kern_timeout.c revision 1.57.2.1 1 /* $NetBSD: kern_timeout.c,v 1.57.2.1 2020/01/25 22:38:51 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2006, 2007, 2008, 2009, 2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
34 * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 *
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. The name of the author may not be used to endorse or promote products
47 * derived from this software without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
50 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
51 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
52 * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
53 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.57.2.1 2020/01/25 22:38:51 ad Exp $");
63
64 /*
65 * Timeouts are kept in a hierarchical timing wheel. The c_time is the
66 * value of c_cpu->cc_ticks when the timeout should be called. There are
67 * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
68 * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
69 * a Timer Facility" by George Varghese and Tony Lauck.
70 *
71 * Some of the "math" in here is a bit tricky. We have to beware of
72 * wrapping ints.
73 *
74 * We use the fact that any element added to the queue must be added with
75 * a positive time. That means that any element `to' on the queue cannot
76 * be scheduled to timeout further in time than INT_MAX, but c->c_time can
77 * be positive or negative so comparing it with anything is dangerous.
78 * The only way we can use the c->c_time value in any predictable way is
79 * when we calculate how far in the future `to' will timeout - "c->c_time
80 * - c->c_cpu->cc_ticks". The result will always be positive for future
81 * timeouts and 0 or negative for due timeouts.
82 */
83
84 #define _CALLOUT_PRIVATE
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/callout.h>
90 #include <sys/lwp.h>
91 #include <sys/mutex.h>
92 #include <sys/proc.h>
93 #include <sys/sleepq.h>
94 #include <sys/syncobj.h>
95 #include <sys/evcnt.h>
96 #include <sys/intr.h>
97 #include <sys/cpu.h>
98 #include <sys/kmem.h>
99
100 #ifdef DDB
101 #include <machine/db_machdep.h>
102 #include <ddb/db_interface.h>
103 #include <ddb/db_access.h>
104 #include <ddb/db_cpu.h>
105 #include <ddb/db_sym.h>
106 #include <ddb/db_output.h>
107 #endif
108
109 #define BUCKETS 1024
110 #define WHEELSIZE 256
111 #define WHEELMASK 255
112 #define WHEELBITS 8
113
114 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
115
116 #define BUCKET(cc, rel, abs) \
117 (((rel) <= (1 << (2*WHEELBITS))) \
118 ? ((rel) <= (1 << WHEELBITS)) \
119 ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))] \
120 : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE] \
121 : ((rel) <= (1 << (3*WHEELBITS))) \
122 ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE] \
123 : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
124
125 #define MOVEBUCKET(cc, wheel, time) \
126 CIRCQ_APPEND(&(cc)->cc_todo, \
127 &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
128
129 /*
130 * Circular queue definitions.
131 */
132
133 #define CIRCQ_INIT(list) \
134 do { \
135 (list)->cq_next_l = (list); \
136 (list)->cq_prev_l = (list); \
137 } while (/*CONSTCOND*/0)
138
139 #define CIRCQ_INSERT(elem, list) \
140 do { \
141 (elem)->cq_prev_e = (list)->cq_prev_e; \
142 (elem)->cq_next_l = (list); \
143 (list)->cq_prev_l->cq_next_l = (elem); \
144 (list)->cq_prev_l = (elem); \
145 } while (/*CONSTCOND*/0)
146
147 #define CIRCQ_APPEND(fst, snd) \
148 do { \
149 if (!CIRCQ_EMPTY(snd)) { \
150 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l; \
151 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l; \
152 (snd)->cq_prev_l->cq_next_l = (fst); \
153 (fst)->cq_prev_l = (snd)->cq_prev_l; \
154 CIRCQ_INIT(snd); \
155 } \
156 } while (/*CONSTCOND*/0)
157
158 #define CIRCQ_REMOVE(elem) \
159 do { \
160 (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e; \
161 (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e; \
162 } while (/*CONSTCOND*/0)
163
164 #define CIRCQ_FIRST(list) ((list)->cq_next_e)
165 #define CIRCQ_NEXT(elem) ((elem)->cq_next_e)
166 #define CIRCQ_LAST(elem,list) ((elem)->cq_next_l == (list))
167 #define CIRCQ_EMPTY(list) ((list)->cq_next_l == (list))
168
169 struct callout_cpu {
170 kmutex_t *cc_lock;
171 sleepq_t cc_sleepq;
172 u_int cc_nwait;
173 u_int cc_ticks;
174 lwp_t *cc_lwp;
175 callout_impl_t *cc_active;
176 callout_impl_t *cc_cancel;
177 struct evcnt cc_ev_late;
178 struct evcnt cc_ev_block;
179 struct callout_circq cc_todo; /* Worklist */
180 struct callout_circq cc_wheel[BUCKETS]; /* Queues of timeouts */
181 char cc_name1[12];
182 char cc_name2[12];
183 };
184
185 #ifndef CRASH
186
187 static void callout_softclock(void *);
188 static void callout_wait(callout_impl_t *, void *, kmutex_t *);
189
190 static struct callout_cpu callout_cpu0 __cacheline_aligned;
191 static void *callout_sih __read_mostly;
192
193 static inline kmutex_t *
194 callout_lock(callout_impl_t *c)
195 {
196 struct callout_cpu *cc;
197 kmutex_t *lock;
198
199 for (;;) {
200 cc = c->c_cpu;
201 lock = cc->cc_lock;
202 mutex_spin_enter(lock);
203 if (__predict_true(cc == c->c_cpu))
204 return lock;
205 mutex_spin_exit(lock);
206 }
207 }
208
209 /*
210 * callout_startup:
211 *
212 * Initialize the callout facility, called at system startup time.
213 * Do just enough to allow callouts to be safely registered.
214 */
215 void
216 callout_startup(void)
217 {
218 struct callout_cpu *cc;
219 int b;
220
221 KASSERT(curcpu()->ci_data.cpu_callout == NULL);
222
223 cc = &callout_cpu0;
224 cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
225 CIRCQ_INIT(&cc->cc_todo);
226 for (b = 0; b < BUCKETS; b++)
227 CIRCQ_INIT(&cc->cc_wheel[b]);
228 curcpu()->ci_data.cpu_callout = cc;
229 }
230
231 /*
232 * callout_init_cpu:
233 *
234 * Per-CPU initialization.
235 */
236 CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
237
238 void
239 callout_init_cpu(struct cpu_info *ci)
240 {
241 struct callout_cpu *cc;
242 int b;
243
244 if ((cc = ci->ci_data.cpu_callout) == NULL) {
245 cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
246 cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
247 CIRCQ_INIT(&cc->cc_todo);
248 for (b = 0; b < BUCKETS; b++)
249 CIRCQ_INIT(&cc->cc_wheel[b]);
250 } else {
251 /* Boot CPU, one time only. */
252 callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
253 callout_softclock, NULL);
254 if (callout_sih == NULL)
255 panic("callout_init_cpu (2)");
256 }
257
258 sleepq_init(&cc->cc_sleepq);
259
260 snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
261 cpu_index(ci));
262 evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
263 NULL, "callout", cc->cc_name1);
264
265 snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
266 cpu_index(ci));
267 evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
268 NULL, "callout", cc->cc_name2);
269
270 ci->ci_data.cpu_callout = cc;
271 }
272
273 /*
274 * callout_init:
275 *
276 * Initialize a callout structure. This must be quick, so we fill
277 * only the minimum number of fields.
278 */
279 void
280 callout_init(callout_t *cs, u_int flags)
281 {
282 callout_impl_t *c = (callout_impl_t *)cs;
283 struct callout_cpu *cc;
284
285 KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
286
287 cc = curcpu()->ci_data.cpu_callout;
288 c->c_func = NULL;
289 c->c_magic = CALLOUT_MAGIC;
290 if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
291 c->c_flags = flags;
292 c->c_cpu = cc;
293 return;
294 }
295 c->c_flags = flags | CALLOUT_BOUND;
296 c->c_cpu = &callout_cpu0;
297 }
298
299 /*
300 * callout_destroy:
301 *
302 * Destroy a callout structure. The callout must be stopped.
303 */
304 void
305 callout_destroy(callout_t *cs)
306 {
307 callout_impl_t *c = (callout_impl_t *)cs;
308
309 KASSERTMSG(c->c_magic == CALLOUT_MAGIC,
310 "callout %p: c_magic (%#x) != CALLOUT_MAGIC (%#x)",
311 c, c->c_magic, CALLOUT_MAGIC);
312 /*
313 * It's not necessary to lock in order to see the correct value
314 * of c->c_flags. If the callout could potentially have been
315 * running, the current thread should have stopped it.
316 */
317 KASSERTMSG((c->c_flags & CALLOUT_PENDING) == 0,
318 "callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
319 c, c->c_func, c->c_flags, __builtin_return_address(0));
320 KASSERT(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c);
321 c->c_magic = 0;
322 }
323
324 /*
325 * callout_schedule_locked:
326 *
327 * Schedule a callout to run. The function and argument must
328 * already be set in the callout structure. Must be called with
329 * callout_lock.
330 */
331 static void
332 callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
333 {
334 struct callout_cpu *cc, *occ;
335 int old_time;
336
337 KASSERT(to_ticks >= 0);
338 KASSERT(c->c_func != NULL);
339
340 /* Initialize the time here, it won't change. */
341 occ = c->c_cpu;
342 c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
343
344 /*
345 * If this timeout is already scheduled and now is moved
346 * earlier, reschedule it now. Otherwise leave it in place
347 * and let it be rescheduled later.
348 */
349 if ((c->c_flags & CALLOUT_PENDING) != 0) {
350 /* Leave on existing CPU. */
351 old_time = c->c_time;
352 c->c_time = to_ticks + occ->cc_ticks;
353 if (c->c_time - old_time < 0) {
354 CIRCQ_REMOVE(&c->c_list);
355 CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
356 }
357 mutex_spin_exit(lock);
358 return;
359 }
360
361 cc = curcpu()->ci_data.cpu_callout;
362 if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
363 !mutex_tryenter(cc->cc_lock)) {
364 /* Leave on existing CPU. */
365 c->c_time = to_ticks + occ->cc_ticks;
366 c->c_flags |= CALLOUT_PENDING;
367 CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
368 } else {
369 /* Move to this CPU. */
370 c->c_cpu = cc;
371 c->c_time = to_ticks + cc->cc_ticks;
372 c->c_flags |= CALLOUT_PENDING;
373 CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
374 mutex_spin_exit(cc->cc_lock);
375 }
376 mutex_spin_exit(lock);
377 }
378
379 /*
380 * callout_reset:
381 *
382 * Reset a callout structure with a new function and argument, and
383 * schedule it to run.
384 */
385 void
386 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
387 {
388 callout_impl_t *c = (callout_impl_t *)cs;
389 kmutex_t *lock;
390
391 KASSERT(c->c_magic == CALLOUT_MAGIC);
392 KASSERT(func != NULL);
393
394 lock = callout_lock(c);
395 c->c_func = func;
396 c->c_arg = arg;
397 callout_schedule_locked(c, lock, to_ticks);
398 }
399
400 /*
401 * callout_schedule:
402 *
403 * Schedule a callout to run. The function and argument must
404 * already be set in the callout structure.
405 */
406 void
407 callout_schedule(callout_t *cs, int to_ticks)
408 {
409 callout_impl_t *c = (callout_impl_t *)cs;
410 kmutex_t *lock;
411
412 KASSERT(c->c_magic == CALLOUT_MAGIC);
413
414 lock = callout_lock(c);
415 callout_schedule_locked(c, lock, to_ticks);
416 }
417
418 /*
419 * callout_stop:
420 *
421 * Try to cancel a pending callout. It may be too late: the callout
422 * could be running on another CPU. If called from interrupt context,
423 * the callout could already be in progress at a lower priority.
424 */
425 bool
426 callout_stop(callout_t *cs)
427 {
428 callout_impl_t *c = (callout_impl_t *)cs;
429 struct callout_cpu *cc;
430 kmutex_t *lock;
431 bool expired;
432
433 KASSERT(c->c_magic == CALLOUT_MAGIC);
434
435 lock = callout_lock(c);
436
437 if ((c->c_flags & CALLOUT_PENDING) != 0)
438 CIRCQ_REMOVE(&c->c_list);
439 expired = ((c->c_flags & CALLOUT_FIRED) != 0);
440 c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
441
442 cc = c->c_cpu;
443 if (cc->cc_active == c) {
444 /*
445 * This is for non-MPSAFE callouts only. To synchronize
446 * effectively we must be called with kernel_lock held.
447 * It's also taken in callout_softclock.
448 */
449 cc->cc_cancel = c;
450 }
451
452 mutex_spin_exit(lock);
453
454 return expired;
455 }
456
457 /*
458 * callout_halt:
459 *
460 * Cancel a pending callout. If in-flight, block until it completes.
461 * May not be called from a hard interrupt handler. If the callout
462 * can take locks, the caller of callout_halt() must not hold any of
463 * those locks, otherwise the two could deadlock. If 'interlock' is
464 * non-NULL and we must wait for the callout to complete, it will be
465 * released and re-acquired before returning.
466 */
467 bool
468 callout_halt(callout_t *cs, void *interlock)
469 {
470 callout_impl_t *c = (callout_impl_t *)cs;
471 kmutex_t *lock;
472 int flags;
473
474 KASSERT(c->c_magic == CALLOUT_MAGIC);
475 KASSERT(!cpu_intr_p());
476 KASSERT(interlock == NULL || mutex_owned(interlock));
477
478 /* Fast path. */
479 lock = callout_lock(c);
480 flags = c->c_flags;
481 if ((flags & CALLOUT_PENDING) != 0)
482 CIRCQ_REMOVE(&c->c_list);
483 c->c_flags = flags & ~(CALLOUT_PENDING|CALLOUT_FIRED);
484 if (__predict_false(flags & CALLOUT_FIRED)) {
485 callout_wait(c, interlock, lock);
486 return true;
487 }
488 mutex_spin_exit(lock);
489 return false;
490 }
491
492 /*
493 * callout_wait:
494 *
495 * Slow path for callout_halt(). Deliberately marked __noinline to
496 * prevent unneeded overhead in the caller.
497 */
498 static void __noinline
499 callout_wait(callout_impl_t *c, void *interlock, kmutex_t *lock)
500 {
501 struct callout_cpu *cc;
502 struct lwp *l;
503 kmutex_t *relock;
504
505 l = curlwp;
506 relock = NULL;
507 for (;;) {
508 /*
509 * At this point we know the callout is not pending, but it
510 * could be running on a CPU somewhere. That can be curcpu
511 * in a few cases:
512 *
513 * - curlwp is a higher priority soft interrupt
514 * - the callout blocked on a lock and is currently asleep
515 * - the callout itself has called callout_halt() (nice!)
516 */
517 cc = c->c_cpu;
518 if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
519 break;
520
521 /* It's running - need to wait for it to complete. */
522 if (interlock != NULL) {
523 /*
524 * Avoid potential scheduler lock order problems by
525 * dropping the interlock without the callout lock
526 * held; then retry.
527 */
528 mutex_spin_exit(lock);
529 mutex_exit(interlock);
530 relock = interlock;
531 interlock = NULL;
532 } else {
533 /* XXX Better to do priority inheritance. */
534 KASSERT(l->l_wchan == NULL);
535 cc->cc_nwait++;
536 cc->cc_ev_block.ev_count++;
537 l->l_kpriority = true;
538 sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
539 sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
540 &sleep_syncobj);
541 sleepq_block(0, false);
542 }
543
544 /*
545 * Re-lock the callout and check the state of play again.
546 * It's a common design pattern for callouts to re-schedule
547 * themselves so put a stop to it again if needed.
548 */
549 lock = callout_lock(c);
550 if ((c->c_flags & CALLOUT_PENDING) != 0)
551 CIRCQ_REMOVE(&c->c_list);
552 c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
553 }
554
555 mutex_spin_exit(lock);
556 if (__predict_false(relock != NULL))
557 mutex_enter(relock);
558 }
559
560 #ifdef notyet
561 /*
562 * callout_bind:
563 *
564 * Bind a callout so that it will only execute on one CPU.
565 * The callout must be stopped, and must be MPSAFE.
566 *
567 * XXX Disabled for now until it is decided how to handle
568 * offlined CPUs. We may want weak+strong binding.
569 */
570 void
571 callout_bind(callout_t *cs, struct cpu_info *ci)
572 {
573 callout_impl_t *c = (callout_impl_t *)cs;
574 struct callout_cpu *cc;
575 kmutex_t *lock;
576
577 KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
578 KASSERT(c->c_cpu->cc_active != c);
579 KASSERT(c->c_magic == CALLOUT_MAGIC);
580 KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
581
582 lock = callout_lock(c);
583 cc = ci->ci_data.cpu_callout;
584 c->c_flags |= CALLOUT_BOUND;
585 if (c->c_cpu != cc) {
586 /*
587 * Assigning c_cpu effectively unlocks the callout
588 * structure, as we don't hold the new CPU's lock.
589 * Issue memory barrier to prevent accesses being
590 * reordered.
591 */
592 membar_exit();
593 c->c_cpu = cc;
594 }
595 mutex_spin_exit(lock);
596 }
597 #endif
598
599 void
600 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
601 {
602 callout_impl_t *c = (callout_impl_t *)cs;
603 kmutex_t *lock;
604
605 KASSERT(c->c_magic == CALLOUT_MAGIC);
606 KASSERT(func != NULL);
607
608 lock = callout_lock(c);
609 c->c_func = func;
610 c->c_arg = arg;
611 mutex_spin_exit(lock);
612 }
613
614 bool
615 callout_expired(callout_t *cs)
616 {
617 callout_impl_t *c = (callout_impl_t *)cs;
618 kmutex_t *lock;
619 bool rv;
620
621 KASSERT(c->c_magic == CALLOUT_MAGIC);
622
623 lock = callout_lock(c);
624 rv = ((c->c_flags & CALLOUT_FIRED) != 0);
625 mutex_spin_exit(lock);
626
627 return rv;
628 }
629
630 bool
631 callout_active(callout_t *cs)
632 {
633 callout_impl_t *c = (callout_impl_t *)cs;
634 kmutex_t *lock;
635 bool rv;
636
637 KASSERT(c->c_magic == CALLOUT_MAGIC);
638
639 lock = callout_lock(c);
640 rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
641 mutex_spin_exit(lock);
642
643 return rv;
644 }
645
646 bool
647 callout_pending(callout_t *cs)
648 {
649 callout_impl_t *c = (callout_impl_t *)cs;
650 kmutex_t *lock;
651 bool rv;
652
653 KASSERT(c->c_magic == CALLOUT_MAGIC);
654
655 lock = callout_lock(c);
656 rv = ((c->c_flags & CALLOUT_PENDING) != 0);
657 mutex_spin_exit(lock);
658
659 return rv;
660 }
661
662 bool
663 callout_invoking(callout_t *cs)
664 {
665 callout_impl_t *c = (callout_impl_t *)cs;
666 kmutex_t *lock;
667 bool rv;
668
669 KASSERT(c->c_magic == CALLOUT_MAGIC);
670
671 lock = callout_lock(c);
672 rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
673 mutex_spin_exit(lock);
674
675 return rv;
676 }
677
678 void
679 callout_ack(callout_t *cs)
680 {
681 callout_impl_t *c = (callout_impl_t *)cs;
682 kmutex_t *lock;
683
684 KASSERT(c->c_magic == CALLOUT_MAGIC);
685
686 lock = callout_lock(c);
687 c->c_flags &= ~CALLOUT_INVOKING;
688 mutex_spin_exit(lock);
689 }
690
691 /*
692 * callout_hardclock:
693 *
694 * Called from hardclock() once every tick. We schedule a soft
695 * interrupt if there is work to be done.
696 */
697 void
698 callout_hardclock(void)
699 {
700 struct callout_cpu *cc;
701 int needsoftclock, ticks;
702
703 cc = curcpu()->ci_data.cpu_callout;
704 mutex_spin_enter(cc->cc_lock);
705
706 ticks = ++cc->cc_ticks;
707
708 MOVEBUCKET(cc, 0, ticks);
709 if (MASKWHEEL(0, ticks) == 0) {
710 MOVEBUCKET(cc, 1, ticks);
711 if (MASKWHEEL(1, ticks) == 0) {
712 MOVEBUCKET(cc, 2, ticks);
713 if (MASKWHEEL(2, ticks) == 0)
714 MOVEBUCKET(cc, 3, ticks);
715 }
716 }
717
718 needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
719 mutex_spin_exit(cc->cc_lock);
720
721 if (needsoftclock)
722 softint_schedule(callout_sih);
723 }
724
725 /*
726 * callout_softclock:
727 *
728 * Soft interrupt handler, scheduled above if there is work to
729 * be done. Callouts are made in soft interrupt context.
730 */
731 static void
732 callout_softclock(void *v)
733 {
734 callout_impl_t *c;
735 struct callout_cpu *cc;
736 void (*func)(void *);
737 void *arg;
738 int mpsafe, count, ticks, delta;
739 lwp_t *l;
740
741 l = curlwp;
742 KASSERT(l->l_cpu == curcpu());
743 cc = l->l_cpu->ci_data.cpu_callout;
744
745 mutex_spin_enter(cc->cc_lock);
746 cc->cc_lwp = l;
747 while (!CIRCQ_EMPTY(&cc->cc_todo)) {
748 c = CIRCQ_FIRST(&cc->cc_todo);
749 KASSERT(c->c_magic == CALLOUT_MAGIC);
750 KASSERT(c->c_func != NULL);
751 KASSERT(c->c_cpu == cc);
752 KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
753 KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
754 CIRCQ_REMOVE(&c->c_list);
755
756 /* If due run it, otherwise insert it into the right bucket. */
757 ticks = cc->cc_ticks;
758 delta = (int)((unsigned)c->c_time - (unsigned)ticks);
759 if (delta > 0) {
760 CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
761 continue;
762 }
763 if (delta < 0)
764 cc->cc_ev_late.ev_count++;
765
766 c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
767 (CALLOUT_FIRED | CALLOUT_INVOKING);
768 mpsafe = (c->c_flags & CALLOUT_MPSAFE);
769 func = c->c_func;
770 arg = c->c_arg;
771 cc->cc_active = c;
772
773 mutex_spin_exit(cc->cc_lock);
774 KASSERT(func != NULL);
775 if (__predict_false(!mpsafe)) {
776 KERNEL_LOCK(1, NULL);
777 (*func)(arg);
778 KERNEL_UNLOCK_ONE(NULL);
779 } else
780 (*func)(arg);
781 mutex_spin_enter(cc->cc_lock);
782
783 /*
784 * We can't touch 'c' here because it might be
785 * freed already. If LWPs waiting for callout
786 * to complete, awaken them.
787 */
788 cc->cc_active = NULL;
789 if ((count = cc->cc_nwait) != 0) {
790 cc->cc_nwait = 0;
791 /* sleepq_wake() drops the lock. */
792 sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
793 mutex_spin_enter(cc->cc_lock);
794 }
795 }
796 cc->cc_lwp = NULL;
797 mutex_spin_exit(cc->cc_lock);
798 }
799 #endif
800
801 #ifdef DDB
802 static void
803 db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *kbucket,
804 struct callout_circq *bucket)
805 {
806 callout_impl_t *c, ci;
807 db_expr_t offset;
808 const char *name;
809 static char question[] = "?";
810 int b;
811
812 if (CIRCQ_LAST(bucket, kbucket))
813 return;
814
815 for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
816 db_read_bytes((db_addr_t)c, sizeof(ci), (char *)&ci);
817 c = &ci;
818 db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
819 &offset);
820 name = name ? name : question;
821 b = (bucket - cc->cc_wheel);
822 if (b < 0)
823 b = -WHEELSIZE;
824 db_printf("%9d %2d/%-4d %16lx %s\n",
825 c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
826 (u_long)c->c_arg, name);
827 if (CIRCQ_LAST(&c->c_list, kbucket))
828 break;
829 }
830 }
831
832 void
833 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
834 {
835 struct callout_cpu *cc, ccb;
836 struct cpu_info *ci, cib;
837 int b;
838
839 #ifndef CRASH
840 db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
841 #endif
842 db_printf(" ticks wheel arg func\n");
843
844 /*
845 * Don't lock the callwheel; all the other CPUs are paused
846 * anyhow, and we might be called in a circumstance where
847 * some other CPU was paused while holding the lock.
848 */
849 for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
850 db_read_bytes((db_addr_t)ci, sizeof(cib), (char *)&cib);
851 cc = cib.ci_data.cpu_callout;
852 db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
853 db_show_callout_bucket(&ccb, &cc->cc_todo, &ccb.cc_todo);
854 }
855 for (b = 0; b < BUCKETS; b++) {
856 for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
857 db_read_bytes((db_addr_t)ci, sizeof(cib), (char *)&cib);
858 cc = cib.ci_data.cpu_callout;
859 db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
860 db_show_callout_bucket(&ccb, &cc->cc_wheel[b],
861 &ccb.cc_wheel[b]);
862 }
863 }
864 }
865 #endif /* DDB */
866