kern_timeout.c revision 1.64 1 /* $NetBSD: kern_timeout.c,v 1.64 2020/05/31 23:24:20 rin Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2006, 2007, 2008, 2009, 2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
34 * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 *
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. The name of the author may not be used to endorse or promote products
47 * derived from this software without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
50 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
51 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
52 * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
53 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.64 2020/05/31 23:24:20 rin Exp $");
63
64 /*
65 * Timeouts are kept in a hierarchical timing wheel. The c_time is the
66 * value of c_cpu->cc_ticks when the timeout should be called. There are
67 * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
68 * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
69 * a Timer Facility" by George Varghese and Tony Lauck.
70 *
71 * Some of the "math" in here is a bit tricky. We have to beware of
72 * wrapping ints.
73 *
74 * We use the fact that any element added to the queue must be added with
75 * a positive time. That means that any element `to' on the queue cannot
76 * be scheduled to timeout further in time than INT_MAX, but c->c_time can
77 * be positive or negative so comparing it with anything is dangerous.
78 * The only way we can use the c->c_time value in any predictable way is
79 * when we calculate how far in the future `to' will timeout - "c->c_time
80 * - c->c_cpu->cc_ticks". The result will always be positive for future
81 * timeouts and 0 or negative for due timeouts.
82 */
83
84 #define _CALLOUT_PRIVATE
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/callout.h>
90 #include <sys/lwp.h>
91 #include <sys/mutex.h>
92 #include <sys/proc.h>
93 #include <sys/sleepq.h>
94 #include <sys/syncobj.h>
95 #include <sys/evcnt.h>
96 #include <sys/intr.h>
97 #include <sys/cpu.h>
98 #include <sys/kmem.h>
99
100 #ifdef DDB
101 #include <machine/db_machdep.h>
102 #include <ddb/db_interface.h>
103 #include <ddb/db_access.h>
104 #include <ddb/db_cpu.h>
105 #include <ddb/db_sym.h>
106 #include <ddb/db_output.h>
107
108 static struct callout_cpu ccb;
109 static struct cpu_info cib;
110 #endif
111
112 #define BUCKETS 1024
113 #define WHEELSIZE 256
114 #define WHEELMASK 255
115 #define WHEELBITS 8
116
117 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
118
119 #define BUCKET(cc, rel, abs) \
120 (((rel) <= (1 << (2*WHEELBITS))) \
121 ? ((rel) <= (1 << WHEELBITS)) \
122 ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))] \
123 : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE] \
124 : ((rel) <= (1 << (3*WHEELBITS))) \
125 ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE] \
126 : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
127
128 #define MOVEBUCKET(cc, wheel, time) \
129 CIRCQ_APPEND(&(cc)->cc_todo, \
130 &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
131
132 /*
133 * Circular queue definitions.
134 */
135
136 #define CIRCQ_INIT(list) \
137 do { \
138 (list)->cq_next_l = (list); \
139 (list)->cq_prev_l = (list); \
140 } while (/*CONSTCOND*/0)
141
142 #define CIRCQ_INSERT(elem, list) \
143 do { \
144 (elem)->cq_prev_e = (list)->cq_prev_e; \
145 (elem)->cq_next_l = (list); \
146 (list)->cq_prev_l->cq_next_l = (elem); \
147 (list)->cq_prev_l = (elem); \
148 } while (/*CONSTCOND*/0)
149
150 #define CIRCQ_APPEND(fst, snd) \
151 do { \
152 if (!CIRCQ_EMPTY(snd)) { \
153 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l; \
154 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l; \
155 (snd)->cq_prev_l->cq_next_l = (fst); \
156 (fst)->cq_prev_l = (snd)->cq_prev_l; \
157 CIRCQ_INIT(snd); \
158 } \
159 } while (/*CONSTCOND*/0)
160
161 #define CIRCQ_REMOVE(elem) \
162 do { \
163 (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e; \
164 (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e; \
165 } while (/*CONSTCOND*/0)
166
167 #define CIRCQ_FIRST(list) ((list)->cq_next_e)
168 #define CIRCQ_NEXT(elem) ((elem)->cq_next_e)
169 #define CIRCQ_LAST(elem,list) ((elem)->cq_next_l == (list))
170 #define CIRCQ_EMPTY(list) ((list)->cq_next_l == (list))
171
172 struct callout_cpu {
173 kmutex_t *cc_lock;
174 sleepq_t cc_sleepq;
175 u_int cc_nwait;
176 u_int cc_ticks;
177 lwp_t *cc_lwp;
178 callout_impl_t *cc_active;
179 callout_impl_t *cc_cancel;
180 struct evcnt cc_ev_late;
181 struct evcnt cc_ev_block;
182 struct callout_circq cc_todo; /* Worklist */
183 struct callout_circq cc_wheel[BUCKETS]; /* Queues of timeouts */
184 char cc_name1[12];
185 char cc_name2[12];
186 };
187
188 #ifndef CRASH
189
190 static void callout_softclock(void *);
191 static void callout_wait(callout_impl_t *, void *, kmutex_t *);
192
193 static struct callout_cpu callout_cpu0 __cacheline_aligned;
194 static void *callout_sih __read_mostly;
195
196 static inline kmutex_t *
197 callout_lock(callout_impl_t *c)
198 {
199 struct callout_cpu *cc;
200 kmutex_t *lock;
201
202 for (;;) {
203 cc = c->c_cpu;
204 lock = cc->cc_lock;
205 mutex_spin_enter(lock);
206 if (__predict_true(cc == c->c_cpu))
207 return lock;
208 mutex_spin_exit(lock);
209 }
210 }
211
212 /*
213 * callout_startup:
214 *
215 * Initialize the callout facility, called at system startup time.
216 * Do just enough to allow callouts to be safely registered.
217 */
218 void
219 callout_startup(void)
220 {
221 struct callout_cpu *cc;
222 int b;
223
224 KASSERT(curcpu()->ci_data.cpu_callout == NULL);
225
226 cc = &callout_cpu0;
227 cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
228 CIRCQ_INIT(&cc->cc_todo);
229 for (b = 0; b < BUCKETS; b++)
230 CIRCQ_INIT(&cc->cc_wheel[b]);
231 curcpu()->ci_data.cpu_callout = cc;
232 }
233
234 /*
235 * callout_init_cpu:
236 *
237 * Per-CPU initialization.
238 */
239 CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
240
241 void
242 callout_init_cpu(struct cpu_info *ci)
243 {
244 struct callout_cpu *cc;
245 int b;
246
247 if ((cc = ci->ci_data.cpu_callout) == NULL) {
248 cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
249 cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
250 CIRCQ_INIT(&cc->cc_todo);
251 for (b = 0; b < BUCKETS; b++)
252 CIRCQ_INIT(&cc->cc_wheel[b]);
253 } else {
254 /* Boot CPU, one time only. */
255 callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
256 callout_softclock, NULL);
257 if (callout_sih == NULL)
258 panic("callout_init_cpu (2)");
259 }
260
261 sleepq_init(&cc->cc_sleepq);
262
263 snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
264 cpu_index(ci));
265 evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
266 NULL, "callout", cc->cc_name1);
267
268 snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
269 cpu_index(ci));
270 evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
271 NULL, "callout", cc->cc_name2);
272
273 ci->ci_data.cpu_callout = cc;
274 }
275
276 /*
277 * callout_init:
278 *
279 * Initialize a callout structure. This must be quick, so we fill
280 * only the minimum number of fields.
281 */
282 void
283 callout_init(callout_t *cs, u_int flags)
284 {
285 callout_impl_t *c = (callout_impl_t *)cs;
286 struct callout_cpu *cc;
287
288 KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
289
290 cc = curcpu()->ci_data.cpu_callout;
291 c->c_func = NULL;
292 c->c_magic = CALLOUT_MAGIC;
293 if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
294 c->c_flags = flags;
295 c->c_cpu = cc;
296 return;
297 }
298 c->c_flags = flags | CALLOUT_BOUND;
299 c->c_cpu = &callout_cpu0;
300 }
301
302 /*
303 * callout_destroy:
304 *
305 * Destroy a callout structure. The callout must be stopped.
306 */
307 void
308 callout_destroy(callout_t *cs)
309 {
310 callout_impl_t *c = (callout_impl_t *)cs;
311
312 KASSERTMSG(c->c_magic == CALLOUT_MAGIC,
313 "callout %p: c_magic (%#x) != CALLOUT_MAGIC (%#x)",
314 c, c->c_magic, CALLOUT_MAGIC);
315 /*
316 * It's not necessary to lock in order to see the correct value
317 * of c->c_flags. If the callout could potentially have been
318 * running, the current thread should have stopped it.
319 */
320 KASSERTMSG((c->c_flags & CALLOUT_PENDING) == 0,
321 "pending callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
322 c, c->c_func, c->c_flags, __builtin_return_address(0));
323 KASSERTMSG(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c,
324 "running callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
325 c, c->c_func, c->c_flags, __builtin_return_address(0));
326 c->c_magic = 0;
327 }
328
329 /*
330 * callout_schedule_locked:
331 *
332 * Schedule a callout to run. The function and argument must
333 * already be set in the callout structure. Must be called with
334 * callout_lock.
335 */
336 static void
337 callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
338 {
339 struct callout_cpu *cc, *occ;
340 int old_time;
341
342 KASSERT(to_ticks >= 0);
343 KASSERT(c->c_func != NULL);
344
345 /* Initialize the time here, it won't change. */
346 occ = c->c_cpu;
347 c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
348
349 /*
350 * If this timeout is already scheduled and now is moved
351 * earlier, reschedule it now. Otherwise leave it in place
352 * and let it be rescheduled later.
353 */
354 if ((c->c_flags & CALLOUT_PENDING) != 0) {
355 /* Leave on existing CPU. */
356 old_time = c->c_time;
357 c->c_time = to_ticks + occ->cc_ticks;
358 if (c->c_time - old_time < 0) {
359 CIRCQ_REMOVE(&c->c_list);
360 CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
361 }
362 mutex_spin_exit(lock);
363 return;
364 }
365
366 cc = curcpu()->ci_data.cpu_callout;
367 if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
368 !mutex_tryenter(cc->cc_lock)) {
369 /* Leave on existing CPU. */
370 c->c_time = to_ticks + occ->cc_ticks;
371 c->c_flags |= CALLOUT_PENDING;
372 CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
373 } else {
374 /* Move to this CPU. */
375 c->c_cpu = cc;
376 c->c_time = to_ticks + cc->cc_ticks;
377 c->c_flags |= CALLOUT_PENDING;
378 CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
379 mutex_spin_exit(cc->cc_lock);
380 }
381 mutex_spin_exit(lock);
382 }
383
384 /*
385 * callout_reset:
386 *
387 * Reset a callout structure with a new function and argument, and
388 * schedule it to run.
389 */
390 void
391 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
392 {
393 callout_impl_t *c = (callout_impl_t *)cs;
394 kmutex_t *lock;
395
396 KASSERT(c->c_magic == CALLOUT_MAGIC);
397 KASSERT(func != NULL);
398
399 lock = callout_lock(c);
400 c->c_func = func;
401 c->c_arg = arg;
402 callout_schedule_locked(c, lock, to_ticks);
403 }
404
405 /*
406 * callout_schedule:
407 *
408 * Schedule a callout to run. The function and argument must
409 * already be set in the callout structure.
410 */
411 void
412 callout_schedule(callout_t *cs, int to_ticks)
413 {
414 callout_impl_t *c = (callout_impl_t *)cs;
415 kmutex_t *lock;
416
417 KASSERT(c->c_magic == CALLOUT_MAGIC);
418
419 lock = callout_lock(c);
420 callout_schedule_locked(c, lock, to_ticks);
421 }
422
423 /*
424 * callout_stop:
425 *
426 * Try to cancel a pending callout. It may be too late: the callout
427 * could be running on another CPU. If called from interrupt context,
428 * the callout could already be in progress at a lower priority.
429 */
430 bool
431 callout_stop(callout_t *cs)
432 {
433 callout_impl_t *c = (callout_impl_t *)cs;
434 struct callout_cpu *cc;
435 kmutex_t *lock;
436 bool expired;
437
438 KASSERT(c->c_magic == CALLOUT_MAGIC);
439
440 lock = callout_lock(c);
441
442 if ((c->c_flags & CALLOUT_PENDING) != 0)
443 CIRCQ_REMOVE(&c->c_list);
444 expired = ((c->c_flags & CALLOUT_FIRED) != 0);
445 c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
446
447 cc = c->c_cpu;
448 if (cc->cc_active == c) {
449 /*
450 * This is for non-MPSAFE callouts only. To synchronize
451 * effectively we must be called with kernel_lock held.
452 * It's also taken in callout_softclock.
453 */
454 cc->cc_cancel = c;
455 }
456
457 mutex_spin_exit(lock);
458
459 return expired;
460 }
461
462 /*
463 * callout_halt:
464 *
465 * Cancel a pending callout. If in-flight, block until it completes.
466 * May not be called from a hard interrupt handler. If the callout
467 * can take locks, the caller of callout_halt() must not hold any of
468 * those locks, otherwise the two could deadlock. If 'interlock' is
469 * non-NULL and we must wait for the callout to complete, it will be
470 * released and re-acquired before returning.
471 */
472 bool
473 callout_halt(callout_t *cs, void *interlock)
474 {
475 callout_impl_t *c = (callout_impl_t *)cs;
476 kmutex_t *lock;
477 int flags;
478
479 KASSERT(c->c_magic == CALLOUT_MAGIC);
480 KASSERT(!cpu_intr_p());
481 KASSERT(interlock == NULL || mutex_owned(interlock));
482
483 /* Fast path. */
484 lock = callout_lock(c);
485 flags = c->c_flags;
486 if ((flags & CALLOUT_PENDING) != 0)
487 CIRCQ_REMOVE(&c->c_list);
488 c->c_flags = flags & ~(CALLOUT_PENDING|CALLOUT_FIRED);
489 if (__predict_false(flags & CALLOUT_FIRED)) {
490 callout_wait(c, interlock, lock);
491 return true;
492 }
493 mutex_spin_exit(lock);
494 return false;
495 }
496
497 /*
498 * callout_wait:
499 *
500 * Slow path for callout_halt(). Deliberately marked __noinline to
501 * prevent unneeded overhead in the caller.
502 */
503 static void __noinline
504 callout_wait(callout_impl_t *c, void *interlock, kmutex_t *lock)
505 {
506 struct callout_cpu *cc;
507 struct lwp *l;
508 kmutex_t *relock;
509
510 l = curlwp;
511 relock = NULL;
512 for (;;) {
513 /*
514 * At this point we know the callout is not pending, but it
515 * could be running on a CPU somewhere. That can be curcpu
516 * in a few cases:
517 *
518 * - curlwp is a higher priority soft interrupt
519 * - the callout blocked on a lock and is currently asleep
520 * - the callout itself has called callout_halt() (nice!)
521 */
522 cc = c->c_cpu;
523 if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
524 break;
525
526 /* It's running - need to wait for it to complete. */
527 if (interlock != NULL) {
528 /*
529 * Avoid potential scheduler lock order problems by
530 * dropping the interlock without the callout lock
531 * held; then retry.
532 */
533 mutex_spin_exit(lock);
534 mutex_exit(interlock);
535 relock = interlock;
536 interlock = NULL;
537 } else {
538 /* XXX Better to do priority inheritance. */
539 KASSERT(l->l_wchan == NULL);
540 cc->cc_nwait++;
541 cc->cc_ev_block.ev_count++;
542 l->l_kpriority = true;
543 sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
544 sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
545 &sleep_syncobj, false);
546 sleepq_block(0, false);
547 }
548
549 /*
550 * Re-lock the callout and check the state of play again.
551 * It's a common design pattern for callouts to re-schedule
552 * themselves so put a stop to it again if needed.
553 */
554 lock = callout_lock(c);
555 if ((c->c_flags & CALLOUT_PENDING) != 0)
556 CIRCQ_REMOVE(&c->c_list);
557 c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
558 }
559
560 mutex_spin_exit(lock);
561 if (__predict_false(relock != NULL))
562 mutex_enter(relock);
563 }
564
565 #ifdef notyet
566 /*
567 * callout_bind:
568 *
569 * Bind a callout so that it will only execute on one CPU.
570 * The callout must be stopped, and must be MPSAFE.
571 *
572 * XXX Disabled for now until it is decided how to handle
573 * offlined CPUs. We may want weak+strong binding.
574 */
575 void
576 callout_bind(callout_t *cs, struct cpu_info *ci)
577 {
578 callout_impl_t *c = (callout_impl_t *)cs;
579 struct callout_cpu *cc;
580 kmutex_t *lock;
581
582 KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
583 KASSERT(c->c_cpu->cc_active != c);
584 KASSERT(c->c_magic == CALLOUT_MAGIC);
585 KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
586
587 lock = callout_lock(c);
588 cc = ci->ci_data.cpu_callout;
589 c->c_flags |= CALLOUT_BOUND;
590 if (c->c_cpu != cc) {
591 /*
592 * Assigning c_cpu effectively unlocks the callout
593 * structure, as we don't hold the new CPU's lock.
594 * Issue memory barrier to prevent accesses being
595 * reordered.
596 */
597 membar_exit();
598 c->c_cpu = cc;
599 }
600 mutex_spin_exit(lock);
601 }
602 #endif
603
604 void
605 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
606 {
607 callout_impl_t *c = (callout_impl_t *)cs;
608 kmutex_t *lock;
609
610 KASSERT(c->c_magic == CALLOUT_MAGIC);
611 KASSERT(func != NULL);
612
613 lock = callout_lock(c);
614 c->c_func = func;
615 c->c_arg = arg;
616 mutex_spin_exit(lock);
617 }
618
619 bool
620 callout_expired(callout_t *cs)
621 {
622 callout_impl_t *c = (callout_impl_t *)cs;
623 kmutex_t *lock;
624 bool rv;
625
626 KASSERT(c->c_magic == CALLOUT_MAGIC);
627
628 lock = callout_lock(c);
629 rv = ((c->c_flags & CALLOUT_FIRED) != 0);
630 mutex_spin_exit(lock);
631
632 return rv;
633 }
634
635 bool
636 callout_active(callout_t *cs)
637 {
638 callout_impl_t *c = (callout_impl_t *)cs;
639 kmutex_t *lock;
640 bool rv;
641
642 KASSERT(c->c_magic == CALLOUT_MAGIC);
643
644 lock = callout_lock(c);
645 rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
646 mutex_spin_exit(lock);
647
648 return rv;
649 }
650
651 bool
652 callout_pending(callout_t *cs)
653 {
654 callout_impl_t *c = (callout_impl_t *)cs;
655 kmutex_t *lock;
656 bool rv;
657
658 KASSERT(c->c_magic == CALLOUT_MAGIC);
659
660 lock = callout_lock(c);
661 rv = ((c->c_flags & CALLOUT_PENDING) != 0);
662 mutex_spin_exit(lock);
663
664 return rv;
665 }
666
667 bool
668 callout_invoking(callout_t *cs)
669 {
670 callout_impl_t *c = (callout_impl_t *)cs;
671 kmutex_t *lock;
672 bool rv;
673
674 KASSERT(c->c_magic == CALLOUT_MAGIC);
675
676 lock = callout_lock(c);
677 rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
678 mutex_spin_exit(lock);
679
680 return rv;
681 }
682
683 void
684 callout_ack(callout_t *cs)
685 {
686 callout_impl_t *c = (callout_impl_t *)cs;
687 kmutex_t *lock;
688
689 KASSERT(c->c_magic == CALLOUT_MAGIC);
690
691 lock = callout_lock(c);
692 c->c_flags &= ~CALLOUT_INVOKING;
693 mutex_spin_exit(lock);
694 }
695
696 /*
697 * callout_hardclock:
698 *
699 * Called from hardclock() once every tick. We schedule a soft
700 * interrupt if there is work to be done.
701 */
702 void
703 callout_hardclock(void)
704 {
705 struct callout_cpu *cc;
706 int needsoftclock, ticks;
707
708 cc = curcpu()->ci_data.cpu_callout;
709 mutex_spin_enter(cc->cc_lock);
710
711 ticks = ++cc->cc_ticks;
712
713 MOVEBUCKET(cc, 0, ticks);
714 if (MASKWHEEL(0, ticks) == 0) {
715 MOVEBUCKET(cc, 1, ticks);
716 if (MASKWHEEL(1, ticks) == 0) {
717 MOVEBUCKET(cc, 2, ticks);
718 if (MASKWHEEL(2, ticks) == 0)
719 MOVEBUCKET(cc, 3, ticks);
720 }
721 }
722
723 needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
724 mutex_spin_exit(cc->cc_lock);
725
726 if (needsoftclock)
727 softint_schedule(callout_sih);
728 }
729
730 /*
731 * callout_softclock:
732 *
733 * Soft interrupt handler, scheduled above if there is work to
734 * be done. Callouts are made in soft interrupt context.
735 */
736 static void
737 callout_softclock(void *v)
738 {
739 callout_impl_t *c;
740 struct callout_cpu *cc;
741 void (*func)(void *);
742 void *arg;
743 int mpsafe, count, ticks, delta;
744 lwp_t *l;
745
746 l = curlwp;
747 KASSERT(l->l_cpu == curcpu());
748 cc = l->l_cpu->ci_data.cpu_callout;
749
750 mutex_spin_enter(cc->cc_lock);
751 cc->cc_lwp = l;
752 while (!CIRCQ_EMPTY(&cc->cc_todo)) {
753 c = CIRCQ_FIRST(&cc->cc_todo);
754 KASSERT(c->c_magic == CALLOUT_MAGIC);
755 KASSERT(c->c_func != NULL);
756 KASSERT(c->c_cpu == cc);
757 KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
758 KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
759 CIRCQ_REMOVE(&c->c_list);
760
761 /* If due run it, otherwise insert it into the right bucket. */
762 ticks = cc->cc_ticks;
763 delta = (int)((unsigned)c->c_time - (unsigned)ticks);
764 if (delta > 0) {
765 CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
766 continue;
767 }
768 if (delta < 0)
769 cc->cc_ev_late.ev_count++;
770
771 c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
772 (CALLOUT_FIRED | CALLOUT_INVOKING);
773 mpsafe = (c->c_flags & CALLOUT_MPSAFE);
774 func = c->c_func;
775 arg = c->c_arg;
776 cc->cc_active = c;
777
778 mutex_spin_exit(cc->cc_lock);
779 KASSERT(func != NULL);
780 if (__predict_false(!mpsafe)) {
781 KERNEL_LOCK(1, NULL);
782 (*func)(arg);
783 KERNEL_UNLOCK_ONE(NULL);
784 } else
785 (*func)(arg);
786 mutex_spin_enter(cc->cc_lock);
787
788 /*
789 * We can't touch 'c' here because it might be
790 * freed already. If LWPs waiting for callout
791 * to complete, awaken them.
792 */
793 cc->cc_active = NULL;
794 if ((count = cc->cc_nwait) != 0) {
795 cc->cc_nwait = 0;
796 /* sleepq_wake() drops the lock. */
797 sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
798 mutex_spin_enter(cc->cc_lock);
799 }
800 }
801 cc->cc_lwp = NULL;
802 mutex_spin_exit(cc->cc_lock);
803 }
804 #endif /* !CRASH */
805
806 #ifdef DDB
807 static void
808 db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *kbucket,
809 struct callout_circq *bucket)
810 {
811 callout_impl_t *c, ci;
812 db_expr_t offset;
813 const char *name;
814 static char question[] = "?";
815 int b;
816
817 if (CIRCQ_LAST(bucket, kbucket))
818 return;
819
820 for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
821 db_read_bytes((db_addr_t)c, sizeof(ci), (char *)&ci);
822 c = &ci;
823 db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
824 &offset);
825 name = name ? name : question;
826 b = (bucket - cc->cc_wheel);
827 if (b < 0)
828 b = -WHEELSIZE;
829 db_printf("%9d %2d/%-4d %16lx %s\n",
830 c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
831 (u_long)c->c_arg, name);
832 if (CIRCQ_LAST(&c->c_list, kbucket))
833 break;
834 }
835 }
836
837 void
838 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
839 {
840 struct callout_cpu *cc;
841 struct cpu_info *ci;
842 int b;
843
844 #ifndef CRASH
845 db_printf("hardclock_ticks now: %d\n", getticks());
846 #endif
847 db_printf(" ticks wheel arg func\n");
848
849 /*
850 * Don't lock the callwheel; all the other CPUs are paused
851 * anyhow, and we might be called in a circumstance where
852 * some other CPU was paused while holding the lock.
853 */
854 for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
855 db_read_bytes((db_addr_t)ci, sizeof(cib), (char *)&cib);
856 cc = cib.ci_data.cpu_callout;
857 db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
858 db_show_callout_bucket(&ccb, &cc->cc_todo, &ccb.cc_todo);
859 }
860 for (b = 0; b < BUCKETS; b++) {
861 for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
862 db_read_bytes((db_addr_t)ci, sizeof(cib), (char *)&cib);
863 cc = cib.ci_data.cpu_callout;
864 db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
865 db_show_callout_bucket(&ccb, &cc->cc_wheel[b],
866 &ccb.cc_wheel[b]);
867 }
868 }
869 }
870 #endif /* DDB */
871