Home | History | Annotate | Line # | Download | only in kern
kern_timeout.c revision 1.57.2.1
      1 /*	$NetBSD: kern_timeout.c,v 1.57.2.1 2020/01/25 22:38:51 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003, 2006, 2007, 2008, 2009, 2019 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
     34  * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
     35  * All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  *
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. The name of the author may not be used to endorse or promote products
     47  *    derived from this software without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
     50  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
     51  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     52  * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     53  * EXEMPLARY, OR CONSEQUENTIAL  DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 #include <sys/cdefs.h>
     62 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.57.2.1 2020/01/25 22:38:51 ad Exp $");
     63 
     64 /*
     65  * Timeouts are kept in a hierarchical timing wheel.  The c_time is the
     66  * value of c_cpu->cc_ticks when the timeout should be called.  There are
     67  * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
     68  * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
     69  * a Timer Facility" by George Varghese and Tony Lauck.
     70  *
     71  * Some of the "math" in here is a bit tricky.  We have to beware of
     72  * wrapping ints.
     73  *
     74  * We use the fact that any element added to the queue must be added with
     75  * a positive time.  That means that any element `to' on the queue cannot
     76  * be scheduled to timeout further in time than INT_MAX, but c->c_time can
     77  * be positive or negative so comparing it with anything is dangerous.
     78  * The only way we can use the c->c_time value in any predictable way is
     79  * when we calculate how far in the future `to' will timeout - "c->c_time
     80  * - c->c_cpu->cc_ticks".  The result will always be positive for future
     81  * timeouts and 0 or negative for due timeouts.
     82  */
     83 
     84 #define	_CALLOUT_PRIVATE
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/kernel.h>
     89 #include <sys/callout.h>
     90 #include <sys/lwp.h>
     91 #include <sys/mutex.h>
     92 #include <sys/proc.h>
     93 #include <sys/sleepq.h>
     94 #include <sys/syncobj.h>
     95 #include <sys/evcnt.h>
     96 #include <sys/intr.h>
     97 #include <sys/cpu.h>
     98 #include <sys/kmem.h>
     99 
    100 #ifdef DDB
    101 #include <machine/db_machdep.h>
    102 #include <ddb/db_interface.h>
    103 #include <ddb/db_access.h>
    104 #include <ddb/db_cpu.h>
    105 #include <ddb/db_sym.h>
    106 #include <ddb/db_output.h>
    107 #endif
    108 
    109 #define BUCKETS		1024
    110 #define WHEELSIZE	256
    111 #define WHEELMASK	255
    112 #define WHEELBITS	8
    113 
    114 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
    115 
    116 #define BUCKET(cc, rel, abs)						\
    117     (((rel) <= (1 << (2*WHEELBITS)))					\
    118     	? ((rel) <= (1 << WHEELBITS))					\
    119             ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))]			\
    120             : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE]		\
    121         : ((rel) <= (1 << (3*WHEELBITS)))				\
    122             ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE]	\
    123             : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
    124 
    125 #define MOVEBUCKET(cc, wheel, time)					\
    126     CIRCQ_APPEND(&(cc)->cc_todo,					\
    127         &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
    128 
    129 /*
    130  * Circular queue definitions.
    131  */
    132 
    133 #define CIRCQ_INIT(list)						\
    134 do {									\
    135         (list)->cq_next_l = (list);					\
    136         (list)->cq_prev_l = (list);					\
    137 } while (/*CONSTCOND*/0)
    138 
    139 #define CIRCQ_INSERT(elem, list)					\
    140 do {									\
    141         (elem)->cq_prev_e = (list)->cq_prev_e;				\
    142         (elem)->cq_next_l = (list);					\
    143         (list)->cq_prev_l->cq_next_l = (elem);				\
    144         (list)->cq_prev_l = (elem);					\
    145 } while (/*CONSTCOND*/0)
    146 
    147 #define CIRCQ_APPEND(fst, snd)						\
    148 do {									\
    149         if (!CIRCQ_EMPTY(snd)) {					\
    150                 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l;		\
    151                 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l;		\
    152                 (snd)->cq_prev_l->cq_next_l = (fst);			\
    153                 (fst)->cq_prev_l = (snd)->cq_prev_l;			\
    154                 CIRCQ_INIT(snd);					\
    155         }								\
    156 } while (/*CONSTCOND*/0)
    157 
    158 #define CIRCQ_REMOVE(elem)						\
    159 do {									\
    160         (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e;		\
    161         (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e;		\
    162 } while (/*CONSTCOND*/0)
    163 
    164 #define CIRCQ_FIRST(list)	((list)->cq_next_e)
    165 #define CIRCQ_NEXT(elem)	((elem)->cq_next_e)
    166 #define CIRCQ_LAST(elem,list)	((elem)->cq_next_l == (list))
    167 #define CIRCQ_EMPTY(list)	((list)->cq_next_l == (list))
    168 
    169 struct callout_cpu {
    170 	kmutex_t	*cc_lock;
    171 	sleepq_t	cc_sleepq;
    172 	u_int		cc_nwait;
    173 	u_int		cc_ticks;
    174 	lwp_t		*cc_lwp;
    175 	callout_impl_t	*cc_active;
    176 	callout_impl_t	*cc_cancel;
    177 	struct evcnt	cc_ev_late;
    178 	struct evcnt	cc_ev_block;
    179 	struct callout_circq cc_todo;		/* Worklist */
    180 	struct callout_circq cc_wheel[BUCKETS];	/* Queues of timeouts */
    181 	char		cc_name1[12];
    182 	char		cc_name2[12];
    183 };
    184 
    185 #ifndef CRASH
    186 
    187 static void	callout_softclock(void *);
    188 static void	callout_wait(callout_impl_t *, void *, kmutex_t *);
    189 
    190 static struct callout_cpu callout_cpu0 __cacheline_aligned;
    191 static void *callout_sih __read_mostly;
    192 
    193 static inline kmutex_t *
    194 callout_lock(callout_impl_t *c)
    195 {
    196 	struct callout_cpu *cc;
    197 	kmutex_t *lock;
    198 
    199 	for (;;) {
    200 		cc = c->c_cpu;
    201 		lock = cc->cc_lock;
    202 		mutex_spin_enter(lock);
    203 		if (__predict_true(cc == c->c_cpu))
    204 			return lock;
    205 		mutex_spin_exit(lock);
    206 	}
    207 }
    208 
    209 /*
    210  * callout_startup:
    211  *
    212  *	Initialize the callout facility, called at system startup time.
    213  *	Do just enough to allow callouts to be safely registered.
    214  */
    215 void
    216 callout_startup(void)
    217 {
    218 	struct callout_cpu *cc;
    219 	int b;
    220 
    221 	KASSERT(curcpu()->ci_data.cpu_callout == NULL);
    222 
    223 	cc = &callout_cpu0;
    224 	cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    225 	CIRCQ_INIT(&cc->cc_todo);
    226 	for (b = 0; b < BUCKETS; b++)
    227 		CIRCQ_INIT(&cc->cc_wheel[b]);
    228 	curcpu()->ci_data.cpu_callout = cc;
    229 }
    230 
    231 /*
    232  * callout_init_cpu:
    233  *
    234  *	Per-CPU initialization.
    235  */
    236 CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
    237 
    238 void
    239 callout_init_cpu(struct cpu_info *ci)
    240 {
    241 	struct callout_cpu *cc;
    242 	int b;
    243 
    244 	if ((cc = ci->ci_data.cpu_callout) == NULL) {
    245 		cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
    246 		cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    247 		CIRCQ_INIT(&cc->cc_todo);
    248 		for (b = 0; b < BUCKETS; b++)
    249 			CIRCQ_INIT(&cc->cc_wheel[b]);
    250 	} else {
    251 		/* Boot CPU, one time only. */
    252 		callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    253 		    callout_softclock, NULL);
    254 		if (callout_sih == NULL)
    255 			panic("callout_init_cpu (2)");
    256 	}
    257 
    258 	sleepq_init(&cc->cc_sleepq);
    259 
    260 	snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
    261 	    cpu_index(ci));
    262 	evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
    263 	    NULL, "callout", cc->cc_name1);
    264 
    265 	snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
    266 	    cpu_index(ci));
    267 	evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
    268 	    NULL, "callout", cc->cc_name2);
    269 
    270 	ci->ci_data.cpu_callout = cc;
    271 }
    272 
    273 /*
    274  * callout_init:
    275  *
    276  *	Initialize a callout structure.  This must be quick, so we fill
    277  *	only the minimum number of fields.
    278  */
    279 void
    280 callout_init(callout_t *cs, u_int flags)
    281 {
    282 	callout_impl_t *c = (callout_impl_t *)cs;
    283 	struct callout_cpu *cc;
    284 
    285 	KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
    286 
    287 	cc = curcpu()->ci_data.cpu_callout;
    288 	c->c_func = NULL;
    289 	c->c_magic = CALLOUT_MAGIC;
    290 	if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
    291 		c->c_flags = flags;
    292 		c->c_cpu = cc;
    293 		return;
    294 	}
    295 	c->c_flags = flags | CALLOUT_BOUND;
    296 	c->c_cpu = &callout_cpu0;
    297 }
    298 
    299 /*
    300  * callout_destroy:
    301  *
    302  *	Destroy a callout structure.  The callout must be stopped.
    303  */
    304 void
    305 callout_destroy(callout_t *cs)
    306 {
    307 	callout_impl_t *c = (callout_impl_t *)cs;
    308 
    309 	KASSERTMSG(c->c_magic == CALLOUT_MAGIC,
    310 	    "callout %p: c_magic (%#x) != CALLOUT_MAGIC (%#x)",
    311 	    c, c->c_magic, CALLOUT_MAGIC);
    312 	/*
    313 	 * It's not necessary to lock in order to see the correct value
    314 	 * of c->c_flags.  If the callout could potentially have been
    315 	 * running, the current thread should have stopped it.
    316 	 */
    317 	KASSERTMSG((c->c_flags & CALLOUT_PENDING) == 0,
    318 	    "callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
    319 	    c, c->c_func, c->c_flags, __builtin_return_address(0));
    320 	KASSERT(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c);
    321 	c->c_magic = 0;
    322 }
    323 
    324 /*
    325  * callout_schedule_locked:
    326  *
    327  *	Schedule a callout to run.  The function and argument must
    328  *	already be set in the callout structure.  Must be called with
    329  *	callout_lock.
    330  */
    331 static void
    332 callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
    333 {
    334 	struct callout_cpu *cc, *occ;
    335 	int old_time;
    336 
    337 	KASSERT(to_ticks >= 0);
    338 	KASSERT(c->c_func != NULL);
    339 
    340 	/* Initialize the time here, it won't change. */
    341 	occ = c->c_cpu;
    342 	c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
    343 
    344 	/*
    345 	 * If this timeout is already scheduled and now is moved
    346 	 * earlier, reschedule it now.  Otherwise leave it in place
    347 	 * and let it be rescheduled later.
    348 	 */
    349 	if ((c->c_flags & CALLOUT_PENDING) != 0) {
    350 		/* Leave on existing CPU. */
    351 		old_time = c->c_time;
    352 		c->c_time = to_ticks + occ->cc_ticks;
    353 		if (c->c_time - old_time < 0) {
    354 			CIRCQ_REMOVE(&c->c_list);
    355 			CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    356 		}
    357 		mutex_spin_exit(lock);
    358 		return;
    359 	}
    360 
    361 	cc = curcpu()->ci_data.cpu_callout;
    362 	if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
    363 	    !mutex_tryenter(cc->cc_lock)) {
    364 		/* Leave on existing CPU. */
    365 		c->c_time = to_ticks + occ->cc_ticks;
    366 		c->c_flags |= CALLOUT_PENDING;
    367 		CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    368 	} else {
    369 		/* Move to this CPU. */
    370 		c->c_cpu = cc;
    371 		c->c_time = to_ticks + cc->cc_ticks;
    372 		c->c_flags |= CALLOUT_PENDING;
    373 		CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
    374 		mutex_spin_exit(cc->cc_lock);
    375 	}
    376 	mutex_spin_exit(lock);
    377 }
    378 
    379 /*
    380  * callout_reset:
    381  *
    382  *	Reset a callout structure with a new function and argument, and
    383  *	schedule it to run.
    384  */
    385 void
    386 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
    387 {
    388 	callout_impl_t *c = (callout_impl_t *)cs;
    389 	kmutex_t *lock;
    390 
    391 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    392 	KASSERT(func != NULL);
    393 
    394 	lock = callout_lock(c);
    395 	c->c_func = func;
    396 	c->c_arg = arg;
    397 	callout_schedule_locked(c, lock, to_ticks);
    398 }
    399 
    400 /*
    401  * callout_schedule:
    402  *
    403  *	Schedule a callout to run.  The function and argument must
    404  *	already be set in the callout structure.
    405  */
    406 void
    407 callout_schedule(callout_t *cs, int to_ticks)
    408 {
    409 	callout_impl_t *c = (callout_impl_t *)cs;
    410 	kmutex_t *lock;
    411 
    412 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    413 
    414 	lock = callout_lock(c);
    415 	callout_schedule_locked(c, lock, to_ticks);
    416 }
    417 
    418 /*
    419  * callout_stop:
    420  *
    421  *	Try to cancel a pending callout.  It may be too late: the callout
    422  *	could be running on another CPU.  If called from interrupt context,
    423  *	the callout could already be in progress at a lower priority.
    424  */
    425 bool
    426 callout_stop(callout_t *cs)
    427 {
    428 	callout_impl_t *c = (callout_impl_t *)cs;
    429 	struct callout_cpu *cc;
    430 	kmutex_t *lock;
    431 	bool expired;
    432 
    433 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    434 
    435 	lock = callout_lock(c);
    436 
    437 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    438 		CIRCQ_REMOVE(&c->c_list);
    439 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    440 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    441 
    442 	cc = c->c_cpu;
    443 	if (cc->cc_active == c) {
    444 		/*
    445 		 * This is for non-MPSAFE callouts only.  To synchronize
    446 		 * effectively we must be called with kernel_lock held.
    447 		 * It's also taken in callout_softclock.
    448 		 */
    449 		cc->cc_cancel = c;
    450 	}
    451 
    452 	mutex_spin_exit(lock);
    453 
    454 	return expired;
    455 }
    456 
    457 /*
    458  * callout_halt:
    459  *
    460  *	Cancel a pending callout.  If in-flight, block until it completes.
    461  *	May not be called from a hard interrupt handler.  If the callout
    462  * 	can take locks, the caller of callout_halt() must not hold any of
    463  *	those locks, otherwise the two could deadlock.  If 'interlock' is
    464  *	non-NULL and we must wait for the callout to complete, it will be
    465  *	released and re-acquired before returning.
    466  */
    467 bool
    468 callout_halt(callout_t *cs, void *interlock)
    469 {
    470 	callout_impl_t *c = (callout_impl_t *)cs;
    471 	kmutex_t *lock;
    472 	int flags;
    473 
    474 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    475 	KASSERT(!cpu_intr_p());
    476 	KASSERT(interlock == NULL || mutex_owned(interlock));
    477 
    478 	/* Fast path. */
    479 	lock = callout_lock(c);
    480 	flags = c->c_flags;
    481 	if ((flags & CALLOUT_PENDING) != 0)
    482 		CIRCQ_REMOVE(&c->c_list);
    483 	c->c_flags = flags & ~(CALLOUT_PENDING|CALLOUT_FIRED);
    484 	if (__predict_false(flags & CALLOUT_FIRED)) {
    485 		callout_wait(c, interlock, lock);
    486 		return true;
    487 	}
    488 	mutex_spin_exit(lock);
    489 	return false;
    490 }
    491 
    492 /*
    493  * callout_wait:
    494  *
    495  *	Slow path for callout_halt().  Deliberately marked __noinline to
    496  *	prevent unneeded overhead in the caller.
    497  */
    498 static void __noinline
    499 callout_wait(callout_impl_t *c, void *interlock, kmutex_t *lock)
    500 {
    501 	struct callout_cpu *cc;
    502 	struct lwp *l;
    503 	kmutex_t *relock;
    504 
    505 	l = curlwp;
    506 	relock = NULL;
    507 	for (;;) {
    508 		/*
    509 		 * At this point we know the callout is not pending, but it
    510 		 * could be running on a CPU somewhere.  That can be curcpu
    511 		 * in a few cases:
    512 		 *
    513 		 * - curlwp is a higher priority soft interrupt
    514 		 * - the callout blocked on a lock and is currently asleep
    515 		 * - the callout itself has called callout_halt() (nice!)
    516 		 */
    517 		cc = c->c_cpu;
    518 		if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
    519 			break;
    520 
    521 		/* It's running - need to wait for it to complete. */
    522 		if (interlock != NULL) {
    523 			/*
    524 			 * Avoid potential scheduler lock order problems by
    525 			 * dropping the interlock without the callout lock
    526 			 * held; then retry.
    527 			 */
    528 			mutex_spin_exit(lock);
    529 			mutex_exit(interlock);
    530 			relock = interlock;
    531 			interlock = NULL;
    532 		} else {
    533 			/* XXX Better to do priority inheritance. */
    534 			KASSERT(l->l_wchan == NULL);
    535 			cc->cc_nwait++;
    536 			cc->cc_ev_block.ev_count++;
    537 			l->l_kpriority = true;
    538 			sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
    539 			sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
    540 			    &sleep_syncobj);
    541 			sleepq_block(0, false);
    542 		}
    543 
    544 		/*
    545 		 * Re-lock the callout and check the state of play again.
    546 		 * It's a common design pattern for callouts to re-schedule
    547 		 * themselves so put a stop to it again if needed.
    548 		 */
    549 		lock = callout_lock(c);
    550 		if ((c->c_flags & CALLOUT_PENDING) != 0)
    551 			CIRCQ_REMOVE(&c->c_list);
    552 		c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    553 	}
    554 
    555 	mutex_spin_exit(lock);
    556 	if (__predict_false(relock != NULL))
    557 		mutex_enter(relock);
    558 }
    559 
    560 #ifdef notyet
    561 /*
    562  * callout_bind:
    563  *
    564  *	Bind a callout so that it will only execute on one CPU.
    565  *	The callout must be stopped, and must be MPSAFE.
    566  *
    567  *	XXX Disabled for now until it is decided how to handle
    568  *	offlined CPUs.  We may want weak+strong binding.
    569  */
    570 void
    571 callout_bind(callout_t *cs, struct cpu_info *ci)
    572 {
    573 	callout_impl_t *c = (callout_impl_t *)cs;
    574 	struct callout_cpu *cc;
    575 	kmutex_t *lock;
    576 
    577 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
    578 	KASSERT(c->c_cpu->cc_active != c);
    579 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    580 	KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
    581 
    582 	lock = callout_lock(c);
    583 	cc = ci->ci_data.cpu_callout;
    584 	c->c_flags |= CALLOUT_BOUND;
    585 	if (c->c_cpu != cc) {
    586 		/*
    587 		 * Assigning c_cpu effectively unlocks the callout
    588 		 * structure, as we don't hold the new CPU's lock.
    589 		 * Issue memory barrier to prevent accesses being
    590 		 * reordered.
    591 		 */
    592 		membar_exit();
    593 		c->c_cpu = cc;
    594 	}
    595 	mutex_spin_exit(lock);
    596 }
    597 #endif
    598 
    599 void
    600 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
    601 {
    602 	callout_impl_t *c = (callout_impl_t *)cs;
    603 	kmutex_t *lock;
    604 
    605 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    606 	KASSERT(func != NULL);
    607 
    608 	lock = callout_lock(c);
    609 	c->c_func = func;
    610 	c->c_arg = arg;
    611 	mutex_spin_exit(lock);
    612 }
    613 
    614 bool
    615 callout_expired(callout_t *cs)
    616 {
    617 	callout_impl_t *c = (callout_impl_t *)cs;
    618 	kmutex_t *lock;
    619 	bool rv;
    620 
    621 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    622 
    623 	lock = callout_lock(c);
    624 	rv = ((c->c_flags & CALLOUT_FIRED) != 0);
    625 	mutex_spin_exit(lock);
    626 
    627 	return rv;
    628 }
    629 
    630 bool
    631 callout_active(callout_t *cs)
    632 {
    633 	callout_impl_t *c = (callout_impl_t *)cs;
    634 	kmutex_t *lock;
    635 	bool rv;
    636 
    637 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    638 
    639 	lock = callout_lock(c);
    640 	rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
    641 	mutex_spin_exit(lock);
    642 
    643 	return rv;
    644 }
    645 
    646 bool
    647 callout_pending(callout_t *cs)
    648 {
    649 	callout_impl_t *c = (callout_impl_t *)cs;
    650 	kmutex_t *lock;
    651 	bool rv;
    652 
    653 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    654 
    655 	lock = callout_lock(c);
    656 	rv = ((c->c_flags & CALLOUT_PENDING) != 0);
    657 	mutex_spin_exit(lock);
    658 
    659 	return rv;
    660 }
    661 
    662 bool
    663 callout_invoking(callout_t *cs)
    664 {
    665 	callout_impl_t *c = (callout_impl_t *)cs;
    666 	kmutex_t *lock;
    667 	bool rv;
    668 
    669 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    670 
    671 	lock = callout_lock(c);
    672 	rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
    673 	mutex_spin_exit(lock);
    674 
    675 	return rv;
    676 }
    677 
    678 void
    679 callout_ack(callout_t *cs)
    680 {
    681 	callout_impl_t *c = (callout_impl_t *)cs;
    682 	kmutex_t *lock;
    683 
    684 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    685 
    686 	lock = callout_lock(c);
    687 	c->c_flags &= ~CALLOUT_INVOKING;
    688 	mutex_spin_exit(lock);
    689 }
    690 
    691 /*
    692  * callout_hardclock:
    693  *
    694  *	Called from hardclock() once every tick.  We schedule a soft
    695  *	interrupt if there is work to be done.
    696  */
    697 void
    698 callout_hardclock(void)
    699 {
    700 	struct callout_cpu *cc;
    701 	int needsoftclock, ticks;
    702 
    703 	cc = curcpu()->ci_data.cpu_callout;
    704 	mutex_spin_enter(cc->cc_lock);
    705 
    706 	ticks = ++cc->cc_ticks;
    707 
    708 	MOVEBUCKET(cc, 0, ticks);
    709 	if (MASKWHEEL(0, ticks) == 0) {
    710 		MOVEBUCKET(cc, 1, ticks);
    711 		if (MASKWHEEL(1, ticks) == 0) {
    712 			MOVEBUCKET(cc, 2, ticks);
    713 			if (MASKWHEEL(2, ticks) == 0)
    714 				MOVEBUCKET(cc, 3, ticks);
    715 		}
    716 	}
    717 
    718 	needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
    719 	mutex_spin_exit(cc->cc_lock);
    720 
    721 	if (needsoftclock)
    722 		softint_schedule(callout_sih);
    723 }
    724 
    725 /*
    726  * callout_softclock:
    727  *
    728  *	Soft interrupt handler, scheduled above if there is work to
    729  * 	be done.  Callouts are made in soft interrupt context.
    730  */
    731 static void
    732 callout_softclock(void *v)
    733 {
    734 	callout_impl_t *c;
    735 	struct callout_cpu *cc;
    736 	void (*func)(void *);
    737 	void *arg;
    738 	int mpsafe, count, ticks, delta;
    739 	lwp_t *l;
    740 
    741 	l = curlwp;
    742 	KASSERT(l->l_cpu == curcpu());
    743 	cc = l->l_cpu->ci_data.cpu_callout;
    744 
    745 	mutex_spin_enter(cc->cc_lock);
    746 	cc->cc_lwp = l;
    747 	while (!CIRCQ_EMPTY(&cc->cc_todo)) {
    748 		c = CIRCQ_FIRST(&cc->cc_todo);
    749 		KASSERT(c->c_magic == CALLOUT_MAGIC);
    750 		KASSERT(c->c_func != NULL);
    751 		KASSERT(c->c_cpu == cc);
    752 		KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
    753 		KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
    754 		CIRCQ_REMOVE(&c->c_list);
    755 
    756 		/* If due run it, otherwise insert it into the right bucket. */
    757 		ticks = cc->cc_ticks;
    758 		delta = (int)((unsigned)c->c_time - (unsigned)ticks);
    759 		if (delta > 0) {
    760 			CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
    761 			continue;
    762 		}
    763 		if (delta < 0)
    764 			cc->cc_ev_late.ev_count++;
    765 
    766 		c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
    767 		    (CALLOUT_FIRED | CALLOUT_INVOKING);
    768 		mpsafe = (c->c_flags & CALLOUT_MPSAFE);
    769 		func = c->c_func;
    770 		arg = c->c_arg;
    771 		cc->cc_active = c;
    772 
    773 		mutex_spin_exit(cc->cc_lock);
    774 		KASSERT(func != NULL);
    775 		if (__predict_false(!mpsafe)) {
    776 			KERNEL_LOCK(1, NULL);
    777 			(*func)(arg);
    778 			KERNEL_UNLOCK_ONE(NULL);
    779 		} else
    780 			(*func)(arg);
    781 		mutex_spin_enter(cc->cc_lock);
    782 
    783 		/*
    784 		 * We can't touch 'c' here because it might be
    785 		 * freed already.  If LWPs waiting for callout
    786 		 * to complete, awaken them.
    787 		 */
    788 		cc->cc_active = NULL;
    789 		if ((count = cc->cc_nwait) != 0) {
    790 			cc->cc_nwait = 0;
    791 			/* sleepq_wake() drops the lock. */
    792 			sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
    793 			mutex_spin_enter(cc->cc_lock);
    794 		}
    795 	}
    796 	cc->cc_lwp = NULL;
    797 	mutex_spin_exit(cc->cc_lock);
    798 }
    799 #endif
    800 
    801 #ifdef DDB
    802 static void
    803 db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *kbucket,
    804     struct callout_circq *bucket)
    805 {
    806 	callout_impl_t *c, ci;
    807 	db_expr_t offset;
    808 	const char *name;
    809 	static char question[] = "?";
    810 	int b;
    811 
    812 	if (CIRCQ_LAST(bucket, kbucket))
    813 		return;
    814 
    815 	for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
    816 		db_read_bytes((db_addr_t)c, sizeof(ci), (char *)&ci);
    817 		c = &ci;
    818 		db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
    819 		    &offset);
    820 		name = name ? name : question;
    821 		b = (bucket - cc->cc_wheel);
    822 		if (b < 0)
    823 			b = -WHEELSIZE;
    824 		db_printf("%9d %2d/%-4d %16lx  %s\n",
    825 		    c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
    826 		    (u_long)c->c_arg, name);
    827 		if (CIRCQ_LAST(&c->c_list, kbucket))
    828 			break;
    829 	}
    830 }
    831 
    832 void
    833 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
    834 {
    835 	struct callout_cpu *cc, ccb;
    836 	struct cpu_info *ci, cib;
    837 	int b;
    838 
    839 #ifndef CRASH
    840 	db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
    841 #endif
    842 	db_printf("    ticks  wheel               arg  func\n");
    843 
    844 	/*
    845 	 * Don't lock the callwheel; all the other CPUs are paused
    846 	 * anyhow, and we might be called in a circumstance where
    847 	 * some other CPU was paused while holding the lock.
    848 	 */
    849 	for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
    850 		db_read_bytes((db_addr_t)ci, sizeof(cib), (char *)&cib);
    851 		cc = cib.ci_data.cpu_callout;
    852 		db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
    853 		db_show_callout_bucket(&ccb, &cc->cc_todo, &ccb.cc_todo);
    854 	}
    855 	for (b = 0; b < BUCKETS; b++) {
    856 		for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
    857 			db_read_bytes((db_addr_t)ci, sizeof(cib), (char *)&cib);
    858 			cc = cib.ci_data.cpu_callout;
    859 			db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
    860 			db_show_callout_bucket(&ccb, &cc->cc_wheel[b],
    861 			    &ccb.cc_wheel[b]);
    862 		}
    863 	}
    864 }
    865 #endif /* DDB */
    866