kern_timeout.c revision 1.57 1 /* $NetBSD: kern_timeout.c,v 1.57 2019/11/21 17:57:40 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2006, 2007, 2008, 2009, 2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
34 * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 *
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. The name of the author may not be used to endorse or promote products
47 * derived from this software without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
50 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
51 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
52 * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
53 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.57 2019/11/21 17:57:40 ad Exp $");
63
64 /*
65 * Timeouts are kept in a hierarchical timing wheel. The c_time is the
66 * value of c_cpu->cc_ticks when the timeout should be called. There are
67 * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
68 * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
69 * a Timer Facility" by George Varghese and Tony Lauck.
70 *
71 * Some of the "math" in here is a bit tricky. We have to beware of
72 * wrapping ints.
73 *
74 * We use the fact that any element added to the queue must be added with
75 * a positive time. That means that any element `to' on the queue cannot
76 * be scheduled to timeout further in time than INT_MAX, but c->c_time can
77 * be positive or negative so comparing it with anything is dangerous.
78 * The only way we can use the c->c_time value in any predictable way is
79 * when we calculate how far in the future `to' will timeout - "c->c_time
80 * - c->c_cpu->cc_ticks". The result will always be positive for future
81 * timeouts and 0 or negative for due timeouts.
82 */
83
84 #define _CALLOUT_PRIVATE
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/callout.h>
90 #include <sys/lwp.h>
91 #include <sys/mutex.h>
92 #include <sys/proc.h>
93 #include <sys/sleepq.h>
94 #include <sys/syncobj.h>
95 #include <sys/evcnt.h>
96 #include <sys/intr.h>
97 #include <sys/cpu.h>
98 #include <sys/kmem.h>
99
100 #ifdef DDB
101 #include <machine/db_machdep.h>
102 #include <ddb/db_interface.h>
103 #include <ddb/db_access.h>
104 #include <ddb/db_cpu.h>
105 #include <ddb/db_sym.h>
106 #include <ddb/db_output.h>
107 #endif
108
109 #define BUCKETS 1024
110 #define WHEELSIZE 256
111 #define WHEELMASK 255
112 #define WHEELBITS 8
113
114 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
115
116 #define BUCKET(cc, rel, abs) \
117 (((rel) <= (1 << (2*WHEELBITS))) \
118 ? ((rel) <= (1 << WHEELBITS)) \
119 ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))] \
120 : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE] \
121 : ((rel) <= (1 << (3*WHEELBITS))) \
122 ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE] \
123 : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
124
125 #define MOVEBUCKET(cc, wheel, time) \
126 CIRCQ_APPEND(&(cc)->cc_todo, \
127 &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
128
129 /*
130 * Circular queue definitions.
131 */
132
133 #define CIRCQ_INIT(list) \
134 do { \
135 (list)->cq_next_l = (list); \
136 (list)->cq_prev_l = (list); \
137 } while (/*CONSTCOND*/0)
138
139 #define CIRCQ_INSERT(elem, list) \
140 do { \
141 (elem)->cq_prev_e = (list)->cq_prev_e; \
142 (elem)->cq_next_l = (list); \
143 (list)->cq_prev_l->cq_next_l = (elem); \
144 (list)->cq_prev_l = (elem); \
145 } while (/*CONSTCOND*/0)
146
147 #define CIRCQ_APPEND(fst, snd) \
148 do { \
149 if (!CIRCQ_EMPTY(snd)) { \
150 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l; \
151 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l; \
152 (snd)->cq_prev_l->cq_next_l = (fst); \
153 (fst)->cq_prev_l = (snd)->cq_prev_l; \
154 CIRCQ_INIT(snd); \
155 } \
156 } while (/*CONSTCOND*/0)
157
158 #define CIRCQ_REMOVE(elem) \
159 do { \
160 (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e; \
161 (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e; \
162 } while (/*CONSTCOND*/0)
163
164 #define CIRCQ_FIRST(list) ((list)->cq_next_e)
165 #define CIRCQ_NEXT(elem) ((elem)->cq_next_e)
166 #define CIRCQ_LAST(elem,list) ((elem)->cq_next_l == (list))
167 #define CIRCQ_EMPTY(list) ((list)->cq_next_l == (list))
168
169 struct callout_cpu {
170 kmutex_t *cc_lock;
171 sleepq_t cc_sleepq;
172 u_int cc_nwait;
173 u_int cc_ticks;
174 lwp_t *cc_lwp;
175 callout_impl_t *cc_active;
176 callout_impl_t *cc_cancel;
177 struct evcnt cc_ev_late;
178 struct evcnt cc_ev_block;
179 struct callout_circq cc_todo; /* Worklist */
180 struct callout_circq cc_wheel[BUCKETS]; /* Queues of timeouts */
181 char cc_name1[12];
182 char cc_name2[12];
183 };
184
185 #ifndef CRASH
186
187 static void callout_softclock(void *);
188 static void callout_wait(callout_impl_t *, void *, kmutex_t *);
189
190 static struct callout_cpu callout_cpu0 __cacheline_aligned;
191 static void *callout_sih __read_mostly;
192
193 static inline kmutex_t *
194 callout_lock(callout_impl_t *c)
195 {
196 struct callout_cpu *cc;
197 kmutex_t *lock;
198
199 for (;;) {
200 cc = c->c_cpu;
201 lock = cc->cc_lock;
202 mutex_spin_enter(lock);
203 if (__predict_true(cc == c->c_cpu))
204 return lock;
205 mutex_spin_exit(lock);
206 }
207 }
208
209 /*
210 * callout_startup:
211 *
212 * Initialize the callout facility, called at system startup time.
213 * Do just enough to allow callouts to be safely registered.
214 */
215 void
216 callout_startup(void)
217 {
218 struct callout_cpu *cc;
219 int b;
220
221 KASSERT(curcpu()->ci_data.cpu_callout == NULL);
222
223 cc = &callout_cpu0;
224 cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
225 CIRCQ_INIT(&cc->cc_todo);
226 for (b = 0; b < BUCKETS; b++)
227 CIRCQ_INIT(&cc->cc_wheel[b]);
228 curcpu()->ci_data.cpu_callout = cc;
229 }
230
231 /*
232 * callout_init_cpu:
233 *
234 * Per-CPU initialization.
235 */
236 CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
237
238 void
239 callout_init_cpu(struct cpu_info *ci)
240 {
241 struct callout_cpu *cc;
242 int b;
243
244 if ((cc = ci->ci_data.cpu_callout) == NULL) {
245 cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
246 cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
247 CIRCQ_INIT(&cc->cc_todo);
248 for (b = 0; b < BUCKETS; b++)
249 CIRCQ_INIT(&cc->cc_wheel[b]);
250 } else {
251 /* Boot CPU, one time only. */
252 callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
253 callout_softclock, NULL);
254 if (callout_sih == NULL)
255 panic("callout_init_cpu (2)");
256 }
257
258 sleepq_init(&cc->cc_sleepq);
259
260 snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
261 cpu_index(ci));
262 evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
263 NULL, "callout", cc->cc_name1);
264
265 snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
266 cpu_index(ci));
267 evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
268 NULL, "callout", cc->cc_name2);
269
270 ci->ci_data.cpu_callout = cc;
271 }
272
273 /*
274 * callout_init:
275 *
276 * Initialize a callout structure. This must be quick, so we fill
277 * only the minimum number of fields.
278 */
279 void
280 callout_init(callout_t *cs, u_int flags)
281 {
282 callout_impl_t *c = (callout_impl_t *)cs;
283 struct callout_cpu *cc;
284
285 KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
286
287 cc = curcpu()->ci_data.cpu_callout;
288 c->c_func = NULL;
289 c->c_magic = CALLOUT_MAGIC;
290 if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
291 c->c_flags = flags;
292 c->c_cpu = cc;
293 return;
294 }
295 c->c_flags = flags | CALLOUT_BOUND;
296 c->c_cpu = &callout_cpu0;
297 }
298
299 /*
300 * callout_destroy:
301 *
302 * Destroy a callout structure. The callout must be stopped.
303 */
304 void
305 callout_destroy(callout_t *cs)
306 {
307 callout_impl_t *c = (callout_impl_t *)cs;
308
309 KASSERTMSG(c->c_magic == CALLOUT_MAGIC,
310 "callout %p: c_magic (%#x) != CALLOUT_MAGIC (%#x)",
311 c, c->c_magic, CALLOUT_MAGIC);
312 /*
313 * It's not necessary to lock in order to see the correct value
314 * of c->c_flags. If the callout could potentially have been
315 * running, the current thread should have stopped it.
316 */
317 KASSERTMSG((c->c_flags & CALLOUT_PENDING) == 0,
318 "callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
319 c, c->c_func, c->c_flags, __builtin_return_address(0));
320 KASSERT(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c);
321 c->c_magic = 0;
322 }
323
324 /*
325 * callout_schedule_locked:
326 *
327 * Schedule a callout to run. The function and argument must
328 * already be set in the callout structure. Must be called with
329 * callout_lock.
330 */
331 static void
332 callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
333 {
334 struct callout_cpu *cc, *occ;
335 int old_time;
336
337 KASSERT(to_ticks >= 0);
338 KASSERT(c->c_func != NULL);
339
340 /* Initialize the time here, it won't change. */
341 occ = c->c_cpu;
342 c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
343
344 /*
345 * If this timeout is already scheduled and now is moved
346 * earlier, reschedule it now. Otherwise leave it in place
347 * and let it be rescheduled later.
348 */
349 if ((c->c_flags & CALLOUT_PENDING) != 0) {
350 /* Leave on existing CPU. */
351 old_time = c->c_time;
352 c->c_time = to_ticks + occ->cc_ticks;
353 if (c->c_time - old_time < 0) {
354 CIRCQ_REMOVE(&c->c_list);
355 CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
356 }
357 mutex_spin_exit(lock);
358 return;
359 }
360
361 cc = curcpu()->ci_data.cpu_callout;
362 if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
363 !mutex_tryenter(cc->cc_lock)) {
364 /* Leave on existing CPU. */
365 c->c_time = to_ticks + occ->cc_ticks;
366 c->c_flags |= CALLOUT_PENDING;
367 CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
368 } else {
369 /* Move to this CPU. */
370 c->c_cpu = cc;
371 c->c_time = to_ticks + cc->cc_ticks;
372 c->c_flags |= CALLOUT_PENDING;
373 CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
374 mutex_spin_exit(cc->cc_lock);
375 }
376 mutex_spin_exit(lock);
377 }
378
379 /*
380 * callout_reset:
381 *
382 * Reset a callout structure with a new function and argument, and
383 * schedule it to run.
384 */
385 void
386 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
387 {
388 callout_impl_t *c = (callout_impl_t *)cs;
389 kmutex_t *lock;
390
391 KASSERT(c->c_magic == CALLOUT_MAGIC);
392 KASSERT(func != NULL);
393
394 lock = callout_lock(c);
395 c->c_func = func;
396 c->c_arg = arg;
397 callout_schedule_locked(c, lock, to_ticks);
398 }
399
400 /*
401 * callout_schedule:
402 *
403 * Schedule a callout to run. The function and argument must
404 * already be set in the callout structure.
405 */
406 void
407 callout_schedule(callout_t *cs, int to_ticks)
408 {
409 callout_impl_t *c = (callout_impl_t *)cs;
410 kmutex_t *lock;
411
412 KASSERT(c->c_magic == CALLOUT_MAGIC);
413
414 lock = callout_lock(c);
415 callout_schedule_locked(c, lock, to_ticks);
416 }
417
418 /*
419 * callout_stop:
420 *
421 * Try to cancel a pending callout. It may be too late: the callout
422 * could be running on another CPU. If called from interrupt context,
423 * the callout could already be in progress at a lower priority.
424 */
425 bool
426 callout_stop(callout_t *cs)
427 {
428 callout_impl_t *c = (callout_impl_t *)cs;
429 struct callout_cpu *cc;
430 kmutex_t *lock;
431 bool expired;
432
433 KASSERT(c->c_magic == CALLOUT_MAGIC);
434
435 lock = callout_lock(c);
436
437 if ((c->c_flags & CALLOUT_PENDING) != 0)
438 CIRCQ_REMOVE(&c->c_list);
439 expired = ((c->c_flags & CALLOUT_FIRED) != 0);
440 c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
441
442 cc = c->c_cpu;
443 if (cc->cc_active == c) {
444 /*
445 * This is for non-MPSAFE callouts only. To synchronize
446 * effectively we must be called with kernel_lock held.
447 * It's also taken in callout_softclock.
448 */
449 cc->cc_cancel = c;
450 }
451
452 mutex_spin_exit(lock);
453
454 return expired;
455 }
456
457 /*
458 * callout_halt:
459 *
460 * Cancel a pending callout. If in-flight, block until it completes.
461 * May not be called from a hard interrupt handler. If the callout
462 * can take locks, the caller of callout_halt() must not hold any of
463 * those locks, otherwise the two could deadlock. If 'interlock' is
464 * non-NULL and we must wait for the callout to complete, it will be
465 * released and re-acquired before returning.
466 */
467 bool
468 callout_halt(callout_t *cs, void *interlock)
469 {
470 callout_impl_t *c = (callout_impl_t *)cs;
471 kmutex_t *lock;
472 int flags;
473
474 KASSERT(c->c_magic == CALLOUT_MAGIC);
475 KASSERT(!cpu_intr_p());
476 KASSERT(interlock == NULL || mutex_owned(interlock));
477
478 /* Fast path. */
479 lock = callout_lock(c);
480 flags = c->c_flags;
481 if ((flags & CALLOUT_PENDING) != 0)
482 CIRCQ_REMOVE(&c->c_list);
483 c->c_flags = flags & ~(CALLOUT_PENDING|CALLOUT_FIRED);
484 if (__predict_false(flags & CALLOUT_FIRED)) {
485 callout_wait(c, interlock, lock);
486 return true;
487 }
488 mutex_spin_exit(lock);
489 return false;
490 }
491
492 /*
493 * callout_wait:
494 *
495 * Slow path for callout_halt(). Deliberately marked __noinline to
496 * prevent unneeded overhead in the caller.
497 */
498 static void __noinline
499 callout_wait(callout_impl_t *c, void *interlock, kmutex_t *lock)
500 {
501 struct callout_cpu *cc;
502 struct lwp *l;
503 kmutex_t *relock;
504
505 l = curlwp;
506 relock = NULL;
507 for (;;) {
508 cc = c->c_cpu;
509 if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
510 break;
511 if (interlock != NULL) {
512 /*
513 * Avoid potential scheduler lock order problems by
514 * dropping the interlock without the callout lock
515 * held.
516 */
517 mutex_spin_exit(lock);
518 mutex_exit(interlock);
519 relock = interlock;
520 interlock = NULL;
521 } else {
522 /* XXX Better to do priority inheritance. */
523 KASSERT(l->l_wchan == NULL);
524 cc->cc_nwait++;
525 cc->cc_ev_block.ev_count++;
526 l->l_kpriority = true;
527 sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
528 sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
529 &sleep_syncobj);
530 sleepq_block(0, false);
531 }
532 lock = callout_lock(c);
533 }
534
535 mutex_spin_exit(lock);
536 if (__predict_false(relock != NULL))
537 mutex_enter(relock);
538 }
539
540 #ifdef notyet
541 /*
542 * callout_bind:
543 *
544 * Bind a callout so that it will only execute on one CPU.
545 * The callout must be stopped, and must be MPSAFE.
546 *
547 * XXX Disabled for now until it is decided how to handle
548 * offlined CPUs. We may want weak+strong binding.
549 */
550 void
551 callout_bind(callout_t *cs, struct cpu_info *ci)
552 {
553 callout_impl_t *c = (callout_impl_t *)cs;
554 struct callout_cpu *cc;
555 kmutex_t *lock;
556
557 KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
558 KASSERT(c->c_cpu->cc_active != c);
559 KASSERT(c->c_magic == CALLOUT_MAGIC);
560 KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
561
562 lock = callout_lock(c);
563 cc = ci->ci_data.cpu_callout;
564 c->c_flags |= CALLOUT_BOUND;
565 if (c->c_cpu != cc) {
566 /*
567 * Assigning c_cpu effectively unlocks the callout
568 * structure, as we don't hold the new CPU's lock.
569 * Issue memory barrier to prevent accesses being
570 * reordered.
571 */
572 membar_exit();
573 c->c_cpu = cc;
574 }
575 mutex_spin_exit(lock);
576 }
577 #endif
578
579 void
580 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
581 {
582 callout_impl_t *c = (callout_impl_t *)cs;
583 kmutex_t *lock;
584
585 KASSERT(c->c_magic == CALLOUT_MAGIC);
586 KASSERT(func != NULL);
587
588 lock = callout_lock(c);
589 c->c_func = func;
590 c->c_arg = arg;
591 mutex_spin_exit(lock);
592 }
593
594 bool
595 callout_expired(callout_t *cs)
596 {
597 callout_impl_t *c = (callout_impl_t *)cs;
598 kmutex_t *lock;
599 bool rv;
600
601 KASSERT(c->c_magic == CALLOUT_MAGIC);
602
603 lock = callout_lock(c);
604 rv = ((c->c_flags & CALLOUT_FIRED) != 0);
605 mutex_spin_exit(lock);
606
607 return rv;
608 }
609
610 bool
611 callout_active(callout_t *cs)
612 {
613 callout_impl_t *c = (callout_impl_t *)cs;
614 kmutex_t *lock;
615 bool rv;
616
617 KASSERT(c->c_magic == CALLOUT_MAGIC);
618
619 lock = callout_lock(c);
620 rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
621 mutex_spin_exit(lock);
622
623 return rv;
624 }
625
626 bool
627 callout_pending(callout_t *cs)
628 {
629 callout_impl_t *c = (callout_impl_t *)cs;
630 kmutex_t *lock;
631 bool rv;
632
633 KASSERT(c->c_magic == CALLOUT_MAGIC);
634
635 lock = callout_lock(c);
636 rv = ((c->c_flags & CALLOUT_PENDING) != 0);
637 mutex_spin_exit(lock);
638
639 return rv;
640 }
641
642 bool
643 callout_invoking(callout_t *cs)
644 {
645 callout_impl_t *c = (callout_impl_t *)cs;
646 kmutex_t *lock;
647 bool rv;
648
649 KASSERT(c->c_magic == CALLOUT_MAGIC);
650
651 lock = callout_lock(c);
652 rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
653 mutex_spin_exit(lock);
654
655 return rv;
656 }
657
658 void
659 callout_ack(callout_t *cs)
660 {
661 callout_impl_t *c = (callout_impl_t *)cs;
662 kmutex_t *lock;
663
664 KASSERT(c->c_magic == CALLOUT_MAGIC);
665
666 lock = callout_lock(c);
667 c->c_flags &= ~CALLOUT_INVOKING;
668 mutex_spin_exit(lock);
669 }
670
671 /*
672 * callout_hardclock:
673 *
674 * Called from hardclock() once every tick. We schedule a soft
675 * interrupt if there is work to be done.
676 */
677 void
678 callout_hardclock(void)
679 {
680 struct callout_cpu *cc;
681 int needsoftclock, ticks;
682
683 cc = curcpu()->ci_data.cpu_callout;
684 mutex_spin_enter(cc->cc_lock);
685
686 ticks = ++cc->cc_ticks;
687
688 MOVEBUCKET(cc, 0, ticks);
689 if (MASKWHEEL(0, ticks) == 0) {
690 MOVEBUCKET(cc, 1, ticks);
691 if (MASKWHEEL(1, ticks) == 0) {
692 MOVEBUCKET(cc, 2, ticks);
693 if (MASKWHEEL(2, ticks) == 0)
694 MOVEBUCKET(cc, 3, ticks);
695 }
696 }
697
698 needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
699 mutex_spin_exit(cc->cc_lock);
700
701 if (needsoftclock)
702 softint_schedule(callout_sih);
703 }
704
705 /*
706 * callout_softclock:
707 *
708 * Soft interrupt handler, scheduled above if there is work to
709 * be done. Callouts are made in soft interrupt context.
710 */
711 static void
712 callout_softclock(void *v)
713 {
714 callout_impl_t *c;
715 struct callout_cpu *cc;
716 void (*func)(void *);
717 void *arg;
718 int mpsafe, count, ticks, delta;
719 lwp_t *l;
720
721 l = curlwp;
722 KASSERT(l->l_cpu == curcpu());
723 cc = l->l_cpu->ci_data.cpu_callout;
724
725 mutex_spin_enter(cc->cc_lock);
726 cc->cc_lwp = l;
727 while (!CIRCQ_EMPTY(&cc->cc_todo)) {
728 c = CIRCQ_FIRST(&cc->cc_todo);
729 KASSERT(c->c_magic == CALLOUT_MAGIC);
730 KASSERT(c->c_func != NULL);
731 KASSERT(c->c_cpu == cc);
732 KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
733 KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
734 CIRCQ_REMOVE(&c->c_list);
735
736 /* If due run it, otherwise insert it into the right bucket. */
737 ticks = cc->cc_ticks;
738 delta = (int)((unsigned)c->c_time - (unsigned)ticks);
739 if (delta > 0) {
740 CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
741 continue;
742 }
743 if (delta < 0)
744 cc->cc_ev_late.ev_count++;
745
746 c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
747 (CALLOUT_FIRED | CALLOUT_INVOKING);
748 mpsafe = (c->c_flags & CALLOUT_MPSAFE);
749 func = c->c_func;
750 arg = c->c_arg;
751 cc->cc_active = c;
752
753 mutex_spin_exit(cc->cc_lock);
754 KASSERT(func != NULL);
755 if (__predict_false(!mpsafe)) {
756 KERNEL_LOCK(1, NULL);
757 (*func)(arg);
758 KERNEL_UNLOCK_ONE(NULL);
759 } else
760 (*func)(arg);
761 mutex_spin_enter(cc->cc_lock);
762
763 /*
764 * We can't touch 'c' here because it might be
765 * freed already. If LWPs waiting for callout
766 * to complete, awaken them.
767 */
768 cc->cc_active = NULL;
769 if ((count = cc->cc_nwait) != 0) {
770 cc->cc_nwait = 0;
771 /* sleepq_wake() drops the lock. */
772 sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
773 mutex_spin_enter(cc->cc_lock);
774 }
775 }
776 cc->cc_lwp = NULL;
777 mutex_spin_exit(cc->cc_lock);
778 }
779 #endif
780
781 #ifdef DDB
782 static void
783 db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *kbucket,
784 struct callout_circq *bucket)
785 {
786 callout_impl_t *c, ci;
787 db_expr_t offset;
788 const char *name;
789 static char question[] = "?";
790 int b;
791
792 if (CIRCQ_LAST(bucket, kbucket))
793 return;
794
795 for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
796 db_read_bytes((db_addr_t)c, sizeof(ci), (char *)&ci);
797 c = &ci;
798 db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
799 &offset);
800 name = name ? name : question;
801 b = (bucket - cc->cc_wheel);
802 if (b < 0)
803 b = -WHEELSIZE;
804 db_printf("%9d %2d/%-4d %16lx %s\n",
805 c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
806 (u_long)c->c_arg, name);
807 if (CIRCQ_LAST(&c->c_list, kbucket))
808 break;
809 }
810 }
811
812 void
813 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
814 {
815 struct callout_cpu *cc, ccb;
816 struct cpu_info *ci, cib;
817 int b;
818
819 #ifndef CRASH
820 db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
821 #endif
822 db_printf(" ticks wheel arg func\n");
823
824 /*
825 * Don't lock the callwheel; all the other CPUs are paused
826 * anyhow, and we might be called in a circumstance where
827 * some other CPU was paused while holding the lock.
828 */
829 for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
830 db_read_bytes((db_addr_t)ci, sizeof(cib), (char *)&cib);
831 cc = cib.ci_data.cpu_callout;
832 db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
833 db_show_callout_bucket(&ccb, &cc->cc_todo, &ccb.cc_todo);
834 }
835 for (b = 0; b < BUCKETS; b++) {
836 for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
837 db_read_bytes((db_addr_t)ci, sizeof(cib), (char *)&cib);
838 cc = cib.ci_data.cpu_callout;
839 db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
840 db_show_callout_bucket(&ccb, &cc->cc_wheel[b],
841 &ccb.cc_wheel[b]);
842 }
843 }
844 }
845 #endif /* DDB */
846