Home | History | Annotate | Line # | Download | only in kern
kern_timeout.c revision 1.52.2.1
      1 /*	$NetBSD: kern_timeout.c,v 1.52.2.1 2018/01/26 15:41:12 martin Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
     34  * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
     35  * All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  *
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. The name of the author may not be used to endorse or promote products
     47  *    derived from this software without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
     50  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
     51  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     52  * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     53  * EXEMPLARY, OR CONSEQUENTIAL  DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 #include <sys/cdefs.h>
     62 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.52.2.1 2018/01/26 15:41:12 martin Exp $");
     63 
     64 /*
     65  * Timeouts are kept in a hierarchical timing wheel.  The c_time is the
     66  * value of c_cpu->cc_ticks when the timeout should be called.  There are
     67  * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
     68  * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
     69  * a Timer Facility" by George Varghese and Tony Lauck.
     70  *
     71  * Some of the "math" in here is a bit tricky.  We have to beware of
     72  * wrapping ints.
     73  *
     74  * We use the fact that any element added to the queue must be added with
     75  * a positive time.  That means that any element `to' on the queue cannot
     76  * be scheduled to timeout further in time than INT_MAX, but c->c_time can
     77  * be positive or negative so comparing it with anything is dangerous.
     78  * The only way we can use the c->c_time value in any predictable way is
     79  * when we calculate how far in the future `to' will timeout - "c->c_time
     80  * - c->c_cpu->cc_ticks".  The result will always be positive for future
     81  * timeouts and 0 or negative for due timeouts.
     82  */
     83 
     84 #define	_CALLOUT_PRIVATE
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/kernel.h>
     89 #include <sys/callout.h>
     90 #include <sys/lwp.h>
     91 #include <sys/mutex.h>
     92 #include <sys/proc.h>
     93 #include <sys/sleepq.h>
     94 #include <sys/syncobj.h>
     95 #include <sys/evcnt.h>
     96 #include <sys/intr.h>
     97 #include <sys/cpu.h>
     98 #include <sys/kmem.h>
     99 
    100 #ifdef DDB
    101 #include <machine/db_machdep.h>
    102 #include <ddb/db_interface.h>
    103 #include <ddb/db_access.h>
    104 #include <ddb/db_cpu.h>
    105 #include <ddb/db_sym.h>
    106 #include <ddb/db_output.h>
    107 #endif
    108 
    109 #define BUCKETS		1024
    110 #define WHEELSIZE	256
    111 #define WHEELMASK	255
    112 #define WHEELBITS	8
    113 
    114 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
    115 
    116 #define BUCKET(cc, rel, abs)						\
    117     (((rel) <= (1 << (2*WHEELBITS)))					\
    118     	? ((rel) <= (1 << WHEELBITS))					\
    119             ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))]			\
    120             : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE]		\
    121         : ((rel) <= (1 << (3*WHEELBITS)))				\
    122             ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE]	\
    123             : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
    124 
    125 #define MOVEBUCKET(cc, wheel, time)					\
    126     CIRCQ_APPEND(&(cc)->cc_todo,					\
    127         &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
    128 
    129 /*
    130  * Circular queue definitions.
    131  */
    132 
    133 #define CIRCQ_INIT(list)						\
    134 do {									\
    135         (list)->cq_next_l = (list);					\
    136         (list)->cq_prev_l = (list);					\
    137 } while (/*CONSTCOND*/0)
    138 
    139 #define CIRCQ_INSERT(elem, list)					\
    140 do {									\
    141         (elem)->cq_prev_e = (list)->cq_prev_e;				\
    142         (elem)->cq_next_l = (list);					\
    143         (list)->cq_prev_l->cq_next_l = (elem);				\
    144         (list)->cq_prev_l = (elem);					\
    145 } while (/*CONSTCOND*/0)
    146 
    147 #define CIRCQ_APPEND(fst, snd)						\
    148 do {									\
    149         if (!CIRCQ_EMPTY(snd)) {					\
    150                 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l;		\
    151                 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l;		\
    152                 (snd)->cq_prev_l->cq_next_l = (fst);			\
    153                 (fst)->cq_prev_l = (snd)->cq_prev_l;			\
    154                 CIRCQ_INIT(snd);					\
    155         }								\
    156 } while (/*CONSTCOND*/0)
    157 
    158 #define CIRCQ_REMOVE(elem)						\
    159 do {									\
    160         (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e;		\
    161         (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e;		\
    162 } while (/*CONSTCOND*/0)
    163 
    164 #define CIRCQ_FIRST(list)	((list)->cq_next_e)
    165 #define CIRCQ_NEXT(elem)	((elem)->cq_next_e)
    166 #define CIRCQ_LAST(elem,list)	((elem)->cq_next_l == (list))
    167 #define CIRCQ_EMPTY(list)	((list)->cq_next_l == (list))
    168 
    169 struct callout_cpu {
    170 	kmutex_t	*cc_lock;
    171 	sleepq_t	cc_sleepq;
    172 	u_int		cc_nwait;
    173 	u_int		cc_ticks;
    174 	lwp_t		*cc_lwp;
    175 	callout_impl_t	*cc_active;
    176 	callout_impl_t	*cc_cancel;
    177 	struct evcnt	cc_ev_late;
    178 	struct evcnt	cc_ev_block;
    179 	struct callout_circq cc_todo;		/* Worklist */
    180 	struct callout_circq cc_wheel[BUCKETS];	/* Queues of timeouts */
    181 	char		cc_name1[12];
    182 	char		cc_name2[12];
    183 };
    184 
    185 #ifndef CRASH
    186 
    187 static void	callout_softclock(void *);
    188 static struct callout_cpu callout_cpu0;
    189 static void *callout_sih;
    190 
    191 static inline kmutex_t *
    192 callout_lock(callout_impl_t *c)
    193 {
    194 	struct callout_cpu *cc;
    195 	kmutex_t *lock;
    196 
    197 	for (;;) {
    198 		cc = c->c_cpu;
    199 		lock = cc->cc_lock;
    200 		mutex_spin_enter(lock);
    201 		if (__predict_true(cc == c->c_cpu))
    202 			return lock;
    203 		mutex_spin_exit(lock);
    204 	}
    205 }
    206 
    207 /*
    208  * callout_startup:
    209  *
    210  *	Initialize the callout facility, called at system startup time.
    211  *	Do just enough to allow callouts to be safely registered.
    212  */
    213 void
    214 callout_startup(void)
    215 {
    216 	struct callout_cpu *cc;
    217 	int b;
    218 
    219 	KASSERT(curcpu()->ci_data.cpu_callout == NULL);
    220 
    221 	cc = &callout_cpu0;
    222 	cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    223 	CIRCQ_INIT(&cc->cc_todo);
    224 	for (b = 0; b < BUCKETS; b++)
    225 		CIRCQ_INIT(&cc->cc_wheel[b]);
    226 	curcpu()->ci_data.cpu_callout = cc;
    227 }
    228 
    229 /*
    230  * callout_init_cpu:
    231  *
    232  *	Per-CPU initialization.
    233  */
    234 CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
    235 
    236 void
    237 callout_init_cpu(struct cpu_info *ci)
    238 {
    239 	struct callout_cpu *cc;
    240 	int b;
    241 
    242 	if ((cc = ci->ci_data.cpu_callout) == NULL) {
    243 		cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
    244 		cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    245 		CIRCQ_INIT(&cc->cc_todo);
    246 		for (b = 0; b < BUCKETS; b++)
    247 			CIRCQ_INIT(&cc->cc_wheel[b]);
    248 	} else {
    249 		/* Boot CPU, one time only. */
    250 		callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    251 		    callout_softclock, NULL);
    252 		if (callout_sih == NULL)
    253 			panic("callout_init_cpu (2)");
    254 	}
    255 
    256 	sleepq_init(&cc->cc_sleepq);
    257 
    258 	snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
    259 	    cpu_index(ci));
    260 	evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
    261 	    NULL, "callout", cc->cc_name1);
    262 
    263 	snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
    264 	    cpu_index(ci));
    265 	evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
    266 	    NULL, "callout", cc->cc_name2);
    267 
    268 	ci->ci_data.cpu_callout = cc;
    269 }
    270 
    271 /*
    272  * callout_init:
    273  *
    274  *	Initialize a callout structure.  This must be quick, so we fill
    275  *	only the minimum number of fields.
    276  */
    277 void
    278 callout_init(callout_t *cs, u_int flags)
    279 {
    280 	callout_impl_t *c = (callout_impl_t *)cs;
    281 	struct callout_cpu *cc;
    282 
    283 	KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
    284 
    285 	cc = curcpu()->ci_data.cpu_callout;
    286 	c->c_func = NULL;
    287 	c->c_magic = CALLOUT_MAGIC;
    288 	if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
    289 		c->c_flags = flags;
    290 		c->c_cpu = cc;
    291 		return;
    292 	}
    293 	c->c_flags = flags | CALLOUT_BOUND;
    294 	c->c_cpu = &callout_cpu0;
    295 }
    296 
    297 /*
    298  * callout_destroy:
    299  *
    300  *	Destroy a callout structure.  The callout must be stopped.
    301  */
    302 void
    303 callout_destroy(callout_t *cs)
    304 {
    305 	callout_impl_t *c = (callout_impl_t *)cs;
    306 
    307 	/*
    308 	 * It's not necessary to lock in order to see the correct value
    309 	 * of c->c_flags.  If the callout could potentially have been
    310 	 * running, the current thread should have stopped it.
    311 	 */
    312 	KASSERTMSG((c->c_flags & CALLOUT_PENDING) == 0,
    313 	    "callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
    314 	    c, c->c_func, c->c_flags, __builtin_return_address(0));
    315 	KASSERT(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c);
    316 	KASSERTMSG(c->c_magic == CALLOUT_MAGIC,
    317 	    "callout %p: c_magic (%#x) != CALLOUT_MAGIC (%#x)",
    318 	    c, c->c_magic, CALLOUT_MAGIC);
    319 	c->c_magic = 0;
    320 }
    321 
    322 /*
    323  * callout_schedule_locked:
    324  *
    325  *	Schedule a callout to run.  The function and argument must
    326  *	already be set in the callout structure.  Must be called with
    327  *	callout_lock.
    328  */
    329 static void
    330 callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
    331 {
    332 	struct callout_cpu *cc, *occ;
    333 	int old_time;
    334 
    335 	KASSERT(to_ticks >= 0);
    336 	KASSERT(c->c_func != NULL);
    337 
    338 	/* Initialize the time here, it won't change. */
    339 	occ = c->c_cpu;
    340 	c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
    341 
    342 	/*
    343 	 * If this timeout is already scheduled and now is moved
    344 	 * earlier, reschedule it now.  Otherwise leave it in place
    345 	 * and let it be rescheduled later.
    346 	 */
    347 	if ((c->c_flags & CALLOUT_PENDING) != 0) {
    348 		/* Leave on existing CPU. */
    349 		old_time = c->c_time;
    350 		c->c_time = to_ticks + occ->cc_ticks;
    351 		if (c->c_time - old_time < 0) {
    352 			CIRCQ_REMOVE(&c->c_list);
    353 			CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    354 		}
    355 		mutex_spin_exit(lock);
    356 		return;
    357 	}
    358 
    359 	cc = curcpu()->ci_data.cpu_callout;
    360 	if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
    361 	    !mutex_tryenter(cc->cc_lock)) {
    362 		/* Leave on existing CPU. */
    363 		c->c_time = to_ticks + occ->cc_ticks;
    364 		c->c_flags |= CALLOUT_PENDING;
    365 		CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    366 	} else {
    367 		/* Move to this CPU. */
    368 		c->c_cpu = cc;
    369 		c->c_time = to_ticks + cc->cc_ticks;
    370 		c->c_flags |= CALLOUT_PENDING;
    371 		CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
    372 		mutex_spin_exit(cc->cc_lock);
    373 	}
    374 	mutex_spin_exit(lock);
    375 }
    376 
    377 /*
    378  * callout_reset:
    379  *
    380  *	Reset a callout structure with a new function and argument, and
    381  *	schedule it to run.
    382  */
    383 void
    384 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
    385 {
    386 	callout_impl_t *c = (callout_impl_t *)cs;
    387 	kmutex_t *lock;
    388 
    389 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    390 	KASSERT(func != NULL);
    391 
    392 	lock = callout_lock(c);
    393 	c->c_func = func;
    394 	c->c_arg = arg;
    395 	callout_schedule_locked(c, lock, to_ticks);
    396 }
    397 
    398 /*
    399  * callout_schedule:
    400  *
    401  *	Schedule a callout to run.  The function and argument must
    402  *	already be set in the callout structure.
    403  */
    404 void
    405 callout_schedule(callout_t *cs, int to_ticks)
    406 {
    407 	callout_impl_t *c = (callout_impl_t *)cs;
    408 	kmutex_t *lock;
    409 
    410 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    411 
    412 	lock = callout_lock(c);
    413 	callout_schedule_locked(c, lock, to_ticks);
    414 }
    415 
    416 /*
    417  * callout_stop:
    418  *
    419  *	Try to cancel a pending callout.  It may be too late: the callout
    420  *	could be running on another CPU.  If called from interrupt context,
    421  *	the callout could already be in progress at a lower priority.
    422  */
    423 bool
    424 callout_stop(callout_t *cs)
    425 {
    426 	callout_impl_t *c = (callout_impl_t *)cs;
    427 	struct callout_cpu *cc;
    428 	kmutex_t *lock;
    429 	bool expired;
    430 
    431 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    432 
    433 	lock = callout_lock(c);
    434 
    435 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    436 		CIRCQ_REMOVE(&c->c_list);
    437 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    438 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    439 
    440 	cc = c->c_cpu;
    441 	if (cc->cc_active == c) {
    442 		/*
    443 		 * This is for non-MPSAFE callouts only.  To synchronize
    444 		 * effectively we must be called with kernel_lock held.
    445 		 * It's also taken in callout_softclock.
    446 		 */
    447 		cc->cc_cancel = c;
    448 	}
    449 
    450 	mutex_spin_exit(lock);
    451 
    452 	return expired;
    453 }
    454 
    455 /*
    456  * callout_halt:
    457  *
    458  *	Cancel a pending callout.  If in-flight, block until it completes.
    459  *	May not be called from a hard interrupt handler.  If the callout
    460  * 	can take locks, the caller of callout_halt() must not hold any of
    461  *	those locks, otherwise the two could deadlock.  If 'interlock' is
    462  *	non-NULL and we must wait for the callout to complete, it will be
    463  *	released and re-acquired before returning.
    464  */
    465 bool
    466 callout_halt(callout_t *cs, void *interlock)
    467 {
    468 	callout_impl_t *c = (callout_impl_t *)cs;
    469 	struct callout_cpu *cc;
    470 	struct lwp *l;
    471 	kmutex_t *lock, *relock;
    472 	bool expired;
    473 
    474 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    475 	KASSERT(!cpu_intr_p());
    476 	KASSERT(interlock == NULL || mutex_owned(interlock));
    477 
    478 	lock = callout_lock(c);
    479 	relock = NULL;
    480 
    481 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    482 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    483 		CIRCQ_REMOVE(&c->c_list);
    484 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    485 
    486 	l = curlwp;
    487 	for (;;) {
    488 		cc = c->c_cpu;
    489 		if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
    490 			break;
    491 		if (interlock != NULL) {
    492 			/*
    493 			 * Avoid potential scheduler lock order problems by
    494 			 * dropping the interlock without the callout lock
    495 			 * held.
    496 			 */
    497 			mutex_spin_exit(lock);
    498 			mutex_exit(interlock);
    499 			relock = interlock;
    500 			interlock = NULL;
    501 		} else {
    502 			/* XXX Better to do priority inheritance. */
    503 			KASSERT(l->l_wchan == NULL);
    504 			cc->cc_nwait++;
    505 			cc->cc_ev_block.ev_count++;
    506 			l->l_kpriority = true;
    507 			sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
    508 			sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
    509 			    &sleep_syncobj);
    510 			sleepq_block(0, false);
    511 		}
    512 		lock = callout_lock(c);
    513 	}
    514 
    515 	mutex_spin_exit(lock);
    516 	if (__predict_false(relock != NULL))
    517 		mutex_enter(relock);
    518 
    519 	return expired;
    520 }
    521 
    522 #ifdef notyet
    523 /*
    524  * callout_bind:
    525  *
    526  *	Bind a callout so that it will only execute on one CPU.
    527  *	The callout must be stopped, and must be MPSAFE.
    528  *
    529  *	XXX Disabled for now until it is decided how to handle
    530  *	offlined CPUs.  We may want weak+strong binding.
    531  */
    532 void
    533 callout_bind(callout_t *cs, struct cpu_info *ci)
    534 {
    535 	callout_impl_t *c = (callout_impl_t *)cs;
    536 	struct callout_cpu *cc;
    537 	kmutex_t *lock;
    538 
    539 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
    540 	KASSERT(c->c_cpu->cc_active != c);
    541 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    542 	KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
    543 
    544 	lock = callout_lock(c);
    545 	cc = ci->ci_data.cpu_callout;
    546 	c->c_flags |= CALLOUT_BOUND;
    547 	if (c->c_cpu != cc) {
    548 		/*
    549 		 * Assigning c_cpu effectively unlocks the callout
    550 		 * structure, as we don't hold the new CPU's lock.
    551 		 * Issue memory barrier to prevent accesses being
    552 		 * reordered.
    553 		 */
    554 		membar_exit();
    555 		c->c_cpu = cc;
    556 	}
    557 	mutex_spin_exit(lock);
    558 }
    559 #endif
    560 
    561 void
    562 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
    563 {
    564 	callout_impl_t *c = (callout_impl_t *)cs;
    565 	kmutex_t *lock;
    566 
    567 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    568 	KASSERT(func != NULL);
    569 
    570 	lock = callout_lock(c);
    571 	c->c_func = func;
    572 	c->c_arg = arg;
    573 	mutex_spin_exit(lock);
    574 }
    575 
    576 bool
    577 callout_expired(callout_t *cs)
    578 {
    579 	callout_impl_t *c = (callout_impl_t *)cs;
    580 	kmutex_t *lock;
    581 	bool rv;
    582 
    583 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    584 
    585 	lock = callout_lock(c);
    586 	rv = ((c->c_flags & CALLOUT_FIRED) != 0);
    587 	mutex_spin_exit(lock);
    588 
    589 	return rv;
    590 }
    591 
    592 bool
    593 callout_active(callout_t *cs)
    594 {
    595 	callout_impl_t *c = (callout_impl_t *)cs;
    596 	kmutex_t *lock;
    597 	bool rv;
    598 
    599 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    600 
    601 	lock = callout_lock(c);
    602 	rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
    603 	mutex_spin_exit(lock);
    604 
    605 	return rv;
    606 }
    607 
    608 bool
    609 callout_pending(callout_t *cs)
    610 {
    611 	callout_impl_t *c = (callout_impl_t *)cs;
    612 	kmutex_t *lock;
    613 	bool rv;
    614 
    615 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    616 
    617 	lock = callout_lock(c);
    618 	rv = ((c->c_flags & CALLOUT_PENDING) != 0);
    619 	mutex_spin_exit(lock);
    620 
    621 	return rv;
    622 }
    623 
    624 bool
    625 callout_invoking(callout_t *cs)
    626 {
    627 	callout_impl_t *c = (callout_impl_t *)cs;
    628 	kmutex_t *lock;
    629 	bool rv;
    630 
    631 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    632 
    633 	lock = callout_lock(c);
    634 	rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
    635 	mutex_spin_exit(lock);
    636 
    637 	return rv;
    638 }
    639 
    640 void
    641 callout_ack(callout_t *cs)
    642 {
    643 	callout_impl_t *c = (callout_impl_t *)cs;
    644 	kmutex_t *lock;
    645 
    646 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    647 
    648 	lock = callout_lock(c);
    649 	c->c_flags &= ~CALLOUT_INVOKING;
    650 	mutex_spin_exit(lock);
    651 }
    652 
    653 /*
    654  * callout_hardclock:
    655  *
    656  *	Called from hardclock() once every tick.  We schedule a soft
    657  *	interrupt if there is work to be done.
    658  */
    659 void
    660 callout_hardclock(void)
    661 {
    662 	struct callout_cpu *cc;
    663 	int needsoftclock, ticks;
    664 
    665 	cc = curcpu()->ci_data.cpu_callout;
    666 	mutex_spin_enter(cc->cc_lock);
    667 
    668 	ticks = ++cc->cc_ticks;
    669 
    670 	MOVEBUCKET(cc, 0, ticks);
    671 	if (MASKWHEEL(0, ticks) == 0) {
    672 		MOVEBUCKET(cc, 1, ticks);
    673 		if (MASKWHEEL(1, ticks) == 0) {
    674 			MOVEBUCKET(cc, 2, ticks);
    675 			if (MASKWHEEL(2, ticks) == 0)
    676 				MOVEBUCKET(cc, 3, ticks);
    677 		}
    678 	}
    679 
    680 	needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
    681 	mutex_spin_exit(cc->cc_lock);
    682 
    683 	if (needsoftclock)
    684 		softint_schedule(callout_sih);
    685 }
    686 
    687 /*
    688  * callout_softclock:
    689  *
    690  *	Soft interrupt handler, scheduled above if there is work to
    691  * 	be done.  Callouts are made in soft interrupt context.
    692  */
    693 static void
    694 callout_softclock(void *v)
    695 {
    696 	callout_impl_t *c;
    697 	struct callout_cpu *cc;
    698 	void (*func)(void *);
    699 	void *arg;
    700 	int mpsafe, count, ticks, delta;
    701 	lwp_t *l;
    702 
    703 	l = curlwp;
    704 	KASSERT(l->l_cpu == curcpu());
    705 	cc = l->l_cpu->ci_data.cpu_callout;
    706 
    707 	mutex_spin_enter(cc->cc_lock);
    708 	cc->cc_lwp = l;
    709 	while (!CIRCQ_EMPTY(&cc->cc_todo)) {
    710 		c = CIRCQ_FIRST(&cc->cc_todo);
    711 		KASSERT(c->c_magic == CALLOUT_MAGIC);
    712 		KASSERT(c->c_func != NULL);
    713 		KASSERT(c->c_cpu == cc);
    714 		KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
    715 		KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
    716 		CIRCQ_REMOVE(&c->c_list);
    717 
    718 		/* If due run it, otherwise insert it into the right bucket. */
    719 		ticks = cc->cc_ticks;
    720 		delta = c->c_time - ticks;
    721 		if (delta > 0) {
    722 			CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
    723 			continue;
    724 		}
    725 		if (delta < 0)
    726 			cc->cc_ev_late.ev_count++;
    727 
    728 		c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
    729 		    (CALLOUT_FIRED | CALLOUT_INVOKING);
    730 		mpsafe = (c->c_flags & CALLOUT_MPSAFE);
    731 		func = c->c_func;
    732 		arg = c->c_arg;
    733 		cc->cc_active = c;
    734 
    735 		mutex_spin_exit(cc->cc_lock);
    736 		KASSERT(func != NULL);
    737 		if (__predict_false(!mpsafe)) {
    738 			KERNEL_LOCK(1, NULL);
    739 			(*func)(arg);
    740 			KERNEL_UNLOCK_ONE(NULL);
    741 		} else
    742 			(*func)(arg);
    743 		mutex_spin_enter(cc->cc_lock);
    744 
    745 		/*
    746 		 * We can't touch 'c' here because it might be
    747 		 * freed already.  If LWPs waiting for callout
    748 		 * to complete, awaken them.
    749 		 */
    750 		cc->cc_active = NULL;
    751 		if ((count = cc->cc_nwait) != 0) {
    752 			cc->cc_nwait = 0;
    753 			/* sleepq_wake() drops the lock. */
    754 			sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
    755 			mutex_spin_enter(cc->cc_lock);
    756 		}
    757 	}
    758 	cc->cc_lwp = NULL;
    759 	mutex_spin_exit(cc->cc_lock);
    760 }
    761 #endif
    762 
    763 #ifdef DDB
    764 static void
    765 db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *kbucket,
    766     struct callout_circq *bucket)
    767 {
    768 	callout_impl_t *c, ci;
    769 	db_expr_t offset;
    770 	const char *name;
    771 	static char question[] = "?";
    772 	int b;
    773 
    774 	if (CIRCQ_LAST(bucket, kbucket))
    775 		return;
    776 
    777 	for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
    778 		db_read_bytes((db_addr_t)c, sizeof(ci), (char *)&ci);
    779 		c = &ci;
    780 		db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
    781 		    &offset);
    782 		name = name ? name : question;
    783 		b = (bucket - cc->cc_wheel);
    784 		if (b < 0)
    785 			b = -WHEELSIZE;
    786 		db_printf("%9d %2d/%-4d %16lx  %s\n",
    787 		    c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
    788 		    (u_long)c->c_arg, name);
    789 		if (CIRCQ_LAST(&c->c_list, kbucket))
    790 			break;
    791 	}
    792 }
    793 
    794 void
    795 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
    796 {
    797 	struct callout_cpu *cc, ccb;
    798 	struct cpu_info *ci, cib;
    799 	int b;
    800 
    801 #ifndef CRASH
    802 	db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
    803 #endif
    804 	db_printf("    ticks  wheel               arg  func\n");
    805 
    806 	/*
    807 	 * Don't lock the callwheel; all the other CPUs are paused
    808 	 * anyhow, and we might be called in a circumstance where
    809 	 * some other CPU was paused while holding the lock.
    810 	 */
    811 	for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
    812 		db_read_bytes((db_addr_t)ci, sizeof(cib), (char *)&cib);
    813 		cc = cib.ci_data.cpu_callout;
    814 		db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
    815 		db_show_callout_bucket(&ccb, &cc->cc_todo, &ccb.cc_todo);
    816 	}
    817 	for (b = 0; b < BUCKETS; b++) {
    818 		for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
    819 			db_read_bytes((db_addr_t)ci, sizeof(cib), (char *)&cib);
    820 			cc = cib.ci_data.cpu_callout;
    821 			db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
    822 			db_show_callout_bucket(&ccb, &cc->cc_wheel[b],
    823 			    &ccb.cc_wheel[b]);
    824 		}
    825 	}
    826 }
    827 #endif /* DDB */
    828