Home | History | Annotate | Line # | Download | only in kern
kern_timeout.c revision 1.49
      1 /*	$NetBSD: kern_timeout.c,v 1.49 2015/02/08 19:41:00 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
     34  * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
     35  * All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  *
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. The name of the author may not be used to endorse or promote products
     47  *    derived from this software without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
     50  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
     51  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     52  * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     53  * EXEMPLARY, OR CONSEQUENTIAL  DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 #include <sys/cdefs.h>
     62 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.49 2015/02/08 19:41:00 christos Exp $");
     63 
     64 /*
     65  * Timeouts are kept in a hierarchical timing wheel.  The c_time is the
     66  * value of c_cpu->cc_ticks when the timeout should be called.  There are
     67  * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
     68  * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
     69  * a Timer Facility" by George Varghese and Tony Lauck.
     70  *
     71  * Some of the "math" in here is a bit tricky.  We have to beware of
     72  * wrapping ints.
     73  *
     74  * We use the fact that any element added to the queue must be added with
     75  * a positive time.  That means that any element `to' on the queue cannot
     76  * be scheduled to timeout further in time than INT_MAX, but c->c_time can
     77  * be positive or negative so comparing it with anything is dangerous.
     78  * The only way we can use the c->c_time value in any predictable way is
     79  * when we calculate how far in the future `to' will timeout - "c->c_time
     80  * - c->c_cpu->cc_ticks".  The result will always be positive for future
     81  * timeouts and 0 or negative for due timeouts.
     82  */
     83 
     84 #define	_CALLOUT_PRIVATE
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/kernel.h>
     89 #include <sys/callout.h>
     90 #include <sys/lwp.h>
     91 #include <sys/mutex.h>
     92 #include <sys/proc.h>
     93 #include <sys/sleepq.h>
     94 #include <sys/syncobj.h>
     95 #include <sys/evcnt.h>
     96 #include <sys/intr.h>
     97 #include <sys/cpu.h>
     98 #include <sys/kmem.h>
     99 
    100 #ifdef DDB
    101 #include <machine/db_machdep.h>
    102 #include <ddb/db_interface.h>
    103 #include <ddb/db_access.h>
    104 #include <ddb/db_cpu.h>
    105 #include <ddb/db_sym.h>
    106 #include <ddb/db_output.h>
    107 #endif
    108 
    109 #define BUCKETS		1024
    110 #define WHEELSIZE	256
    111 #define WHEELMASK	255
    112 #define WHEELBITS	8
    113 
    114 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
    115 
    116 #define BUCKET(cc, rel, abs)						\
    117     (((rel) <= (1 << (2*WHEELBITS)))					\
    118     	? ((rel) <= (1 << WHEELBITS))					\
    119             ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))]			\
    120             : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE]		\
    121         : ((rel) <= (1 << (3*WHEELBITS)))				\
    122             ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE]	\
    123             : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
    124 
    125 #define MOVEBUCKET(cc, wheel, time)					\
    126     CIRCQ_APPEND(&(cc)->cc_todo,					\
    127         &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
    128 
    129 /*
    130  * Circular queue definitions.
    131  */
    132 
    133 #define CIRCQ_INIT(list)						\
    134 do {									\
    135         (list)->cq_next_l = (list);					\
    136         (list)->cq_prev_l = (list);					\
    137 } while (/*CONSTCOND*/0)
    138 
    139 #define CIRCQ_INSERT(elem, list)					\
    140 do {									\
    141         (elem)->cq_prev_e = (list)->cq_prev_e;				\
    142         (elem)->cq_next_l = (list);					\
    143         (list)->cq_prev_l->cq_next_l = (elem);				\
    144         (list)->cq_prev_l = (elem);					\
    145 } while (/*CONSTCOND*/0)
    146 
    147 #define CIRCQ_APPEND(fst, snd)						\
    148 do {									\
    149         if (!CIRCQ_EMPTY(snd)) {					\
    150                 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l;		\
    151                 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l;		\
    152                 (snd)->cq_prev_l->cq_next_l = (fst);			\
    153                 (fst)->cq_prev_l = (snd)->cq_prev_l;			\
    154                 CIRCQ_INIT(snd);					\
    155         }								\
    156 } while (/*CONSTCOND*/0)
    157 
    158 #define CIRCQ_REMOVE(elem)						\
    159 do {									\
    160         (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e;		\
    161         (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e;		\
    162 } while (/*CONSTCOND*/0)
    163 
    164 #define CIRCQ_FIRST(list)	((list)->cq_next_e)
    165 #define CIRCQ_NEXT(elem)	((elem)->cq_next_e)
    166 #define CIRCQ_LAST(elem,list)	((elem)->cq_next_l == (list))
    167 #define CIRCQ_EMPTY(list)	((list)->cq_next_l == (list))
    168 
    169 struct callout_cpu {
    170 	kmutex_t	*cc_lock;
    171 	sleepq_t	cc_sleepq;
    172 	u_int		cc_nwait;
    173 	u_int		cc_ticks;
    174 	lwp_t		*cc_lwp;
    175 	callout_impl_t	*cc_active;
    176 	callout_impl_t	*cc_cancel;
    177 	struct evcnt	cc_ev_late;
    178 	struct evcnt	cc_ev_block;
    179 	struct callout_circq cc_todo;		/* Worklist */
    180 	struct callout_circq cc_wheel[BUCKETS];	/* Queues of timeouts */
    181 	char		cc_name1[12];
    182 	char		cc_name2[12];
    183 };
    184 
    185 #ifndef CRASH
    186 
    187 static void	callout_softclock(void *);
    188 static struct callout_cpu callout_cpu0;
    189 static void *callout_sih;
    190 
    191 static inline kmutex_t *
    192 callout_lock(callout_impl_t *c)
    193 {
    194 	struct callout_cpu *cc;
    195 	kmutex_t *lock;
    196 
    197 	for (;;) {
    198 		cc = c->c_cpu;
    199 		lock = cc->cc_lock;
    200 		mutex_spin_enter(lock);
    201 		if (__predict_true(cc == c->c_cpu))
    202 			return lock;
    203 		mutex_spin_exit(lock);
    204 	}
    205 }
    206 
    207 /*
    208  * callout_startup:
    209  *
    210  *	Initialize the callout facility, called at system startup time.
    211  *	Do just enough to allow callouts to be safely registered.
    212  */
    213 void
    214 callout_startup(void)
    215 {
    216 	struct callout_cpu *cc;
    217 	int b;
    218 
    219 	KASSERT(curcpu()->ci_data.cpu_callout == NULL);
    220 
    221 	cc = &callout_cpu0;
    222 	cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    223 	CIRCQ_INIT(&cc->cc_todo);
    224 	for (b = 0; b < BUCKETS; b++)
    225 		CIRCQ_INIT(&cc->cc_wheel[b]);
    226 	curcpu()->ci_data.cpu_callout = cc;
    227 }
    228 
    229 /*
    230  * callout_init_cpu:
    231  *
    232  *	Per-CPU initialization.
    233  */
    234 CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
    235 
    236 void
    237 callout_init_cpu(struct cpu_info *ci)
    238 {
    239 	struct callout_cpu *cc;
    240 	int b;
    241 
    242 	if ((cc = ci->ci_data.cpu_callout) == NULL) {
    243 		cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
    244 		if (cc == NULL)
    245 			panic("callout_init_cpu (1)");
    246 		cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    247 		CIRCQ_INIT(&cc->cc_todo);
    248 		for (b = 0; b < BUCKETS; b++)
    249 			CIRCQ_INIT(&cc->cc_wheel[b]);
    250 	} else {
    251 		/* Boot CPU, one time only. */
    252 		callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    253 		    callout_softclock, NULL);
    254 		if (callout_sih == NULL)
    255 			panic("callout_init_cpu (2)");
    256 	}
    257 
    258 	sleepq_init(&cc->cc_sleepq);
    259 
    260 	snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
    261 	    cpu_index(ci));
    262 	evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
    263 	    NULL, "callout", cc->cc_name1);
    264 
    265 	snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
    266 	    cpu_index(ci));
    267 	evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
    268 	    NULL, "callout", cc->cc_name2);
    269 
    270 	ci->ci_data.cpu_callout = cc;
    271 }
    272 
    273 /*
    274  * callout_init:
    275  *
    276  *	Initialize a callout structure.  This must be quick, so we fill
    277  *	only the minimum number of fields.
    278  */
    279 void
    280 callout_init(callout_t *cs, u_int flags)
    281 {
    282 	callout_impl_t *c = (callout_impl_t *)cs;
    283 	struct callout_cpu *cc;
    284 
    285 	KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
    286 
    287 	cc = curcpu()->ci_data.cpu_callout;
    288 	c->c_func = NULL;
    289 	c->c_magic = CALLOUT_MAGIC;
    290 	if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
    291 		c->c_flags = flags;
    292 		c->c_cpu = cc;
    293 		return;
    294 	}
    295 	c->c_flags = flags | CALLOUT_BOUND;
    296 	c->c_cpu = &callout_cpu0;
    297 }
    298 
    299 /*
    300  * callout_destroy:
    301  *
    302  *	Destroy a callout structure.  The callout must be stopped.
    303  */
    304 void
    305 callout_destroy(callout_t *cs)
    306 {
    307 	callout_impl_t *c = (callout_impl_t *)cs;
    308 
    309 	/*
    310 	 * It's not necessary to lock in order to see the correct value
    311 	 * of c->c_flags.  If the callout could potentially have been
    312 	 * running, the current thread should have stopped it.
    313 	 */
    314 	KASSERTMSG((c->c_flags & CALLOUT_PENDING) == 0,
    315 	    "callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
    316 	    c, c->c_func, c->c_flags, __builtin_return_address(0));
    317 	KASSERT(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c);
    318 	KASSERTMSG(c->c_magic == CALLOUT_MAGIC,
    319 	    "callout %p: c_magic (%#x) != CALLOUT_MAGIC (%#x)",
    320 	    c, c->c_magic, CALLOUT_MAGIC);
    321 	c->c_magic = 0;
    322 }
    323 
    324 /*
    325  * callout_schedule_locked:
    326  *
    327  *	Schedule a callout to run.  The function and argument must
    328  *	already be set in the callout structure.  Must be called with
    329  *	callout_lock.
    330  */
    331 static void
    332 callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
    333 {
    334 	struct callout_cpu *cc, *occ;
    335 	int old_time;
    336 
    337 	KASSERT(to_ticks >= 0);
    338 	KASSERT(c->c_func != NULL);
    339 
    340 	/* Initialize the time here, it won't change. */
    341 	occ = c->c_cpu;
    342 	c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
    343 
    344 	/*
    345 	 * If this timeout is already scheduled and now is moved
    346 	 * earlier, reschedule it now.  Otherwise leave it in place
    347 	 * and let it be rescheduled later.
    348 	 */
    349 	if ((c->c_flags & CALLOUT_PENDING) != 0) {
    350 		/* Leave on existing CPU. */
    351 		old_time = c->c_time;
    352 		c->c_time = to_ticks + occ->cc_ticks;
    353 		if (c->c_time - old_time < 0) {
    354 			CIRCQ_REMOVE(&c->c_list);
    355 			CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    356 		}
    357 		mutex_spin_exit(lock);
    358 		return;
    359 	}
    360 
    361 	cc = curcpu()->ci_data.cpu_callout;
    362 	if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
    363 	    !mutex_tryenter(cc->cc_lock)) {
    364 		/* Leave on existing CPU. */
    365 		c->c_time = to_ticks + occ->cc_ticks;
    366 		c->c_flags |= CALLOUT_PENDING;
    367 		CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    368 	} else {
    369 		/* Move to this CPU. */
    370 		c->c_cpu = cc;
    371 		c->c_time = to_ticks + cc->cc_ticks;
    372 		c->c_flags |= CALLOUT_PENDING;
    373 		CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
    374 		mutex_spin_exit(cc->cc_lock);
    375 	}
    376 	mutex_spin_exit(lock);
    377 }
    378 
    379 /*
    380  * callout_reset:
    381  *
    382  *	Reset a callout structure with a new function and argument, and
    383  *	schedule it to run.
    384  */
    385 void
    386 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
    387 {
    388 	callout_impl_t *c = (callout_impl_t *)cs;
    389 	kmutex_t *lock;
    390 
    391 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    392 	KASSERT(func != NULL);
    393 
    394 	lock = callout_lock(c);
    395 	c->c_func = func;
    396 	c->c_arg = arg;
    397 	callout_schedule_locked(c, lock, to_ticks);
    398 }
    399 
    400 /*
    401  * callout_schedule:
    402  *
    403  *	Schedule a callout to run.  The function and argument must
    404  *	already be set in the callout structure.
    405  */
    406 void
    407 callout_schedule(callout_t *cs, int to_ticks)
    408 {
    409 	callout_impl_t *c = (callout_impl_t *)cs;
    410 	kmutex_t *lock;
    411 
    412 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    413 
    414 	lock = callout_lock(c);
    415 	callout_schedule_locked(c, lock, to_ticks);
    416 }
    417 
    418 /*
    419  * callout_stop:
    420  *
    421  *	Try to cancel a pending callout.  It may be too late: the callout
    422  *	could be running on another CPU.  If called from interrupt context,
    423  *	the callout could already be in progress at a lower priority.
    424  */
    425 bool
    426 callout_stop(callout_t *cs)
    427 {
    428 	callout_impl_t *c = (callout_impl_t *)cs;
    429 	struct callout_cpu *cc;
    430 	kmutex_t *lock;
    431 	bool expired;
    432 
    433 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    434 
    435 	lock = callout_lock(c);
    436 
    437 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    438 		CIRCQ_REMOVE(&c->c_list);
    439 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    440 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    441 
    442 	cc = c->c_cpu;
    443 	if (cc->cc_active == c) {
    444 		/*
    445 		 * This is for non-MPSAFE callouts only.  To synchronize
    446 		 * effectively we must be called with kernel_lock held.
    447 		 * It's also taken in callout_softclock.
    448 		 */
    449 		cc->cc_cancel = c;
    450 	}
    451 
    452 	mutex_spin_exit(lock);
    453 
    454 	return expired;
    455 }
    456 
    457 /*
    458  * callout_halt:
    459  *
    460  *	Cancel a pending callout.  If in-flight, block until it completes.
    461  *	May not be called from a hard interrupt handler.  If the callout
    462  * 	can take locks, the caller of callout_halt() must not hold any of
    463  *	those locks, otherwise the two could deadlock.  If 'interlock' is
    464  *	non-NULL and we must wait for the callout to complete, it will be
    465  *	released and re-acquired before returning.
    466  */
    467 bool
    468 callout_halt(callout_t *cs, void *interlock)
    469 {
    470 	callout_impl_t *c = (callout_impl_t *)cs;
    471 	struct callout_cpu *cc;
    472 	struct lwp *l;
    473 	kmutex_t *lock, *relock;
    474 	bool expired;
    475 
    476 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    477 	KASSERT(!cpu_intr_p());
    478 
    479 	lock = callout_lock(c);
    480 	relock = NULL;
    481 
    482 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    483 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    484 		CIRCQ_REMOVE(&c->c_list);
    485 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    486 
    487 	l = curlwp;
    488 	for (;;) {
    489 		cc = c->c_cpu;
    490 		if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
    491 			break;
    492 		if (interlock != NULL) {
    493 			/*
    494 			 * Avoid potential scheduler lock order problems by
    495 			 * dropping the interlock without the callout lock
    496 			 * held.
    497 			 */
    498 			mutex_spin_exit(lock);
    499 			mutex_exit(interlock);
    500 			relock = interlock;
    501 			interlock = NULL;
    502 		} else {
    503 			/* XXX Better to do priority inheritance. */
    504 			KASSERT(l->l_wchan == NULL);
    505 			cc->cc_nwait++;
    506 			cc->cc_ev_block.ev_count++;
    507 			l->l_kpriority = true;
    508 			sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
    509 			sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
    510 			    &sleep_syncobj);
    511 			sleepq_block(0, false);
    512 		}
    513 		lock = callout_lock(c);
    514 	}
    515 
    516 	mutex_spin_exit(lock);
    517 	if (__predict_false(relock != NULL))
    518 		mutex_enter(relock);
    519 
    520 	return expired;
    521 }
    522 
    523 #ifdef notyet
    524 /*
    525  * callout_bind:
    526  *
    527  *	Bind a callout so that it will only execute on one CPU.
    528  *	The callout must be stopped, and must be MPSAFE.
    529  *
    530  *	XXX Disabled for now until it is decided how to handle
    531  *	offlined CPUs.  We may want weak+strong binding.
    532  */
    533 void
    534 callout_bind(callout_t *cs, struct cpu_info *ci)
    535 {
    536 	callout_impl_t *c = (callout_impl_t *)cs;
    537 	struct callout_cpu *cc;
    538 	kmutex_t *lock;
    539 
    540 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
    541 	KASSERT(c->c_cpu->cc_active != c);
    542 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    543 	KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
    544 
    545 	lock = callout_lock(c);
    546 	cc = ci->ci_data.cpu_callout;
    547 	c->c_flags |= CALLOUT_BOUND;
    548 	if (c->c_cpu != cc) {
    549 		/*
    550 		 * Assigning c_cpu effectively unlocks the callout
    551 		 * structure, as we don't hold the new CPU's lock.
    552 		 * Issue memory barrier to prevent accesses being
    553 		 * reordered.
    554 		 */
    555 		membar_exit();
    556 		c->c_cpu = cc;
    557 	}
    558 	mutex_spin_exit(lock);
    559 }
    560 #endif
    561 
    562 void
    563 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
    564 {
    565 	callout_impl_t *c = (callout_impl_t *)cs;
    566 	kmutex_t *lock;
    567 
    568 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    569 	KASSERT(func != NULL);
    570 
    571 	lock = callout_lock(c);
    572 	c->c_func = func;
    573 	c->c_arg = arg;
    574 	mutex_spin_exit(lock);
    575 }
    576 
    577 bool
    578 callout_expired(callout_t *cs)
    579 {
    580 	callout_impl_t *c = (callout_impl_t *)cs;
    581 	kmutex_t *lock;
    582 	bool rv;
    583 
    584 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    585 
    586 	lock = callout_lock(c);
    587 	rv = ((c->c_flags & CALLOUT_FIRED) != 0);
    588 	mutex_spin_exit(lock);
    589 
    590 	return rv;
    591 }
    592 
    593 bool
    594 callout_active(callout_t *cs)
    595 {
    596 	callout_impl_t *c = (callout_impl_t *)cs;
    597 	kmutex_t *lock;
    598 	bool rv;
    599 
    600 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    601 
    602 	lock = callout_lock(c);
    603 	rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
    604 	mutex_spin_exit(lock);
    605 
    606 	return rv;
    607 }
    608 
    609 bool
    610 callout_pending(callout_t *cs)
    611 {
    612 	callout_impl_t *c = (callout_impl_t *)cs;
    613 	kmutex_t *lock;
    614 	bool rv;
    615 
    616 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    617 
    618 	lock = callout_lock(c);
    619 	rv = ((c->c_flags & CALLOUT_PENDING) != 0);
    620 	mutex_spin_exit(lock);
    621 
    622 	return rv;
    623 }
    624 
    625 bool
    626 callout_invoking(callout_t *cs)
    627 {
    628 	callout_impl_t *c = (callout_impl_t *)cs;
    629 	kmutex_t *lock;
    630 	bool rv;
    631 
    632 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    633 
    634 	lock = callout_lock(c);
    635 	rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
    636 	mutex_spin_exit(lock);
    637 
    638 	return rv;
    639 }
    640 
    641 void
    642 callout_ack(callout_t *cs)
    643 {
    644 	callout_impl_t *c = (callout_impl_t *)cs;
    645 	kmutex_t *lock;
    646 
    647 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    648 
    649 	lock = callout_lock(c);
    650 	c->c_flags &= ~CALLOUT_INVOKING;
    651 	mutex_spin_exit(lock);
    652 }
    653 
    654 /*
    655  * callout_hardclock:
    656  *
    657  *	Called from hardclock() once every tick.  We schedule a soft
    658  *	interrupt if there is work to be done.
    659  */
    660 void
    661 callout_hardclock(void)
    662 {
    663 	struct callout_cpu *cc;
    664 	int needsoftclock, ticks;
    665 
    666 	cc = curcpu()->ci_data.cpu_callout;
    667 	mutex_spin_enter(cc->cc_lock);
    668 
    669 	ticks = ++cc->cc_ticks;
    670 
    671 	MOVEBUCKET(cc, 0, ticks);
    672 	if (MASKWHEEL(0, ticks) == 0) {
    673 		MOVEBUCKET(cc, 1, ticks);
    674 		if (MASKWHEEL(1, ticks) == 0) {
    675 			MOVEBUCKET(cc, 2, ticks);
    676 			if (MASKWHEEL(2, ticks) == 0)
    677 				MOVEBUCKET(cc, 3, ticks);
    678 		}
    679 	}
    680 
    681 	needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
    682 	mutex_spin_exit(cc->cc_lock);
    683 
    684 	if (needsoftclock)
    685 		softint_schedule(callout_sih);
    686 }
    687 
    688 /*
    689  * callout_softclock:
    690  *
    691  *	Soft interrupt handler, scheduled above if there is work to
    692  * 	be done.  Callouts are made in soft interrupt context.
    693  */
    694 static void
    695 callout_softclock(void *v)
    696 {
    697 	callout_impl_t *c;
    698 	struct callout_cpu *cc;
    699 	void (*func)(void *);
    700 	void *arg;
    701 	int mpsafe, count, ticks, delta;
    702 	lwp_t *l;
    703 
    704 	l = curlwp;
    705 	KASSERT(l->l_cpu == curcpu());
    706 	cc = l->l_cpu->ci_data.cpu_callout;
    707 
    708 	mutex_spin_enter(cc->cc_lock);
    709 	cc->cc_lwp = l;
    710 	while (!CIRCQ_EMPTY(&cc->cc_todo)) {
    711 		c = CIRCQ_FIRST(&cc->cc_todo);
    712 		KASSERT(c->c_magic == CALLOUT_MAGIC);
    713 		KASSERT(c->c_func != NULL);
    714 		KASSERT(c->c_cpu == cc);
    715 		KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
    716 		KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
    717 		CIRCQ_REMOVE(&c->c_list);
    718 
    719 		/* If due run it, otherwise insert it into the right bucket. */
    720 		ticks = cc->cc_ticks;
    721 		delta = c->c_time - ticks;
    722 		if (delta > 0) {
    723 			CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
    724 			continue;
    725 		}
    726 		if (delta < 0)
    727 			cc->cc_ev_late.ev_count++;
    728 
    729 		c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
    730 		    (CALLOUT_FIRED | CALLOUT_INVOKING);
    731 		mpsafe = (c->c_flags & CALLOUT_MPSAFE);
    732 		func = c->c_func;
    733 		arg = c->c_arg;
    734 		cc->cc_active = c;
    735 
    736 		mutex_spin_exit(cc->cc_lock);
    737 		KASSERT(func != NULL);
    738 		if (__predict_false(!mpsafe)) {
    739 			KERNEL_LOCK(1, NULL);
    740 			(*func)(arg);
    741 			KERNEL_UNLOCK_ONE(NULL);
    742 		} else
    743 			(*func)(arg);
    744 		mutex_spin_enter(cc->cc_lock);
    745 
    746 		/*
    747 		 * We can't touch 'c' here because it might be
    748 		 * freed already.  If LWPs waiting for callout
    749 		 * to complete, awaken them.
    750 		 */
    751 		cc->cc_active = NULL;
    752 		if ((count = cc->cc_nwait) != 0) {
    753 			cc->cc_nwait = 0;
    754 			/* sleepq_wake() drops the lock. */
    755 			sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
    756 			mutex_spin_enter(cc->cc_lock);
    757 		}
    758 	}
    759 	cc->cc_lwp = NULL;
    760 	mutex_spin_exit(cc->cc_lock);
    761 }
    762 #endif
    763 
    764 #ifdef DDB
    765 static void
    766 db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *bucket)
    767 {
    768 	callout_impl_t *c, ci;
    769 	db_expr_t offset;
    770 	const char *name;
    771 	static char question[] = "?";
    772 	struct callout_circq bi;
    773 	struct callout_cpu cci;
    774 	int b;
    775 
    776 	db_read_bytes((db_addr_t)cc, sizeof(cci), (char *)&cci);
    777 	cc = &cci;
    778 
    779 	db_read_bytes((db_addr_t)bucket, sizeof(bi), (char *)&bi);
    780 	bucket = &bi;
    781 
    782 	if (CIRCQ_EMPTY(bucket))
    783 		return;
    784 
    785 	for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
    786 		db_read_bytes((db_addr_t)c, sizeof(ci), (char *)&ci);
    787 		c = &ci;
    788 		db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
    789 		    &offset);
    790 		name = name ? name : question;
    791 		b = (bucket - cc->cc_wheel);
    792 		if (b < 0)
    793 			b = -WHEELSIZE;
    794 		db_printf("%9d %2d/%-4d %16lx  %s\n",
    795 		    c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
    796 		    (u_long)c->c_arg, name);
    797 		if (CIRCQ_LAST(&c->c_list, bucket))
    798 			break;
    799 	}
    800 }
    801 
    802 void
    803 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
    804 {
    805 	struct callout_cpu *cc;
    806 	struct cpu_info *ci;
    807 	int b;
    808 
    809 #ifndef CRASH
    810 	db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
    811 #endif
    812 	db_printf("    ticks  wheel               arg  func\n");
    813 
    814 	/*
    815 	 * Don't lock the callwheel; all the other CPUs are paused
    816 	 * anyhow, and we might be called in a circumstance where
    817 	 * some other CPU was paused while holding the lock.
    818 	 */
    819 	for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
    820 		db_read_bytes((db_addr_t)&ci->ci_data.cpu_callout,
    821 		    sizeof(cc), (char *)&cc);
    822 		db_show_callout_bucket(cc, &cc->cc_todo);
    823 	}
    824 	for (b = 0; b < BUCKETS; b++) {
    825 		for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
    826 			db_read_bytes((db_addr_t)&ci->ci_data.cpu_callout,
    827 			    sizeof(cc), (char *)&cc);
    828 			db_show_callout_bucket(cc, &cc->cc_wheel[b]);
    829 		}
    830 	}
    831 }
    832 #endif /* DDB */
    833