Home | History | Annotate | Line # | Download | only in kern
kern_timeout.c revision 1.52
      1 /*	$NetBSD: kern_timeout.c,v 1.52 2017/06/01 02:45:13 chs Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
     34  * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
     35  * All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  *
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. The name of the author may not be used to endorse or promote products
     47  *    derived from this software without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
     50  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
     51  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     52  * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     53  * EXEMPLARY, OR CONSEQUENTIAL  DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 #include <sys/cdefs.h>
     62 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.52 2017/06/01 02:45:13 chs Exp $");
     63 
     64 /*
     65  * Timeouts are kept in a hierarchical timing wheel.  The c_time is the
     66  * value of c_cpu->cc_ticks when the timeout should be called.  There are
     67  * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
     68  * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
     69  * a Timer Facility" by George Varghese and Tony Lauck.
     70  *
     71  * Some of the "math" in here is a bit tricky.  We have to beware of
     72  * wrapping ints.
     73  *
     74  * We use the fact that any element added to the queue must be added with
     75  * a positive time.  That means that any element `to' on the queue cannot
     76  * be scheduled to timeout further in time than INT_MAX, but c->c_time can
     77  * be positive or negative so comparing it with anything is dangerous.
     78  * The only way we can use the c->c_time value in any predictable way is
     79  * when we calculate how far in the future `to' will timeout - "c->c_time
     80  * - c->c_cpu->cc_ticks".  The result will always be positive for future
     81  * timeouts and 0 or negative for due timeouts.
     82  */
     83 
     84 #define	_CALLOUT_PRIVATE
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/kernel.h>
     89 #include <sys/callout.h>
     90 #include <sys/lwp.h>
     91 #include <sys/mutex.h>
     92 #include <sys/proc.h>
     93 #include <sys/sleepq.h>
     94 #include <sys/syncobj.h>
     95 #include <sys/evcnt.h>
     96 #include <sys/intr.h>
     97 #include <sys/cpu.h>
     98 #include <sys/kmem.h>
     99 
    100 #ifdef DDB
    101 #include <machine/db_machdep.h>
    102 #include <ddb/db_interface.h>
    103 #include <ddb/db_access.h>
    104 #include <ddb/db_cpu.h>
    105 #include <ddb/db_sym.h>
    106 #include <ddb/db_output.h>
    107 #endif
    108 
    109 #define BUCKETS		1024
    110 #define WHEELSIZE	256
    111 #define WHEELMASK	255
    112 #define WHEELBITS	8
    113 
    114 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
    115 
    116 #define BUCKET(cc, rel, abs)						\
    117     (((rel) <= (1 << (2*WHEELBITS)))					\
    118     	? ((rel) <= (1 << WHEELBITS))					\
    119             ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))]			\
    120             : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE]		\
    121         : ((rel) <= (1 << (3*WHEELBITS)))				\
    122             ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE]	\
    123             : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
    124 
    125 #define MOVEBUCKET(cc, wheel, time)					\
    126     CIRCQ_APPEND(&(cc)->cc_todo,					\
    127         &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
    128 
    129 /*
    130  * Circular queue definitions.
    131  */
    132 
    133 #define CIRCQ_INIT(list)						\
    134 do {									\
    135         (list)->cq_next_l = (list);					\
    136         (list)->cq_prev_l = (list);					\
    137 } while (/*CONSTCOND*/0)
    138 
    139 #define CIRCQ_INSERT(elem, list)					\
    140 do {									\
    141         (elem)->cq_prev_e = (list)->cq_prev_e;				\
    142         (elem)->cq_next_l = (list);					\
    143         (list)->cq_prev_l->cq_next_l = (elem);				\
    144         (list)->cq_prev_l = (elem);					\
    145 } while (/*CONSTCOND*/0)
    146 
    147 #define CIRCQ_APPEND(fst, snd)						\
    148 do {									\
    149         if (!CIRCQ_EMPTY(snd)) {					\
    150                 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l;		\
    151                 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l;		\
    152                 (snd)->cq_prev_l->cq_next_l = (fst);			\
    153                 (fst)->cq_prev_l = (snd)->cq_prev_l;			\
    154                 CIRCQ_INIT(snd);					\
    155         }								\
    156 } while (/*CONSTCOND*/0)
    157 
    158 #define CIRCQ_REMOVE(elem)						\
    159 do {									\
    160         (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e;		\
    161         (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e;		\
    162 } while (/*CONSTCOND*/0)
    163 
    164 #define CIRCQ_FIRST(list)	((list)->cq_next_e)
    165 #define CIRCQ_NEXT(elem)	((elem)->cq_next_e)
    166 #define CIRCQ_LAST(elem,list)	((elem)->cq_next_l == (list))
    167 #define CIRCQ_EMPTY(list)	((list)->cq_next_l == (list))
    168 
    169 struct callout_cpu {
    170 	kmutex_t	*cc_lock;
    171 	sleepq_t	cc_sleepq;
    172 	u_int		cc_nwait;
    173 	u_int		cc_ticks;
    174 	lwp_t		*cc_lwp;
    175 	callout_impl_t	*cc_active;
    176 	callout_impl_t	*cc_cancel;
    177 	struct evcnt	cc_ev_late;
    178 	struct evcnt	cc_ev_block;
    179 	struct callout_circq cc_todo;		/* Worklist */
    180 	struct callout_circq cc_wheel[BUCKETS];	/* Queues of timeouts */
    181 	char		cc_name1[12];
    182 	char		cc_name2[12];
    183 };
    184 
    185 #ifndef CRASH
    186 
    187 static void	callout_softclock(void *);
    188 static struct callout_cpu callout_cpu0;
    189 static void *callout_sih;
    190 
    191 static inline kmutex_t *
    192 callout_lock(callout_impl_t *c)
    193 {
    194 	struct callout_cpu *cc;
    195 	kmutex_t *lock;
    196 
    197 	for (;;) {
    198 		cc = c->c_cpu;
    199 		lock = cc->cc_lock;
    200 		mutex_spin_enter(lock);
    201 		if (__predict_true(cc == c->c_cpu))
    202 			return lock;
    203 		mutex_spin_exit(lock);
    204 	}
    205 }
    206 
    207 /*
    208  * callout_startup:
    209  *
    210  *	Initialize the callout facility, called at system startup time.
    211  *	Do just enough to allow callouts to be safely registered.
    212  */
    213 void
    214 callout_startup(void)
    215 {
    216 	struct callout_cpu *cc;
    217 	int b;
    218 
    219 	KASSERT(curcpu()->ci_data.cpu_callout == NULL);
    220 
    221 	cc = &callout_cpu0;
    222 	cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    223 	CIRCQ_INIT(&cc->cc_todo);
    224 	for (b = 0; b < BUCKETS; b++)
    225 		CIRCQ_INIT(&cc->cc_wheel[b]);
    226 	curcpu()->ci_data.cpu_callout = cc;
    227 }
    228 
    229 /*
    230  * callout_init_cpu:
    231  *
    232  *	Per-CPU initialization.
    233  */
    234 CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
    235 
    236 void
    237 callout_init_cpu(struct cpu_info *ci)
    238 {
    239 	struct callout_cpu *cc;
    240 	int b;
    241 
    242 	if ((cc = ci->ci_data.cpu_callout) == NULL) {
    243 		cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
    244 		cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    245 		CIRCQ_INIT(&cc->cc_todo);
    246 		for (b = 0; b < BUCKETS; b++)
    247 			CIRCQ_INIT(&cc->cc_wheel[b]);
    248 	} else {
    249 		/* Boot CPU, one time only. */
    250 		callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    251 		    callout_softclock, NULL);
    252 		if (callout_sih == NULL)
    253 			panic("callout_init_cpu (2)");
    254 	}
    255 
    256 	sleepq_init(&cc->cc_sleepq);
    257 
    258 	snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
    259 	    cpu_index(ci));
    260 	evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
    261 	    NULL, "callout", cc->cc_name1);
    262 
    263 	snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
    264 	    cpu_index(ci));
    265 	evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
    266 	    NULL, "callout", cc->cc_name2);
    267 
    268 	ci->ci_data.cpu_callout = cc;
    269 }
    270 
    271 /*
    272  * callout_init:
    273  *
    274  *	Initialize a callout structure.  This must be quick, so we fill
    275  *	only the minimum number of fields.
    276  */
    277 void
    278 callout_init(callout_t *cs, u_int flags)
    279 {
    280 	callout_impl_t *c = (callout_impl_t *)cs;
    281 	struct callout_cpu *cc;
    282 
    283 	KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
    284 
    285 	cc = curcpu()->ci_data.cpu_callout;
    286 	c->c_func = NULL;
    287 	c->c_magic = CALLOUT_MAGIC;
    288 	if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
    289 		c->c_flags = flags;
    290 		c->c_cpu = cc;
    291 		return;
    292 	}
    293 	c->c_flags = flags | CALLOUT_BOUND;
    294 	c->c_cpu = &callout_cpu0;
    295 }
    296 
    297 /*
    298  * callout_destroy:
    299  *
    300  *	Destroy a callout structure.  The callout must be stopped.
    301  */
    302 void
    303 callout_destroy(callout_t *cs)
    304 {
    305 	callout_impl_t *c = (callout_impl_t *)cs;
    306 
    307 	/*
    308 	 * It's not necessary to lock in order to see the correct value
    309 	 * of c->c_flags.  If the callout could potentially have been
    310 	 * running, the current thread should have stopped it.
    311 	 */
    312 	KASSERTMSG((c->c_flags & CALLOUT_PENDING) == 0,
    313 	    "callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
    314 	    c, c->c_func, c->c_flags, __builtin_return_address(0));
    315 	KASSERT(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c);
    316 	KASSERTMSG(c->c_magic == CALLOUT_MAGIC,
    317 	    "callout %p: c_magic (%#x) != CALLOUT_MAGIC (%#x)",
    318 	    c, c->c_magic, CALLOUT_MAGIC);
    319 	c->c_magic = 0;
    320 }
    321 
    322 /*
    323  * callout_schedule_locked:
    324  *
    325  *	Schedule a callout to run.  The function and argument must
    326  *	already be set in the callout structure.  Must be called with
    327  *	callout_lock.
    328  */
    329 static void
    330 callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
    331 {
    332 	struct callout_cpu *cc, *occ;
    333 	int old_time;
    334 
    335 	KASSERT(to_ticks >= 0);
    336 	KASSERT(c->c_func != NULL);
    337 
    338 	/* Initialize the time here, it won't change. */
    339 	occ = c->c_cpu;
    340 	c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
    341 
    342 	/*
    343 	 * If this timeout is already scheduled and now is moved
    344 	 * earlier, reschedule it now.  Otherwise leave it in place
    345 	 * and let it be rescheduled later.
    346 	 */
    347 	if ((c->c_flags & CALLOUT_PENDING) != 0) {
    348 		/* Leave on existing CPU. */
    349 		old_time = c->c_time;
    350 		c->c_time = to_ticks + occ->cc_ticks;
    351 		if (c->c_time - old_time < 0) {
    352 			CIRCQ_REMOVE(&c->c_list);
    353 			CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    354 		}
    355 		mutex_spin_exit(lock);
    356 		return;
    357 	}
    358 
    359 	cc = curcpu()->ci_data.cpu_callout;
    360 	if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
    361 	    !mutex_tryenter(cc->cc_lock)) {
    362 		/* Leave on existing CPU. */
    363 		c->c_time = to_ticks + occ->cc_ticks;
    364 		c->c_flags |= CALLOUT_PENDING;
    365 		CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    366 	} else {
    367 		/* Move to this CPU. */
    368 		c->c_cpu = cc;
    369 		c->c_time = to_ticks + cc->cc_ticks;
    370 		c->c_flags |= CALLOUT_PENDING;
    371 		CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
    372 		mutex_spin_exit(cc->cc_lock);
    373 	}
    374 	mutex_spin_exit(lock);
    375 }
    376 
    377 /*
    378  * callout_reset:
    379  *
    380  *	Reset a callout structure with a new function and argument, and
    381  *	schedule it to run.
    382  */
    383 void
    384 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
    385 {
    386 	callout_impl_t *c = (callout_impl_t *)cs;
    387 	kmutex_t *lock;
    388 
    389 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    390 	KASSERT(func != NULL);
    391 
    392 	lock = callout_lock(c);
    393 	c->c_func = func;
    394 	c->c_arg = arg;
    395 	callout_schedule_locked(c, lock, to_ticks);
    396 }
    397 
    398 /*
    399  * callout_schedule:
    400  *
    401  *	Schedule a callout to run.  The function and argument must
    402  *	already be set in the callout structure.
    403  */
    404 void
    405 callout_schedule(callout_t *cs, int to_ticks)
    406 {
    407 	callout_impl_t *c = (callout_impl_t *)cs;
    408 	kmutex_t *lock;
    409 
    410 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    411 
    412 	lock = callout_lock(c);
    413 	callout_schedule_locked(c, lock, to_ticks);
    414 }
    415 
    416 /*
    417  * callout_stop:
    418  *
    419  *	Try to cancel a pending callout.  It may be too late: the callout
    420  *	could be running on another CPU.  If called from interrupt context,
    421  *	the callout could already be in progress at a lower priority.
    422  */
    423 bool
    424 callout_stop(callout_t *cs)
    425 {
    426 	callout_impl_t *c = (callout_impl_t *)cs;
    427 	struct callout_cpu *cc;
    428 	kmutex_t *lock;
    429 	bool expired;
    430 
    431 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    432 
    433 	lock = callout_lock(c);
    434 
    435 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    436 		CIRCQ_REMOVE(&c->c_list);
    437 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    438 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    439 
    440 	cc = c->c_cpu;
    441 	if (cc->cc_active == c) {
    442 		/*
    443 		 * This is for non-MPSAFE callouts only.  To synchronize
    444 		 * effectively we must be called with kernel_lock held.
    445 		 * It's also taken in callout_softclock.
    446 		 */
    447 		cc->cc_cancel = c;
    448 	}
    449 
    450 	mutex_spin_exit(lock);
    451 
    452 	return expired;
    453 }
    454 
    455 /*
    456  * callout_halt:
    457  *
    458  *	Cancel a pending callout.  If in-flight, block until it completes.
    459  *	May not be called from a hard interrupt handler.  If the callout
    460  * 	can take locks, the caller of callout_halt() must not hold any of
    461  *	those locks, otherwise the two could deadlock.  If 'interlock' is
    462  *	non-NULL and we must wait for the callout to complete, it will be
    463  *	released and re-acquired before returning.
    464  */
    465 bool
    466 callout_halt(callout_t *cs, void *interlock)
    467 {
    468 	callout_impl_t *c = (callout_impl_t *)cs;
    469 	struct callout_cpu *cc;
    470 	struct lwp *l;
    471 	kmutex_t *lock, *relock;
    472 	bool expired;
    473 
    474 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    475 	KASSERT(!cpu_intr_p());
    476 
    477 	lock = callout_lock(c);
    478 	relock = NULL;
    479 
    480 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    481 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    482 		CIRCQ_REMOVE(&c->c_list);
    483 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    484 
    485 	l = curlwp;
    486 	for (;;) {
    487 		cc = c->c_cpu;
    488 		if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
    489 			break;
    490 		if (interlock != NULL) {
    491 			/*
    492 			 * Avoid potential scheduler lock order problems by
    493 			 * dropping the interlock without the callout lock
    494 			 * held.
    495 			 */
    496 			mutex_spin_exit(lock);
    497 			mutex_exit(interlock);
    498 			relock = interlock;
    499 			interlock = NULL;
    500 		} else {
    501 			/* XXX Better to do priority inheritance. */
    502 			KASSERT(l->l_wchan == NULL);
    503 			cc->cc_nwait++;
    504 			cc->cc_ev_block.ev_count++;
    505 			l->l_kpriority = true;
    506 			sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
    507 			sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
    508 			    &sleep_syncobj);
    509 			sleepq_block(0, false);
    510 		}
    511 		lock = callout_lock(c);
    512 	}
    513 
    514 	mutex_spin_exit(lock);
    515 	if (__predict_false(relock != NULL))
    516 		mutex_enter(relock);
    517 
    518 	return expired;
    519 }
    520 
    521 #ifdef notyet
    522 /*
    523  * callout_bind:
    524  *
    525  *	Bind a callout so that it will only execute on one CPU.
    526  *	The callout must be stopped, and must be MPSAFE.
    527  *
    528  *	XXX Disabled for now until it is decided how to handle
    529  *	offlined CPUs.  We may want weak+strong binding.
    530  */
    531 void
    532 callout_bind(callout_t *cs, struct cpu_info *ci)
    533 {
    534 	callout_impl_t *c = (callout_impl_t *)cs;
    535 	struct callout_cpu *cc;
    536 	kmutex_t *lock;
    537 
    538 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
    539 	KASSERT(c->c_cpu->cc_active != c);
    540 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    541 	KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
    542 
    543 	lock = callout_lock(c);
    544 	cc = ci->ci_data.cpu_callout;
    545 	c->c_flags |= CALLOUT_BOUND;
    546 	if (c->c_cpu != cc) {
    547 		/*
    548 		 * Assigning c_cpu effectively unlocks the callout
    549 		 * structure, as we don't hold the new CPU's lock.
    550 		 * Issue memory barrier to prevent accesses being
    551 		 * reordered.
    552 		 */
    553 		membar_exit();
    554 		c->c_cpu = cc;
    555 	}
    556 	mutex_spin_exit(lock);
    557 }
    558 #endif
    559 
    560 void
    561 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
    562 {
    563 	callout_impl_t *c = (callout_impl_t *)cs;
    564 	kmutex_t *lock;
    565 
    566 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    567 	KASSERT(func != NULL);
    568 
    569 	lock = callout_lock(c);
    570 	c->c_func = func;
    571 	c->c_arg = arg;
    572 	mutex_spin_exit(lock);
    573 }
    574 
    575 bool
    576 callout_expired(callout_t *cs)
    577 {
    578 	callout_impl_t *c = (callout_impl_t *)cs;
    579 	kmutex_t *lock;
    580 	bool rv;
    581 
    582 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    583 
    584 	lock = callout_lock(c);
    585 	rv = ((c->c_flags & CALLOUT_FIRED) != 0);
    586 	mutex_spin_exit(lock);
    587 
    588 	return rv;
    589 }
    590 
    591 bool
    592 callout_active(callout_t *cs)
    593 {
    594 	callout_impl_t *c = (callout_impl_t *)cs;
    595 	kmutex_t *lock;
    596 	bool rv;
    597 
    598 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    599 
    600 	lock = callout_lock(c);
    601 	rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
    602 	mutex_spin_exit(lock);
    603 
    604 	return rv;
    605 }
    606 
    607 bool
    608 callout_pending(callout_t *cs)
    609 {
    610 	callout_impl_t *c = (callout_impl_t *)cs;
    611 	kmutex_t *lock;
    612 	bool rv;
    613 
    614 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    615 
    616 	lock = callout_lock(c);
    617 	rv = ((c->c_flags & CALLOUT_PENDING) != 0);
    618 	mutex_spin_exit(lock);
    619 
    620 	return rv;
    621 }
    622 
    623 bool
    624 callout_invoking(callout_t *cs)
    625 {
    626 	callout_impl_t *c = (callout_impl_t *)cs;
    627 	kmutex_t *lock;
    628 	bool rv;
    629 
    630 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    631 
    632 	lock = callout_lock(c);
    633 	rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
    634 	mutex_spin_exit(lock);
    635 
    636 	return rv;
    637 }
    638 
    639 void
    640 callout_ack(callout_t *cs)
    641 {
    642 	callout_impl_t *c = (callout_impl_t *)cs;
    643 	kmutex_t *lock;
    644 
    645 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    646 
    647 	lock = callout_lock(c);
    648 	c->c_flags &= ~CALLOUT_INVOKING;
    649 	mutex_spin_exit(lock);
    650 }
    651 
    652 /*
    653  * callout_hardclock:
    654  *
    655  *	Called from hardclock() once every tick.  We schedule a soft
    656  *	interrupt if there is work to be done.
    657  */
    658 void
    659 callout_hardclock(void)
    660 {
    661 	struct callout_cpu *cc;
    662 	int needsoftclock, ticks;
    663 
    664 	cc = curcpu()->ci_data.cpu_callout;
    665 	mutex_spin_enter(cc->cc_lock);
    666 
    667 	ticks = ++cc->cc_ticks;
    668 
    669 	MOVEBUCKET(cc, 0, ticks);
    670 	if (MASKWHEEL(0, ticks) == 0) {
    671 		MOVEBUCKET(cc, 1, ticks);
    672 		if (MASKWHEEL(1, ticks) == 0) {
    673 			MOVEBUCKET(cc, 2, ticks);
    674 			if (MASKWHEEL(2, ticks) == 0)
    675 				MOVEBUCKET(cc, 3, ticks);
    676 		}
    677 	}
    678 
    679 	needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
    680 	mutex_spin_exit(cc->cc_lock);
    681 
    682 	if (needsoftclock)
    683 		softint_schedule(callout_sih);
    684 }
    685 
    686 /*
    687  * callout_softclock:
    688  *
    689  *	Soft interrupt handler, scheduled above if there is work to
    690  * 	be done.  Callouts are made in soft interrupt context.
    691  */
    692 static void
    693 callout_softclock(void *v)
    694 {
    695 	callout_impl_t *c;
    696 	struct callout_cpu *cc;
    697 	void (*func)(void *);
    698 	void *arg;
    699 	int mpsafe, count, ticks, delta;
    700 	lwp_t *l;
    701 
    702 	l = curlwp;
    703 	KASSERT(l->l_cpu == curcpu());
    704 	cc = l->l_cpu->ci_data.cpu_callout;
    705 
    706 	mutex_spin_enter(cc->cc_lock);
    707 	cc->cc_lwp = l;
    708 	while (!CIRCQ_EMPTY(&cc->cc_todo)) {
    709 		c = CIRCQ_FIRST(&cc->cc_todo);
    710 		KASSERT(c->c_magic == CALLOUT_MAGIC);
    711 		KASSERT(c->c_func != NULL);
    712 		KASSERT(c->c_cpu == cc);
    713 		KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
    714 		KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
    715 		CIRCQ_REMOVE(&c->c_list);
    716 
    717 		/* If due run it, otherwise insert it into the right bucket. */
    718 		ticks = cc->cc_ticks;
    719 		delta = c->c_time - ticks;
    720 		if (delta > 0) {
    721 			CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
    722 			continue;
    723 		}
    724 		if (delta < 0)
    725 			cc->cc_ev_late.ev_count++;
    726 
    727 		c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
    728 		    (CALLOUT_FIRED | CALLOUT_INVOKING);
    729 		mpsafe = (c->c_flags & CALLOUT_MPSAFE);
    730 		func = c->c_func;
    731 		arg = c->c_arg;
    732 		cc->cc_active = c;
    733 
    734 		mutex_spin_exit(cc->cc_lock);
    735 		KASSERT(func != NULL);
    736 		if (__predict_false(!mpsafe)) {
    737 			KERNEL_LOCK(1, NULL);
    738 			(*func)(arg);
    739 			KERNEL_UNLOCK_ONE(NULL);
    740 		} else
    741 			(*func)(arg);
    742 		mutex_spin_enter(cc->cc_lock);
    743 
    744 		/*
    745 		 * We can't touch 'c' here because it might be
    746 		 * freed already.  If LWPs waiting for callout
    747 		 * to complete, awaken them.
    748 		 */
    749 		cc->cc_active = NULL;
    750 		if ((count = cc->cc_nwait) != 0) {
    751 			cc->cc_nwait = 0;
    752 			/* sleepq_wake() drops the lock. */
    753 			sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
    754 			mutex_spin_enter(cc->cc_lock);
    755 		}
    756 	}
    757 	cc->cc_lwp = NULL;
    758 	mutex_spin_exit(cc->cc_lock);
    759 }
    760 #endif
    761 
    762 #ifdef DDB
    763 static void
    764 db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *kbucket,
    765     struct callout_circq *bucket)
    766 {
    767 	callout_impl_t *c, ci;
    768 	db_expr_t offset;
    769 	const char *name;
    770 	static char question[] = "?";
    771 	int b;
    772 
    773 	if (CIRCQ_LAST(bucket, kbucket))
    774 		return;
    775 
    776 	for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
    777 		db_read_bytes((db_addr_t)c, sizeof(ci), (char *)&ci);
    778 		c = &ci;
    779 		db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
    780 		    &offset);
    781 		name = name ? name : question;
    782 		b = (bucket - cc->cc_wheel);
    783 		if (b < 0)
    784 			b = -WHEELSIZE;
    785 		db_printf("%9d %2d/%-4d %16lx  %s\n",
    786 		    c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
    787 		    (u_long)c->c_arg, name);
    788 		if (CIRCQ_LAST(&c->c_list, kbucket))
    789 			break;
    790 	}
    791 }
    792 
    793 void
    794 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
    795 {
    796 	struct callout_cpu *cc, ccb;
    797 	struct cpu_info *ci, cib;
    798 	int b;
    799 
    800 #ifndef CRASH
    801 	db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
    802 #endif
    803 	db_printf("    ticks  wheel               arg  func\n");
    804 
    805 	/*
    806 	 * Don't lock the callwheel; all the other CPUs are paused
    807 	 * anyhow, and we might be called in a circumstance where
    808 	 * some other CPU was paused while holding the lock.
    809 	 */
    810 	for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
    811 		db_read_bytes((db_addr_t)ci, sizeof(cib), (char *)&cib);
    812 		cc = cib.ci_data.cpu_callout;
    813 		db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
    814 		db_show_callout_bucket(&ccb, &cc->cc_todo, &ccb.cc_todo);
    815 	}
    816 	for (b = 0; b < BUCKETS; b++) {
    817 		for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
    818 			db_read_bytes((db_addr_t)ci, sizeof(cib), (char *)&cib);
    819 			cc = cib.ci_data.cpu_callout;
    820 			db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
    821 			db_show_callout_bucket(&ccb, &cc->cc_wheel[b],
    822 			    &ccb.cc_wheel[b]);
    823 		}
    824 	}
    825 }
    826 #endif /* DDB */
    827