Home | History | Annotate | Line # | Download | only in kern
kern_timeout.c revision 1.54.4.2
      1 /*	$NetBSD: kern_timeout.c,v 1.54.4.2 2020/04/08 14:08:51 martin Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003, 2006, 2007, 2008, 2009, 2019 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
     34  * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
     35  * All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  *
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. The name of the author may not be used to endorse or promote products
     47  *    derived from this software without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
     50  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
     51  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     52  * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     53  * EXEMPLARY, OR CONSEQUENTIAL  DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 #include <sys/cdefs.h>
     62 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.54.4.2 2020/04/08 14:08:51 martin Exp $");
     63 
     64 /*
     65  * Timeouts are kept in a hierarchical timing wheel.  The c_time is the
     66  * value of c_cpu->cc_ticks when the timeout should be called.  There are
     67  * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
     68  * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
     69  * a Timer Facility" by George Varghese and Tony Lauck.
     70  *
     71  * Some of the "math" in here is a bit tricky.  We have to beware of
     72  * wrapping ints.
     73  *
     74  * We use the fact that any element added to the queue must be added with
     75  * a positive time.  That means that any element `to' on the queue cannot
     76  * be scheduled to timeout further in time than INT_MAX, but c->c_time can
     77  * be positive or negative so comparing it with anything is dangerous.
     78  * The only way we can use the c->c_time value in any predictable way is
     79  * when we calculate how far in the future `to' will timeout - "c->c_time
     80  * - c->c_cpu->cc_ticks".  The result will always be positive for future
     81  * timeouts and 0 or negative for due timeouts.
     82  */
     83 
     84 #define	_CALLOUT_PRIVATE
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/kernel.h>
     89 #include <sys/callout.h>
     90 #include <sys/lwp.h>
     91 #include <sys/mutex.h>
     92 #include <sys/proc.h>
     93 #include <sys/sleepq.h>
     94 #include <sys/syncobj.h>
     95 #include <sys/evcnt.h>
     96 #include <sys/intr.h>
     97 #include <sys/cpu.h>
     98 #include <sys/kmem.h>
     99 
    100 #ifdef DDB
    101 #include <machine/db_machdep.h>
    102 #include <ddb/db_interface.h>
    103 #include <ddb/db_access.h>
    104 #include <ddb/db_cpu.h>
    105 #include <ddb/db_sym.h>
    106 #include <ddb/db_output.h>
    107 #endif
    108 
    109 #define BUCKETS		1024
    110 #define WHEELSIZE	256
    111 #define WHEELMASK	255
    112 #define WHEELBITS	8
    113 
    114 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
    115 
    116 #define BUCKET(cc, rel, abs)						\
    117     (((rel) <= (1 << (2*WHEELBITS)))					\
    118     	? ((rel) <= (1 << WHEELBITS))					\
    119             ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))]			\
    120             : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE]		\
    121         : ((rel) <= (1 << (3*WHEELBITS)))				\
    122             ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE]	\
    123             : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
    124 
    125 #define MOVEBUCKET(cc, wheel, time)					\
    126     CIRCQ_APPEND(&(cc)->cc_todo,					\
    127         &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
    128 
    129 /*
    130  * Circular queue definitions.
    131  */
    132 
    133 #define CIRCQ_INIT(list)						\
    134 do {									\
    135         (list)->cq_next_l = (list);					\
    136         (list)->cq_prev_l = (list);					\
    137 } while (/*CONSTCOND*/0)
    138 
    139 #define CIRCQ_INSERT(elem, list)					\
    140 do {									\
    141         (elem)->cq_prev_e = (list)->cq_prev_e;				\
    142         (elem)->cq_next_l = (list);					\
    143         (list)->cq_prev_l->cq_next_l = (elem);				\
    144         (list)->cq_prev_l = (elem);					\
    145 } while (/*CONSTCOND*/0)
    146 
    147 #define CIRCQ_APPEND(fst, snd)						\
    148 do {									\
    149         if (!CIRCQ_EMPTY(snd)) {					\
    150                 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l;		\
    151                 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l;		\
    152                 (snd)->cq_prev_l->cq_next_l = (fst);			\
    153                 (fst)->cq_prev_l = (snd)->cq_prev_l;			\
    154                 CIRCQ_INIT(snd);					\
    155         }								\
    156 } while (/*CONSTCOND*/0)
    157 
    158 #define CIRCQ_REMOVE(elem)						\
    159 do {									\
    160         (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e;		\
    161         (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e;		\
    162 } while (/*CONSTCOND*/0)
    163 
    164 #define CIRCQ_FIRST(list)	((list)->cq_next_e)
    165 #define CIRCQ_NEXT(elem)	((elem)->cq_next_e)
    166 #define CIRCQ_LAST(elem,list)	((elem)->cq_next_l == (list))
    167 #define CIRCQ_EMPTY(list)	((list)->cq_next_l == (list))
    168 
    169 struct callout_cpu {
    170 	kmutex_t	*cc_lock;
    171 	sleepq_t	cc_sleepq;
    172 	u_int		cc_nwait;
    173 	u_int		cc_ticks;
    174 	lwp_t		*cc_lwp;
    175 	callout_impl_t	*cc_active;
    176 	callout_impl_t	*cc_cancel;
    177 	struct evcnt	cc_ev_late;
    178 	struct evcnt	cc_ev_block;
    179 	struct callout_circq cc_todo;		/* Worklist */
    180 	struct callout_circq cc_wheel[BUCKETS];	/* Queues of timeouts */
    181 	char		cc_name1[12];
    182 	char		cc_name2[12];
    183 };
    184 
    185 #ifndef CRASH
    186 
    187 static void	callout_softclock(void *);
    188 static void	callout_wait(callout_impl_t *, void *, kmutex_t *);
    189 
    190 static struct callout_cpu callout_cpu0 __cacheline_aligned;
    191 static void *callout_sih __read_mostly;
    192 
    193 static inline kmutex_t *
    194 callout_lock(callout_impl_t *c)
    195 {
    196 	struct callout_cpu *cc;
    197 	kmutex_t *lock;
    198 
    199 	for (;;) {
    200 		cc = c->c_cpu;
    201 		lock = cc->cc_lock;
    202 		mutex_spin_enter(lock);
    203 		if (__predict_true(cc == c->c_cpu))
    204 			return lock;
    205 		mutex_spin_exit(lock);
    206 	}
    207 }
    208 
    209 /*
    210  * callout_startup:
    211  *
    212  *	Initialize the callout facility, called at system startup time.
    213  *	Do just enough to allow callouts to be safely registered.
    214  */
    215 void
    216 callout_startup(void)
    217 {
    218 	struct callout_cpu *cc;
    219 	int b;
    220 
    221 	KASSERT(curcpu()->ci_data.cpu_callout == NULL);
    222 
    223 	cc = &callout_cpu0;
    224 	cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    225 	CIRCQ_INIT(&cc->cc_todo);
    226 	for (b = 0; b < BUCKETS; b++)
    227 		CIRCQ_INIT(&cc->cc_wheel[b]);
    228 	curcpu()->ci_data.cpu_callout = cc;
    229 }
    230 
    231 /*
    232  * callout_init_cpu:
    233  *
    234  *	Per-CPU initialization.
    235  */
    236 CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
    237 
    238 void
    239 callout_init_cpu(struct cpu_info *ci)
    240 {
    241 	struct callout_cpu *cc;
    242 	int b;
    243 
    244 	if ((cc = ci->ci_data.cpu_callout) == NULL) {
    245 		cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
    246 		cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    247 		CIRCQ_INIT(&cc->cc_todo);
    248 		for (b = 0; b < BUCKETS; b++)
    249 			CIRCQ_INIT(&cc->cc_wheel[b]);
    250 	} else {
    251 		/* Boot CPU, one time only. */
    252 		callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    253 		    callout_softclock, NULL);
    254 		if (callout_sih == NULL)
    255 			panic("callout_init_cpu (2)");
    256 	}
    257 
    258 	sleepq_init(&cc->cc_sleepq);
    259 
    260 	snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
    261 	    cpu_index(ci));
    262 	evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
    263 	    NULL, "callout", cc->cc_name1);
    264 
    265 	snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
    266 	    cpu_index(ci));
    267 	evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
    268 	    NULL, "callout", cc->cc_name2);
    269 
    270 	ci->ci_data.cpu_callout = cc;
    271 }
    272 
    273 /*
    274  * callout_init:
    275  *
    276  *	Initialize a callout structure.  This must be quick, so we fill
    277  *	only the minimum number of fields.
    278  */
    279 void
    280 callout_init(callout_t *cs, u_int flags)
    281 {
    282 	callout_impl_t *c = (callout_impl_t *)cs;
    283 	struct callout_cpu *cc;
    284 
    285 	KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
    286 
    287 	cc = curcpu()->ci_data.cpu_callout;
    288 	c->c_func = NULL;
    289 	c->c_magic = CALLOUT_MAGIC;
    290 	if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
    291 		c->c_flags = flags;
    292 		c->c_cpu = cc;
    293 		return;
    294 	}
    295 	c->c_flags = flags | CALLOUT_BOUND;
    296 	c->c_cpu = &callout_cpu0;
    297 }
    298 
    299 /*
    300  * callout_destroy:
    301  *
    302  *	Destroy a callout structure.  The callout must be stopped.
    303  */
    304 void
    305 callout_destroy(callout_t *cs)
    306 {
    307 	callout_impl_t *c = (callout_impl_t *)cs;
    308 
    309 	KASSERTMSG(c->c_magic == CALLOUT_MAGIC,
    310 	    "callout %p: c_magic (%#x) != CALLOUT_MAGIC (%#x)",
    311 	    c, c->c_magic, CALLOUT_MAGIC);
    312 	/*
    313 	 * It's not necessary to lock in order to see the correct value
    314 	 * of c->c_flags.  If the callout could potentially have been
    315 	 * running, the current thread should have stopped it.
    316 	 */
    317 	KASSERTMSG((c->c_flags & CALLOUT_PENDING) == 0,
    318 	    "pending callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
    319 	    c, c->c_func, c->c_flags, __builtin_return_address(0));
    320 	KASSERTMSG(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c,
    321 	    "running callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
    322 	    c, c->c_func, c->c_flags, __builtin_return_address(0));
    323 	c->c_magic = 0;
    324 }
    325 
    326 /*
    327  * callout_schedule_locked:
    328  *
    329  *	Schedule a callout to run.  The function and argument must
    330  *	already be set in the callout structure.  Must be called with
    331  *	callout_lock.
    332  */
    333 static void
    334 callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
    335 {
    336 	struct callout_cpu *cc, *occ;
    337 	int old_time;
    338 
    339 	KASSERT(to_ticks >= 0);
    340 	KASSERT(c->c_func != NULL);
    341 
    342 	/* Initialize the time here, it won't change. */
    343 	occ = c->c_cpu;
    344 	c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
    345 
    346 	/*
    347 	 * If this timeout is already scheduled and now is moved
    348 	 * earlier, reschedule it now.  Otherwise leave it in place
    349 	 * and let it be rescheduled later.
    350 	 */
    351 	if ((c->c_flags & CALLOUT_PENDING) != 0) {
    352 		/* Leave on existing CPU. */
    353 		old_time = c->c_time;
    354 		c->c_time = to_ticks + occ->cc_ticks;
    355 		if (c->c_time - old_time < 0) {
    356 			CIRCQ_REMOVE(&c->c_list);
    357 			CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    358 		}
    359 		mutex_spin_exit(lock);
    360 		return;
    361 	}
    362 
    363 	cc = curcpu()->ci_data.cpu_callout;
    364 	if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
    365 	    !mutex_tryenter(cc->cc_lock)) {
    366 		/* Leave on existing CPU. */
    367 		c->c_time = to_ticks + occ->cc_ticks;
    368 		c->c_flags |= CALLOUT_PENDING;
    369 		CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    370 	} else {
    371 		/* Move to this CPU. */
    372 		c->c_cpu = cc;
    373 		c->c_time = to_ticks + cc->cc_ticks;
    374 		c->c_flags |= CALLOUT_PENDING;
    375 		CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
    376 		mutex_spin_exit(cc->cc_lock);
    377 	}
    378 	mutex_spin_exit(lock);
    379 }
    380 
    381 /*
    382  * callout_reset:
    383  *
    384  *	Reset a callout structure with a new function and argument, and
    385  *	schedule it to run.
    386  */
    387 void
    388 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
    389 {
    390 	callout_impl_t *c = (callout_impl_t *)cs;
    391 	kmutex_t *lock;
    392 
    393 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    394 	KASSERT(func != NULL);
    395 
    396 	lock = callout_lock(c);
    397 	c->c_func = func;
    398 	c->c_arg = arg;
    399 	callout_schedule_locked(c, lock, to_ticks);
    400 }
    401 
    402 /*
    403  * callout_schedule:
    404  *
    405  *	Schedule a callout to run.  The function and argument must
    406  *	already be set in the callout structure.
    407  */
    408 void
    409 callout_schedule(callout_t *cs, int to_ticks)
    410 {
    411 	callout_impl_t *c = (callout_impl_t *)cs;
    412 	kmutex_t *lock;
    413 
    414 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    415 
    416 	lock = callout_lock(c);
    417 	callout_schedule_locked(c, lock, to_ticks);
    418 }
    419 
    420 /*
    421  * callout_stop:
    422  *
    423  *	Try to cancel a pending callout.  It may be too late: the callout
    424  *	could be running on another CPU.  If called from interrupt context,
    425  *	the callout could already be in progress at a lower priority.
    426  */
    427 bool
    428 callout_stop(callout_t *cs)
    429 {
    430 	callout_impl_t *c = (callout_impl_t *)cs;
    431 	struct callout_cpu *cc;
    432 	kmutex_t *lock;
    433 	bool expired;
    434 
    435 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    436 
    437 	lock = callout_lock(c);
    438 
    439 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    440 		CIRCQ_REMOVE(&c->c_list);
    441 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    442 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    443 
    444 	cc = c->c_cpu;
    445 	if (cc->cc_active == c) {
    446 		/*
    447 		 * This is for non-MPSAFE callouts only.  To synchronize
    448 		 * effectively we must be called with kernel_lock held.
    449 		 * It's also taken in callout_softclock.
    450 		 */
    451 		cc->cc_cancel = c;
    452 	}
    453 
    454 	mutex_spin_exit(lock);
    455 
    456 	return expired;
    457 }
    458 
    459 /*
    460  * callout_halt:
    461  *
    462  *	Cancel a pending callout.  If in-flight, block until it completes.
    463  *	May not be called from a hard interrupt handler.  If the callout
    464  * 	can take locks, the caller of callout_halt() must not hold any of
    465  *	those locks, otherwise the two could deadlock.  If 'interlock' is
    466  *	non-NULL and we must wait for the callout to complete, it will be
    467  *	released and re-acquired before returning.
    468  */
    469 bool
    470 callout_halt(callout_t *cs, void *interlock)
    471 {
    472 	callout_impl_t *c = (callout_impl_t *)cs;
    473 	kmutex_t *lock;
    474 	int flags;
    475 
    476 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    477 	KASSERT(!cpu_intr_p());
    478 	KASSERT(interlock == NULL || mutex_owned(interlock));
    479 
    480 	/* Fast path. */
    481 	lock = callout_lock(c);
    482 	flags = c->c_flags;
    483 	if ((flags & CALLOUT_PENDING) != 0)
    484 		CIRCQ_REMOVE(&c->c_list);
    485 	c->c_flags = flags & ~(CALLOUT_PENDING|CALLOUT_FIRED);
    486 	if (__predict_false(flags & CALLOUT_FIRED)) {
    487 		callout_wait(c, interlock, lock);
    488 		return true;
    489 	}
    490 	mutex_spin_exit(lock);
    491 	return false;
    492 }
    493 
    494 /*
    495  * callout_wait:
    496  *
    497  *	Slow path for callout_halt().  Deliberately marked __noinline to
    498  *	prevent unneeded overhead in the caller.
    499  */
    500 static void __noinline
    501 callout_wait(callout_impl_t *c, void *interlock, kmutex_t *lock)
    502 {
    503 	struct callout_cpu *cc;
    504 	struct lwp *l;
    505 	kmutex_t *relock;
    506 
    507 	l = curlwp;
    508 	relock = NULL;
    509 	for (;;) {
    510 		/*
    511 		 * At this point we know the callout is not pending, but it
    512 		 * could be running on a CPU somewhere.  That can be curcpu
    513 		 * in a few cases:
    514 		 *
    515 		 * - curlwp is a higher priority soft interrupt
    516 		 * - the callout blocked on a lock and is currently asleep
    517 		 * - the callout itself has called callout_halt() (nice!)
    518 		 */
    519 		cc = c->c_cpu;
    520 		if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
    521 			break;
    522 
    523 		/* It's running - need to wait for it to complete. */
    524 		if (interlock != NULL) {
    525 			/*
    526 			 * Avoid potential scheduler lock order problems by
    527 			 * dropping the interlock without the callout lock
    528 			 * held; then retry.
    529 			 */
    530 			mutex_spin_exit(lock);
    531 			mutex_exit(interlock);
    532 			relock = interlock;
    533 			interlock = NULL;
    534 		} else {
    535 			/* XXX Better to do priority inheritance. */
    536 			KASSERT(l->l_wchan == NULL);
    537 			cc->cc_nwait++;
    538 			cc->cc_ev_block.ev_count++;
    539 			l->l_kpriority = true;
    540 			sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
    541 			sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
    542 			    &sleep_syncobj);
    543 			sleepq_block(0, false);
    544 		}
    545 
    546 		/*
    547 		 * Re-lock the callout and check the state of play again.
    548 		 * It's a common design pattern for callouts to re-schedule
    549 		 * themselves so put a stop to it again if needed.
    550 		 */
    551 		lock = callout_lock(c);
    552 		if ((c->c_flags & CALLOUT_PENDING) != 0)
    553 			CIRCQ_REMOVE(&c->c_list);
    554 		c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    555 	}
    556 
    557 	mutex_spin_exit(lock);
    558 	if (__predict_false(relock != NULL))
    559 		mutex_enter(relock);
    560 }
    561 
    562 #ifdef notyet
    563 /*
    564  * callout_bind:
    565  *
    566  *	Bind a callout so that it will only execute on one CPU.
    567  *	The callout must be stopped, and must be MPSAFE.
    568  *
    569  *	XXX Disabled for now until it is decided how to handle
    570  *	offlined CPUs.  We may want weak+strong binding.
    571  */
    572 void
    573 callout_bind(callout_t *cs, struct cpu_info *ci)
    574 {
    575 	callout_impl_t *c = (callout_impl_t *)cs;
    576 	struct callout_cpu *cc;
    577 	kmutex_t *lock;
    578 
    579 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
    580 	KASSERT(c->c_cpu->cc_active != c);
    581 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    582 	KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
    583 
    584 	lock = callout_lock(c);
    585 	cc = ci->ci_data.cpu_callout;
    586 	c->c_flags |= CALLOUT_BOUND;
    587 	if (c->c_cpu != cc) {
    588 		/*
    589 		 * Assigning c_cpu effectively unlocks the callout
    590 		 * structure, as we don't hold the new CPU's lock.
    591 		 * Issue memory barrier to prevent accesses being
    592 		 * reordered.
    593 		 */
    594 		membar_exit();
    595 		c->c_cpu = cc;
    596 	}
    597 	mutex_spin_exit(lock);
    598 }
    599 #endif
    600 
    601 void
    602 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
    603 {
    604 	callout_impl_t *c = (callout_impl_t *)cs;
    605 	kmutex_t *lock;
    606 
    607 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    608 	KASSERT(func != NULL);
    609 
    610 	lock = callout_lock(c);
    611 	c->c_func = func;
    612 	c->c_arg = arg;
    613 	mutex_spin_exit(lock);
    614 }
    615 
    616 bool
    617 callout_expired(callout_t *cs)
    618 {
    619 	callout_impl_t *c = (callout_impl_t *)cs;
    620 	kmutex_t *lock;
    621 	bool rv;
    622 
    623 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    624 
    625 	lock = callout_lock(c);
    626 	rv = ((c->c_flags & CALLOUT_FIRED) != 0);
    627 	mutex_spin_exit(lock);
    628 
    629 	return rv;
    630 }
    631 
    632 bool
    633 callout_active(callout_t *cs)
    634 {
    635 	callout_impl_t *c = (callout_impl_t *)cs;
    636 	kmutex_t *lock;
    637 	bool rv;
    638 
    639 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    640 
    641 	lock = callout_lock(c);
    642 	rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
    643 	mutex_spin_exit(lock);
    644 
    645 	return rv;
    646 }
    647 
    648 bool
    649 callout_pending(callout_t *cs)
    650 {
    651 	callout_impl_t *c = (callout_impl_t *)cs;
    652 	kmutex_t *lock;
    653 	bool rv;
    654 
    655 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    656 
    657 	lock = callout_lock(c);
    658 	rv = ((c->c_flags & CALLOUT_PENDING) != 0);
    659 	mutex_spin_exit(lock);
    660 
    661 	return rv;
    662 }
    663 
    664 bool
    665 callout_invoking(callout_t *cs)
    666 {
    667 	callout_impl_t *c = (callout_impl_t *)cs;
    668 	kmutex_t *lock;
    669 	bool rv;
    670 
    671 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    672 
    673 	lock = callout_lock(c);
    674 	rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
    675 	mutex_spin_exit(lock);
    676 
    677 	return rv;
    678 }
    679 
    680 void
    681 callout_ack(callout_t *cs)
    682 {
    683 	callout_impl_t *c = (callout_impl_t *)cs;
    684 	kmutex_t *lock;
    685 
    686 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    687 
    688 	lock = callout_lock(c);
    689 	c->c_flags &= ~CALLOUT_INVOKING;
    690 	mutex_spin_exit(lock);
    691 }
    692 
    693 /*
    694  * callout_hardclock:
    695  *
    696  *	Called from hardclock() once every tick.  We schedule a soft
    697  *	interrupt if there is work to be done.
    698  */
    699 void
    700 callout_hardclock(void)
    701 {
    702 	struct callout_cpu *cc;
    703 	int needsoftclock, ticks;
    704 
    705 	cc = curcpu()->ci_data.cpu_callout;
    706 	mutex_spin_enter(cc->cc_lock);
    707 
    708 	ticks = ++cc->cc_ticks;
    709 
    710 	MOVEBUCKET(cc, 0, ticks);
    711 	if (MASKWHEEL(0, ticks) == 0) {
    712 		MOVEBUCKET(cc, 1, ticks);
    713 		if (MASKWHEEL(1, ticks) == 0) {
    714 			MOVEBUCKET(cc, 2, ticks);
    715 			if (MASKWHEEL(2, ticks) == 0)
    716 				MOVEBUCKET(cc, 3, ticks);
    717 		}
    718 	}
    719 
    720 	needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
    721 	mutex_spin_exit(cc->cc_lock);
    722 
    723 	if (needsoftclock)
    724 		softint_schedule(callout_sih);
    725 }
    726 
    727 /*
    728  * callout_softclock:
    729  *
    730  *	Soft interrupt handler, scheduled above if there is work to
    731  * 	be done.  Callouts are made in soft interrupt context.
    732  */
    733 static void
    734 callout_softclock(void *v)
    735 {
    736 	callout_impl_t *c;
    737 	struct callout_cpu *cc;
    738 	void (*func)(void *);
    739 	void *arg;
    740 	int mpsafe, count, ticks, delta;
    741 	lwp_t *l;
    742 
    743 	l = curlwp;
    744 	KASSERT(l->l_cpu == curcpu());
    745 	cc = l->l_cpu->ci_data.cpu_callout;
    746 
    747 	mutex_spin_enter(cc->cc_lock);
    748 	cc->cc_lwp = l;
    749 	while (!CIRCQ_EMPTY(&cc->cc_todo)) {
    750 		c = CIRCQ_FIRST(&cc->cc_todo);
    751 		KASSERT(c->c_magic == CALLOUT_MAGIC);
    752 		KASSERT(c->c_func != NULL);
    753 		KASSERT(c->c_cpu == cc);
    754 		KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
    755 		KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
    756 		CIRCQ_REMOVE(&c->c_list);
    757 
    758 		/* If due run it, otherwise insert it into the right bucket. */
    759 		ticks = cc->cc_ticks;
    760 		delta = (int)((unsigned)c->c_time - (unsigned)ticks);
    761 		if (delta > 0) {
    762 			CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
    763 			continue;
    764 		}
    765 		if (delta < 0)
    766 			cc->cc_ev_late.ev_count++;
    767 
    768 		c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
    769 		    (CALLOUT_FIRED | CALLOUT_INVOKING);
    770 		mpsafe = (c->c_flags & CALLOUT_MPSAFE);
    771 		func = c->c_func;
    772 		arg = c->c_arg;
    773 		cc->cc_active = c;
    774 
    775 		mutex_spin_exit(cc->cc_lock);
    776 		KASSERT(func != NULL);
    777 		if (__predict_false(!mpsafe)) {
    778 			KERNEL_LOCK(1, NULL);
    779 			(*func)(arg);
    780 			KERNEL_UNLOCK_ONE(NULL);
    781 		} else
    782 			(*func)(arg);
    783 		mutex_spin_enter(cc->cc_lock);
    784 
    785 		/*
    786 		 * We can't touch 'c' here because it might be
    787 		 * freed already.  If LWPs waiting for callout
    788 		 * to complete, awaken them.
    789 		 */
    790 		cc->cc_active = NULL;
    791 		if ((count = cc->cc_nwait) != 0) {
    792 			cc->cc_nwait = 0;
    793 			/* sleepq_wake() drops the lock. */
    794 			sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
    795 			mutex_spin_enter(cc->cc_lock);
    796 		}
    797 	}
    798 	cc->cc_lwp = NULL;
    799 	mutex_spin_exit(cc->cc_lock);
    800 }
    801 #endif
    802 
    803 #ifdef DDB
    804 static void
    805 db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *kbucket,
    806     struct callout_circq *bucket)
    807 {
    808 	callout_impl_t *c, ci;
    809 	db_expr_t offset;
    810 	const char *name;
    811 	static char question[] = "?";
    812 	int b;
    813 
    814 	if (CIRCQ_LAST(bucket, kbucket))
    815 		return;
    816 
    817 	for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
    818 		db_read_bytes((db_addr_t)c, sizeof(ci), (char *)&ci);
    819 		c = &ci;
    820 		db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
    821 		    &offset);
    822 		name = name ? name : question;
    823 		b = (bucket - cc->cc_wheel);
    824 		if (b < 0)
    825 			b = -WHEELSIZE;
    826 		db_printf("%9d %2d/%-4d %16lx  %s\n",
    827 		    c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
    828 		    (u_long)c->c_arg, name);
    829 		if (CIRCQ_LAST(&c->c_list, kbucket))
    830 			break;
    831 	}
    832 }
    833 
    834 void
    835 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
    836 {
    837 	struct callout_cpu *cc, ccb;
    838 	struct cpu_info *ci, cib;
    839 	int b;
    840 
    841 #ifndef CRASH
    842 	db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
    843 #endif
    844 	db_printf("    ticks  wheel               arg  func\n");
    845 
    846 	/*
    847 	 * Don't lock the callwheel; all the other CPUs are paused
    848 	 * anyhow, and we might be called in a circumstance where
    849 	 * some other CPU was paused while holding the lock.
    850 	 */
    851 	for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
    852 		db_read_bytes((db_addr_t)ci, sizeof(cib), (char *)&cib);
    853 		cc = cib.ci_data.cpu_callout;
    854 		db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
    855 		db_show_callout_bucket(&ccb, &cc->cc_todo, &ccb.cc_todo);
    856 	}
    857 	for (b = 0; b < BUCKETS; b++) {
    858 		for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
    859 			db_read_bytes((db_addr_t)ci, sizeof(cib), (char *)&cib);
    860 			cc = cib.ci_data.cpu_callout;
    861 			db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
    862 			db_show_callout_bucket(&ccb, &cc->cc_wheel[b],
    863 			    &ccb.cc_wheel[b]);
    864 		}
    865 	}
    866 }
    867 #endif /* DDB */
    868