kern_timeout.c revision 1.48 1 /* $NetBSD: kern_timeout.c,v 1.48 2014/12/10 17:09:49 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
34 * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 *
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. The name of the author may not be used to endorse or promote products
47 * derived from this software without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
50 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
51 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
52 * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
53 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.48 2014/12/10 17:09:49 martin Exp $");
63
64 /*
65 * Timeouts are kept in a hierarchical timing wheel. The c_time is the
66 * value of c_cpu->cc_ticks when the timeout should be called. There are
67 * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
68 * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
69 * a Timer Facility" by George Varghese and Tony Lauck.
70 *
71 * Some of the "math" in here is a bit tricky. We have to beware of
72 * wrapping ints.
73 *
74 * We use the fact that any element added to the queue must be added with
75 * a positive time. That means that any element `to' on the queue cannot
76 * be scheduled to timeout further in time than INT_MAX, but c->c_time can
77 * be positive or negative so comparing it with anything is dangerous.
78 * The only way we can use the c->c_time value in any predictable way is
79 * when we calculate how far in the future `to' will timeout - "c->c_time
80 * - c->c_cpu->cc_ticks". The result will always be positive for future
81 * timeouts and 0 or negative for due timeouts.
82 */
83
84 #define _CALLOUT_PRIVATE
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/callout.h>
90 #include <sys/lwp.h>
91 #include <sys/mutex.h>
92 #include <sys/proc.h>
93 #include <sys/sleepq.h>
94 #include <sys/syncobj.h>
95 #include <sys/evcnt.h>
96 #include <sys/intr.h>
97 #include <sys/cpu.h>
98 #include <sys/kmem.h>
99
100 #ifdef DDB
101 #include <machine/db_machdep.h>
102 #include <ddb/db_interface.h>
103 #include <ddb/db_access.h>
104 #include <ddb/db_sym.h>
105 #include <ddb/db_output.h>
106 #endif
107
108 #define BUCKETS 1024
109 #define WHEELSIZE 256
110 #define WHEELMASK 255
111 #define WHEELBITS 8
112
113 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
114
115 #define BUCKET(cc, rel, abs) \
116 (((rel) <= (1 << (2*WHEELBITS))) \
117 ? ((rel) <= (1 << WHEELBITS)) \
118 ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))] \
119 : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE] \
120 : ((rel) <= (1 << (3*WHEELBITS))) \
121 ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE] \
122 : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
123
124 #define MOVEBUCKET(cc, wheel, time) \
125 CIRCQ_APPEND(&(cc)->cc_todo, \
126 &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
127
128 /*
129 * Circular queue definitions.
130 */
131
132 #define CIRCQ_INIT(list) \
133 do { \
134 (list)->cq_next_l = (list); \
135 (list)->cq_prev_l = (list); \
136 } while (/*CONSTCOND*/0)
137
138 #define CIRCQ_INSERT(elem, list) \
139 do { \
140 (elem)->cq_prev_e = (list)->cq_prev_e; \
141 (elem)->cq_next_l = (list); \
142 (list)->cq_prev_l->cq_next_l = (elem); \
143 (list)->cq_prev_l = (elem); \
144 } while (/*CONSTCOND*/0)
145
146 #define CIRCQ_APPEND(fst, snd) \
147 do { \
148 if (!CIRCQ_EMPTY(snd)) { \
149 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l; \
150 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l; \
151 (snd)->cq_prev_l->cq_next_l = (fst); \
152 (fst)->cq_prev_l = (snd)->cq_prev_l; \
153 CIRCQ_INIT(snd); \
154 } \
155 } while (/*CONSTCOND*/0)
156
157 #define CIRCQ_REMOVE(elem) \
158 do { \
159 (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e; \
160 (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e; \
161 } while (/*CONSTCOND*/0)
162
163 #define CIRCQ_FIRST(list) ((list)->cq_next_e)
164 #define CIRCQ_NEXT(elem) ((elem)->cq_next_e)
165 #define CIRCQ_LAST(elem,list) ((elem)->cq_next_l == (list))
166 #define CIRCQ_EMPTY(list) ((list)->cq_next_l == (list))
167
168 static void callout_softclock(void *);
169
170 struct callout_cpu {
171 kmutex_t *cc_lock;
172 sleepq_t cc_sleepq;
173 u_int cc_nwait;
174 u_int cc_ticks;
175 lwp_t *cc_lwp;
176 callout_impl_t *cc_active;
177 callout_impl_t *cc_cancel;
178 struct evcnt cc_ev_late;
179 struct evcnt cc_ev_block;
180 struct callout_circq cc_todo; /* Worklist */
181 struct callout_circq cc_wheel[BUCKETS]; /* Queues of timeouts */
182 char cc_name1[12];
183 char cc_name2[12];
184 };
185
186 static struct callout_cpu callout_cpu0;
187 static void *callout_sih;
188
189 static inline kmutex_t *
190 callout_lock(callout_impl_t *c)
191 {
192 struct callout_cpu *cc;
193 kmutex_t *lock;
194
195 for (;;) {
196 cc = c->c_cpu;
197 lock = cc->cc_lock;
198 mutex_spin_enter(lock);
199 if (__predict_true(cc == c->c_cpu))
200 return lock;
201 mutex_spin_exit(lock);
202 }
203 }
204
205 /*
206 * callout_startup:
207 *
208 * Initialize the callout facility, called at system startup time.
209 * Do just enough to allow callouts to be safely registered.
210 */
211 void
212 callout_startup(void)
213 {
214 struct callout_cpu *cc;
215 int b;
216
217 KASSERT(curcpu()->ci_data.cpu_callout == NULL);
218
219 cc = &callout_cpu0;
220 cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
221 CIRCQ_INIT(&cc->cc_todo);
222 for (b = 0; b < BUCKETS; b++)
223 CIRCQ_INIT(&cc->cc_wheel[b]);
224 curcpu()->ci_data.cpu_callout = cc;
225 }
226
227 /*
228 * callout_init_cpu:
229 *
230 * Per-CPU initialization.
231 */
232 CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
233
234 void
235 callout_init_cpu(struct cpu_info *ci)
236 {
237 struct callout_cpu *cc;
238 int b;
239
240 if ((cc = ci->ci_data.cpu_callout) == NULL) {
241 cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
242 if (cc == NULL)
243 panic("callout_init_cpu (1)");
244 cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
245 CIRCQ_INIT(&cc->cc_todo);
246 for (b = 0; b < BUCKETS; b++)
247 CIRCQ_INIT(&cc->cc_wheel[b]);
248 } else {
249 /* Boot CPU, one time only. */
250 callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
251 callout_softclock, NULL);
252 if (callout_sih == NULL)
253 panic("callout_init_cpu (2)");
254 }
255
256 sleepq_init(&cc->cc_sleepq);
257
258 snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
259 cpu_index(ci));
260 evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
261 NULL, "callout", cc->cc_name1);
262
263 snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
264 cpu_index(ci));
265 evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
266 NULL, "callout", cc->cc_name2);
267
268 ci->ci_data.cpu_callout = cc;
269 }
270
271 /*
272 * callout_init:
273 *
274 * Initialize a callout structure. This must be quick, so we fill
275 * only the minimum number of fields.
276 */
277 void
278 callout_init(callout_t *cs, u_int flags)
279 {
280 callout_impl_t *c = (callout_impl_t *)cs;
281 struct callout_cpu *cc;
282
283 KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
284
285 cc = curcpu()->ci_data.cpu_callout;
286 c->c_func = NULL;
287 c->c_magic = CALLOUT_MAGIC;
288 if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
289 c->c_flags = flags;
290 c->c_cpu = cc;
291 return;
292 }
293 c->c_flags = flags | CALLOUT_BOUND;
294 c->c_cpu = &callout_cpu0;
295 }
296
297 /*
298 * callout_destroy:
299 *
300 * Destroy a callout structure. The callout must be stopped.
301 */
302 void
303 callout_destroy(callout_t *cs)
304 {
305 callout_impl_t *c = (callout_impl_t *)cs;
306
307 /*
308 * It's not necessary to lock in order to see the correct value
309 * of c->c_flags. If the callout could potentially have been
310 * running, the current thread should have stopped it.
311 */
312 KASSERTMSG((c->c_flags & CALLOUT_PENDING) == 0,
313 "callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
314 c, c->c_func, c->c_flags, __builtin_return_address(0));
315 KASSERT(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c);
316 KASSERTMSG(c->c_magic == CALLOUT_MAGIC,
317 "callout %p: c_magic (%#x) != CALLOUT_MAGIC (%#x)",
318 c, c->c_magic, CALLOUT_MAGIC);
319 c->c_magic = 0;
320 }
321
322 /*
323 * callout_schedule_locked:
324 *
325 * Schedule a callout to run. The function and argument must
326 * already be set in the callout structure. Must be called with
327 * callout_lock.
328 */
329 static void
330 callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
331 {
332 struct callout_cpu *cc, *occ;
333 int old_time;
334
335 KASSERT(to_ticks >= 0);
336 KASSERT(c->c_func != NULL);
337
338 /* Initialize the time here, it won't change. */
339 occ = c->c_cpu;
340 c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
341
342 /*
343 * If this timeout is already scheduled and now is moved
344 * earlier, reschedule it now. Otherwise leave it in place
345 * and let it be rescheduled later.
346 */
347 if ((c->c_flags & CALLOUT_PENDING) != 0) {
348 /* Leave on existing CPU. */
349 old_time = c->c_time;
350 c->c_time = to_ticks + occ->cc_ticks;
351 if (c->c_time - old_time < 0) {
352 CIRCQ_REMOVE(&c->c_list);
353 CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
354 }
355 mutex_spin_exit(lock);
356 return;
357 }
358
359 cc = curcpu()->ci_data.cpu_callout;
360 if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
361 !mutex_tryenter(cc->cc_lock)) {
362 /* Leave on existing CPU. */
363 c->c_time = to_ticks + occ->cc_ticks;
364 c->c_flags |= CALLOUT_PENDING;
365 CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
366 } else {
367 /* Move to this CPU. */
368 c->c_cpu = cc;
369 c->c_time = to_ticks + cc->cc_ticks;
370 c->c_flags |= CALLOUT_PENDING;
371 CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
372 mutex_spin_exit(cc->cc_lock);
373 }
374 mutex_spin_exit(lock);
375 }
376
377 /*
378 * callout_reset:
379 *
380 * Reset a callout structure with a new function and argument, and
381 * schedule it to run.
382 */
383 void
384 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
385 {
386 callout_impl_t *c = (callout_impl_t *)cs;
387 kmutex_t *lock;
388
389 KASSERT(c->c_magic == CALLOUT_MAGIC);
390 KASSERT(func != NULL);
391
392 lock = callout_lock(c);
393 c->c_func = func;
394 c->c_arg = arg;
395 callout_schedule_locked(c, lock, to_ticks);
396 }
397
398 /*
399 * callout_schedule:
400 *
401 * Schedule a callout to run. The function and argument must
402 * already be set in the callout structure.
403 */
404 void
405 callout_schedule(callout_t *cs, int to_ticks)
406 {
407 callout_impl_t *c = (callout_impl_t *)cs;
408 kmutex_t *lock;
409
410 KASSERT(c->c_magic == CALLOUT_MAGIC);
411
412 lock = callout_lock(c);
413 callout_schedule_locked(c, lock, to_ticks);
414 }
415
416 /*
417 * callout_stop:
418 *
419 * Try to cancel a pending callout. It may be too late: the callout
420 * could be running on another CPU. If called from interrupt context,
421 * the callout could already be in progress at a lower priority.
422 */
423 bool
424 callout_stop(callout_t *cs)
425 {
426 callout_impl_t *c = (callout_impl_t *)cs;
427 struct callout_cpu *cc;
428 kmutex_t *lock;
429 bool expired;
430
431 KASSERT(c->c_magic == CALLOUT_MAGIC);
432
433 lock = callout_lock(c);
434
435 if ((c->c_flags & CALLOUT_PENDING) != 0)
436 CIRCQ_REMOVE(&c->c_list);
437 expired = ((c->c_flags & CALLOUT_FIRED) != 0);
438 c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
439
440 cc = c->c_cpu;
441 if (cc->cc_active == c) {
442 /*
443 * This is for non-MPSAFE callouts only. To synchronize
444 * effectively we must be called with kernel_lock held.
445 * It's also taken in callout_softclock.
446 */
447 cc->cc_cancel = c;
448 }
449
450 mutex_spin_exit(lock);
451
452 return expired;
453 }
454
455 /*
456 * callout_halt:
457 *
458 * Cancel a pending callout. If in-flight, block until it completes.
459 * May not be called from a hard interrupt handler. If the callout
460 * can take locks, the caller of callout_halt() must not hold any of
461 * those locks, otherwise the two could deadlock. If 'interlock' is
462 * non-NULL and we must wait for the callout to complete, it will be
463 * released and re-acquired before returning.
464 */
465 bool
466 callout_halt(callout_t *cs, void *interlock)
467 {
468 callout_impl_t *c = (callout_impl_t *)cs;
469 struct callout_cpu *cc;
470 struct lwp *l;
471 kmutex_t *lock, *relock;
472 bool expired;
473
474 KASSERT(c->c_magic == CALLOUT_MAGIC);
475 KASSERT(!cpu_intr_p());
476
477 lock = callout_lock(c);
478 relock = NULL;
479
480 expired = ((c->c_flags & CALLOUT_FIRED) != 0);
481 if ((c->c_flags & CALLOUT_PENDING) != 0)
482 CIRCQ_REMOVE(&c->c_list);
483 c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
484
485 l = curlwp;
486 for (;;) {
487 cc = c->c_cpu;
488 if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
489 break;
490 if (interlock != NULL) {
491 /*
492 * Avoid potential scheduler lock order problems by
493 * dropping the interlock without the callout lock
494 * held.
495 */
496 mutex_spin_exit(lock);
497 mutex_exit(interlock);
498 relock = interlock;
499 interlock = NULL;
500 } else {
501 /* XXX Better to do priority inheritance. */
502 KASSERT(l->l_wchan == NULL);
503 cc->cc_nwait++;
504 cc->cc_ev_block.ev_count++;
505 l->l_kpriority = true;
506 sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
507 sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
508 &sleep_syncobj);
509 sleepq_block(0, false);
510 }
511 lock = callout_lock(c);
512 }
513
514 mutex_spin_exit(lock);
515 if (__predict_false(relock != NULL))
516 mutex_enter(relock);
517
518 return expired;
519 }
520
521 #ifdef notyet
522 /*
523 * callout_bind:
524 *
525 * Bind a callout so that it will only execute on one CPU.
526 * The callout must be stopped, and must be MPSAFE.
527 *
528 * XXX Disabled for now until it is decided how to handle
529 * offlined CPUs. We may want weak+strong binding.
530 */
531 void
532 callout_bind(callout_t *cs, struct cpu_info *ci)
533 {
534 callout_impl_t *c = (callout_impl_t *)cs;
535 struct callout_cpu *cc;
536 kmutex_t *lock;
537
538 KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
539 KASSERT(c->c_cpu->cc_active != c);
540 KASSERT(c->c_magic == CALLOUT_MAGIC);
541 KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
542
543 lock = callout_lock(c);
544 cc = ci->ci_data.cpu_callout;
545 c->c_flags |= CALLOUT_BOUND;
546 if (c->c_cpu != cc) {
547 /*
548 * Assigning c_cpu effectively unlocks the callout
549 * structure, as we don't hold the new CPU's lock.
550 * Issue memory barrier to prevent accesses being
551 * reordered.
552 */
553 membar_exit();
554 c->c_cpu = cc;
555 }
556 mutex_spin_exit(lock);
557 }
558 #endif
559
560 void
561 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
562 {
563 callout_impl_t *c = (callout_impl_t *)cs;
564 kmutex_t *lock;
565
566 KASSERT(c->c_magic == CALLOUT_MAGIC);
567 KASSERT(func != NULL);
568
569 lock = callout_lock(c);
570 c->c_func = func;
571 c->c_arg = arg;
572 mutex_spin_exit(lock);
573 }
574
575 bool
576 callout_expired(callout_t *cs)
577 {
578 callout_impl_t *c = (callout_impl_t *)cs;
579 kmutex_t *lock;
580 bool rv;
581
582 KASSERT(c->c_magic == CALLOUT_MAGIC);
583
584 lock = callout_lock(c);
585 rv = ((c->c_flags & CALLOUT_FIRED) != 0);
586 mutex_spin_exit(lock);
587
588 return rv;
589 }
590
591 bool
592 callout_active(callout_t *cs)
593 {
594 callout_impl_t *c = (callout_impl_t *)cs;
595 kmutex_t *lock;
596 bool rv;
597
598 KASSERT(c->c_magic == CALLOUT_MAGIC);
599
600 lock = callout_lock(c);
601 rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
602 mutex_spin_exit(lock);
603
604 return rv;
605 }
606
607 bool
608 callout_pending(callout_t *cs)
609 {
610 callout_impl_t *c = (callout_impl_t *)cs;
611 kmutex_t *lock;
612 bool rv;
613
614 KASSERT(c->c_magic == CALLOUT_MAGIC);
615
616 lock = callout_lock(c);
617 rv = ((c->c_flags & CALLOUT_PENDING) != 0);
618 mutex_spin_exit(lock);
619
620 return rv;
621 }
622
623 bool
624 callout_invoking(callout_t *cs)
625 {
626 callout_impl_t *c = (callout_impl_t *)cs;
627 kmutex_t *lock;
628 bool rv;
629
630 KASSERT(c->c_magic == CALLOUT_MAGIC);
631
632 lock = callout_lock(c);
633 rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
634 mutex_spin_exit(lock);
635
636 return rv;
637 }
638
639 void
640 callout_ack(callout_t *cs)
641 {
642 callout_impl_t *c = (callout_impl_t *)cs;
643 kmutex_t *lock;
644
645 KASSERT(c->c_magic == CALLOUT_MAGIC);
646
647 lock = callout_lock(c);
648 c->c_flags &= ~CALLOUT_INVOKING;
649 mutex_spin_exit(lock);
650 }
651
652 /*
653 * callout_hardclock:
654 *
655 * Called from hardclock() once every tick. We schedule a soft
656 * interrupt if there is work to be done.
657 */
658 void
659 callout_hardclock(void)
660 {
661 struct callout_cpu *cc;
662 int needsoftclock, ticks;
663
664 cc = curcpu()->ci_data.cpu_callout;
665 mutex_spin_enter(cc->cc_lock);
666
667 ticks = ++cc->cc_ticks;
668
669 MOVEBUCKET(cc, 0, ticks);
670 if (MASKWHEEL(0, ticks) == 0) {
671 MOVEBUCKET(cc, 1, ticks);
672 if (MASKWHEEL(1, ticks) == 0) {
673 MOVEBUCKET(cc, 2, ticks);
674 if (MASKWHEEL(2, ticks) == 0)
675 MOVEBUCKET(cc, 3, ticks);
676 }
677 }
678
679 needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
680 mutex_spin_exit(cc->cc_lock);
681
682 if (needsoftclock)
683 softint_schedule(callout_sih);
684 }
685
686 /*
687 * callout_softclock:
688 *
689 * Soft interrupt handler, scheduled above if there is work to
690 * be done. Callouts are made in soft interrupt context.
691 */
692 static void
693 callout_softclock(void *v)
694 {
695 callout_impl_t *c;
696 struct callout_cpu *cc;
697 void (*func)(void *);
698 void *arg;
699 int mpsafe, count, ticks, delta;
700 lwp_t *l;
701
702 l = curlwp;
703 KASSERT(l->l_cpu == curcpu());
704 cc = l->l_cpu->ci_data.cpu_callout;
705
706 mutex_spin_enter(cc->cc_lock);
707 cc->cc_lwp = l;
708 while (!CIRCQ_EMPTY(&cc->cc_todo)) {
709 c = CIRCQ_FIRST(&cc->cc_todo);
710 KASSERT(c->c_magic == CALLOUT_MAGIC);
711 KASSERT(c->c_func != NULL);
712 KASSERT(c->c_cpu == cc);
713 KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
714 KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
715 CIRCQ_REMOVE(&c->c_list);
716
717 /* If due run it, otherwise insert it into the right bucket. */
718 ticks = cc->cc_ticks;
719 delta = c->c_time - ticks;
720 if (delta > 0) {
721 CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
722 continue;
723 }
724 if (delta < 0)
725 cc->cc_ev_late.ev_count++;
726
727 c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
728 (CALLOUT_FIRED | CALLOUT_INVOKING);
729 mpsafe = (c->c_flags & CALLOUT_MPSAFE);
730 func = c->c_func;
731 arg = c->c_arg;
732 cc->cc_active = c;
733
734 mutex_spin_exit(cc->cc_lock);
735 KASSERT(func != NULL);
736 if (__predict_false(!mpsafe)) {
737 KERNEL_LOCK(1, NULL);
738 (*func)(arg);
739 KERNEL_UNLOCK_ONE(NULL);
740 } else
741 (*func)(arg);
742 mutex_spin_enter(cc->cc_lock);
743
744 /*
745 * We can't touch 'c' here because it might be
746 * freed already. If LWPs waiting for callout
747 * to complete, awaken them.
748 */
749 cc->cc_active = NULL;
750 if ((count = cc->cc_nwait) != 0) {
751 cc->cc_nwait = 0;
752 /* sleepq_wake() drops the lock. */
753 sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
754 mutex_spin_enter(cc->cc_lock);
755 }
756 }
757 cc->cc_lwp = NULL;
758 mutex_spin_exit(cc->cc_lock);
759 }
760
761 #ifdef DDB
762 static void
763 db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *bucket)
764 {
765 callout_impl_t *c;
766 db_expr_t offset;
767 const char *name;
768 static char question[] = "?";
769 int b;
770
771 if (CIRCQ_EMPTY(bucket))
772 return;
773
774 for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
775 db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
776 &offset);
777 name = name ? name : question;
778 b = (bucket - cc->cc_wheel);
779 if (b < 0)
780 b = -WHEELSIZE;
781 db_printf("%9d %2d/%-4d %16lx %s\n",
782 c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
783 (u_long)c->c_arg, name);
784 if (CIRCQ_LAST(&c->c_list, bucket))
785 break;
786 }
787 }
788
789 void
790 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
791 {
792 CPU_INFO_ITERATOR cii;
793 struct callout_cpu *cc;
794 struct cpu_info *ci;
795 int b;
796
797 db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
798 db_printf(" ticks wheel arg func\n");
799
800 /*
801 * Don't lock the callwheel; all the other CPUs are paused
802 * anyhow, and we might be called in a circumstance where
803 * some other CPU was paused while holding the lock.
804 */
805 for (CPU_INFO_FOREACH(cii, ci)) {
806 cc = ci->ci_data.cpu_callout;
807 db_show_callout_bucket(cc, &cc->cc_todo);
808 }
809 for (b = 0; b < BUCKETS; b++) {
810 for (CPU_INFO_FOREACH(cii, ci)) {
811 cc = ci->ci_data.cpu_callout;
812 db_show_callout_bucket(cc, &cc->cc_wheel[b]);
813 }
814 }
815 }
816 #endif /* DDB */
817