter(cc->cc_lock);
664
665 ticks = ++cc->cc_ticks;
666
667 MOVEBUCKET(cc, 0, ticks);
668 if (MASKWHEEL(0, ticks) == 0) {
669 MOVEBUCKET(cc, 1, ticks);
670 if (MASKWHEEL(1, ticks) == 0) {
671 MOVEBUCKET(cc, 2, ticks);
672 if (MASKWHEEL(2, ticks) == 0)
673 MOVEBUCKET(cc, 3, ticks);
674 }
675 }
676
677 needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
678 mutex_spin_exit(cc->cc_lock);
679
680 if (needsoftclock)
681 softint_schedule(callout_sih);
682 }
683
684 /*
685 * callout_softclock:
686 *
687 * Soft interrupt handler, scheduled above if there is work to
688 * be done. Callouts are made in soft interrupt context.
689 */
690 static void
691 callout_softclock(void *v)
692 {
693 callout_impl_t *c;
694 struct callout_cpu *cc;
695 void (*func)(void *);
696 void *arg;
697 int mpsafe, count, ticks, delta;
698 lwp_t *l;
699
700 l = curlwp;
701 KASSERT(l->l_cpu == curcpu());
702 cc = l->l_cpu->ci_data.cpu_callout;
703
704 mutex_spin_enter(cc->cc_lock);
705 cc->cc_lwp = l;
706 while (!CIRCQ_EMPTY(&cc->cc_todo)) {
707 c = CIRCQ_FIRST(&cc->cc_todo);
708 KASSERT(c->c_magic == CALLOUT_MAGIC);
709 KASSERT(c->c_func != NULL);
710 KASSERT(c->c_cpu == cc);
711 KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
712 KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
713 CIRCQ_REMOVE(&c->c_list);
714
715 /* If due run it, otherwise insert it into the right bucket. */
716 ticks = cc->cc_ticks;
717 delta = c->c_time - ticks;
718 if (delta > 0) {
719 CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
720 continue;
721 }
722 if (delta < 0)
723 cc->cc_ev_late.ev_count++;
724
725 c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
726 (CALLOUT_FIRED | CALLOUT_INVOKING);
727 mpsafe = (c->c_flags & CALLOUT_MPSAFE);
728 func = c->c_func;
729 arg = c->c_arg;
730 cc->cc_active = c;
731
732 mutex_spin_exit(cc->cc_lock);
733 KASSERT(func != NULL);
734 if (__predict_false(!mpsafe)) {
735 KERNEL_LOCK(1, NULL);
736 (*func)(arg);
737 KERNEL_UNLOCK_ONE(NULL);
738 } else
739 (*func)(arg);
740 mutex_spin_enter(cc->cc_lock);
741
742 /*
743 * We can't touch 'c' here because it might be
744 * freed already. If LWPs waiting for callout
745 * to complete, awaken them.
746 */
747 cc->cc_active = NULL;
748 if ((count = cc->cc_nwait) != 0) {
749 cc->cc_nwait = 0;
750 /* sleepq_wake() drops the lock. */
751 sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
752 mutex_spin_enter(cc->cc_lock);
753 }
754 }
755 cc->cc_lwp = NULL;
756 mutex_spin_exit(cc->cc_lock);
757 }
758
759 #ifdef DDB
760 static void
761 db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *bucket)
762 {
763 callout_impl_t *c;
764 db_expr_t offset;
765 const char *name;
766 static char question[] = "?";
767 int b;
768
769 if (CIRCQ_EMPTY(bucket))
770 return;
771
772 for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
773 db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
774 &offset);
775 name = name ? name : question;
776 b = (bucket - cc->cc_wheel);
777 if (b < 0)
778 b = -WHEELSIZE;
779 db_printf("%9d %2d/%-4d %16lx %s\n",
780 c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
781 (u_long)c->c_arg, name);
782 if (CIRCQ_LAST(&c->c_list, bucket))
783 break;
784 }
785 }
786
787 void
788 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
789 {
790 CPU_INFO_ITERATOR cii;
791 struct callout_cpu *cc;
792 struct cpu_info *ci;
793 int b;
794
795 db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
796 db_printf(" ticks wheel arg func\n");
797
798 /*
799 * Don't lock the callwheel; all the other CPUs are paused
800 * anyhow, and we might be called in a circumstance where
801 * some other CPU was paused while holding the lock.
802 */
803 for (CPU_INFO_FOREACH(cii, ci)) {
804 cc = ci->ci_data.cpu_callout;
805 db_show_callout_bucket(cc, &cc->cc_todo);
806 }
807 for (b = 0; b < BUCKETS; b++) {
808 for (CPU_INFO_FOREACH(cii, ci)) {
809 cc = ci->ci_data.cpu_callout;
810 db_show_callout_bucket(cc, &cc->cc_wheel[b]);
811 }
812 }
813 }
814 #endif /* DDB */
815