Home | History | Annotate | Line # | Download | only in kern
kern_timeout.c revision 1.70
      1 /*	$NetBSD: kern_timeout.c,v 1.70 2022/06/29 22:27:01 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003, 2006, 2007, 2008, 2009, 2019 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
     34  * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
     35  * All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  *
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. The name of the author may not be used to endorse or promote products
     47  *    derived from this software without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
     50  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
     51  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     52  * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     53  * EXEMPLARY, OR CONSEQUENTIAL  DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 #include <sys/cdefs.h>
     62 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.70 2022/06/29 22:27:01 riastradh Exp $");
     63 
     64 /*
     65  * Timeouts are kept in a hierarchical timing wheel.  The c_time is the
     66  * value of c_cpu->cc_ticks when the timeout should be called.  There are
     67  * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
     68  * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
     69  * a Timer Facility" by George Varghese and Tony Lauck.
     70  *
     71  * Some of the "math" in here is a bit tricky.  We have to beware of
     72  * wrapping ints.
     73  *
     74  * We use the fact that any element added to the queue must be added with
     75  * a positive time.  That means that any element `to' on the queue cannot
     76  * be scheduled to timeout further in time than INT_MAX, but c->c_time can
     77  * be positive or negative so comparing it with anything is dangerous.
     78  * The only way we can use the c->c_time value in any predictable way is
     79  * when we calculate how far in the future `to' will timeout - "c->c_time
     80  * - c->c_cpu->cc_ticks".  The result will always be positive for future
     81  * timeouts and 0 or negative for due timeouts.
     82  */
     83 
     84 #define	_CALLOUT_PRIVATE
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/kernel.h>
     89 #include <sys/callout.h>
     90 #include <sys/lwp.h>
     91 #include <sys/mutex.h>
     92 #include <sys/proc.h>
     93 #include <sys/sleepq.h>
     94 #include <sys/syncobj.h>
     95 #include <sys/evcnt.h>
     96 #include <sys/intr.h>
     97 #include <sys/cpu.h>
     98 #include <sys/kmem.h>
     99 
    100 #ifdef DDB
    101 #include <machine/db_machdep.h>
    102 #include <ddb/db_interface.h>
    103 #include <ddb/db_access.h>
    104 #include <ddb/db_cpu.h>
    105 #include <ddb/db_sym.h>
    106 #include <ddb/db_output.h>
    107 #endif
    108 
    109 #define BUCKETS		1024
    110 #define WHEELSIZE	256
    111 #define WHEELMASK	255
    112 #define WHEELBITS	8
    113 
    114 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
    115 
    116 #define BUCKET(cc, rel, abs)						\
    117     (((rel) <= (1 << (2*WHEELBITS)))					\
    118     	? ((rel) <= (1 << WHEELBITS))					\
    119             ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))]			\
    120             : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE]		\
    121         : ((rel) <= (1 << (3*WHEELBITS)))				\
    122             ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE]	\
    123             : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
    124 
    125 #define MOVEBUCKET(cc, wheel, time)					\
    126     CIRCQ_APPEND(&(cc)->cc_todo,					\
    127         &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
    128 
    129 /*
    130  * Circular queue definitions.
    131  */
    132 
    133 #define CIRCQ_INIT(list)						\
    134 do {									\
    135         (list)->cq_next_l = (list);					\
    136         (list)->cq_prev_l = (list);					\
    137 } while (/*CONSTCOND*/0)
    138 
    139 #define CIRCQ_INSERT(elem, list)					\
    140 do {									\
    141         (elem)->cq_prev_e = (list)->cq_prev_e;				\
    142         (elem)->cq_next_l = (list);					\
    143         (list)->cq_prev_l->cq_next_l = (elem);				\
    144         (list)->cq_prev_l = (elem);					\
    145 } while (/*CONSTCOND*/0)
    146 
    147 #define CIRCQ_APPEND(fst, snd)						\
    148 do {									\
    149         if (!CIRCQ_EMPTY(snd)) {					\
    150                 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l;		\
    151                 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l;		\
    152                 (snd)->cq_prev_l->cq_next_l = (fst);			\
    153                 (fst)->cq_prev_l = (snd)->cq_prev_l;			\
    154                 CIRCQ_INIT(snd);					\
    155         }								\
    156 } while (/*CONSTCOND*/0)
    157 
    158 #define CIRCQ_REMOVE(elem)						\
    159 do {									\
    160         (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e;		\
    161         (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e;		\
    162 } while (/*CONSTCOND*/0)
    163 
    164 #define CIRCQ_FIRST(list)	((list)->cq_next_e)
    165 #define CIRCQ_NEXT(elem)	((elem)->cq_next_e)
    166 #define CIRCQ_LAST(elem,list)	((elem)->cq_next_l == (list))
    167 #define CIRCQ_EMPTY(list)	((list)->cq_next_l == (list))
    168 
    169 struct callout_cpu {
    170 	kmutex_t	*cc_lock;
    171 	sleepq_t	cc_sleepq;
    172 	u_int		cc_nwait;
    173 	u_int		cc_ticks;
    174 	lwp_t		*cc_lwp;
    175 	callout_impl_t	*cc_active;
    176 	callout_impl_t	*cc_cancel;
    177 	struct evcnt	cc_ev_late;
    178 	struct evcnt	cc_ev_block;
    179 	struct callout_circq cc_todo;		/* Worklist */
    180 	struct callout_circq cc_wheel[BUCKETS];	/* Queues of timeouts */
    181 	char		cc_name1[12];
    182 	char		cc_name2[12];
    183 };
    184 
    185 #ifdef DDB
    186 static struct callout_cpu ccb;
    187 #endif
    188 
    189 #ifndef CRASH /* _KERNEL */
    190 static void	callout_softclock(void *);
    191 static void	callout_wait(callout_impl_t *, void *, kmutex_t *);
    192 
    193 static struct callout_cpu callout_cpu0 __cacheline_aligned;
    194 static void *callout_sih __read_mostly;
    195 
    196 static inline kmutex_t *
    197 callout_lock(callout_impl_t *c)
    198 {
    199 	struct callout_cpu *cc;
    200 	kmutex_t *lock;
    201 
    202 	for (;;) {
    203 		cc = c->c_cpu;
    204 		lock = cc->cc_lock;
    205 		mutex_spin_enter(lock);
    206 		if (__predict_true(cc == c->c_cpu))
    207 			return lock;
    208 		mutex_spin_exit(lock);
    209 	}
    210 }
    211 
    212 /*
    213  * callout_startup:
    214  *
    215  *	Initialize the callout facility, called at system startup time.
    216  *	Do just enough to allow callouts to be safely registered.
    217  */
    218 void
    219 callout_startup(void)
    220 {
    221 	struct callout_cpu *cc;
    222 	int b;
    223 
    224 	KASSERT(curcpu()->ci_data.cpu_callout == NULL);
    225 
    226 	cc = &callout_cpu0;
    227 	cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    228 	CIRCQ_INIT(&cc->cc_todo);
    229 	for (b = 0; b < BUCKETS; b++)
    230 		CIRCQ_INIT(&cc->cc_wheel[b]);
    231 	curcpu()->ci_data.cpu_callout = cc;
    232 }
    233 
    234 /*
    235  * callout_init_cpu:
    236  *
    237  *	Per-CPU initialization.
    238  */
    239 CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
    240 
    241 void
    242 callout_init_cpu(struct cpu_info *ci)
    243 {
    244 	struct callout_cpu *cc;
    245 	int b;
    246 
    247 	if ((cc = ci->ci_data.cpu_callout) == NULL) {
    248 		cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
    249 		cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    250 		CIRCQ_INIT(&cc->cc_todo);
    251 		for (b = 0; b < BUCKETS; b++)
    252 			CIRCQ_INIT(&cc->cc_wheel[b]);
    253 	} else {
    254 		/* Boot CPU, one time only. */
    255 		callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    256 		    callout_softclock, NULL);
    257 		if (callout_sih == NULL)
    258 			panic("callout_init_cpu (2)");
    259 	}
    260 
    261 	sleepq_init(&cc->cc_sleepq);
    262 
    263 	snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
    264 	    cpu_index(ci));
    265 	evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
    266 	    NULL, "callout", cc->cc_name1);
    267 
    268 	snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
    269 	    cpu_index(ci));
    270 	evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
    271 	    NULL, "callout", cc->cc_name2);
    272 
    273 	ci->ci_data.cpu_callout = cc;
    274 }
    275 
    276 /*
    277  * callout_init:
    278  *
    279  *	Initialize a callout structure.  This must be quick, so we fill
    280  *	only the minimum number of fields.
    281  */
    282 void
    283 callout_init(callout_t *cs, u_int flags)
    284 {
    285 	callout_impl_t *c = (callout_impl_t *)cs;
    286 	struct callout_cpu *cc;
    287 
    288 	KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
    289 
    290 	cc = curcpu()->ci_data.cpu_callout;
    291 	c->c_func = NULL;
    292 	c->c_magic = CALLOUT_MAGIC;
    293 	if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
    294 		c->c_flags = flags;
    295 		c->c_cpu = cc;
    296 		return;
    297 	}
    298 	c->c_flags = flags | CALLOUT_BOUND;
    299 	c->c_cpu = &callout_cpu0;
    300 }
    301 
    302 /*
    303  * callout_destroy:
    304  *
    305  *	Destroy a callout structure.  The callout must be stopped.
    306  */
    307 void
    308 callout_destroy(callout_t *cs)
    309 {
    310 	callout_impl_t *c = (callout_impl_t *)cs;
    311 
    312 	KASSERTMSG(c->c_magic == CALLOUT_MAGIC,
    313 	    "callout %p: c_magic (%#x) != CALLOUT_MAGIC (%#x)",
    314 	    c, c->c_magic, CALLOUT_MAGIC);
    315 	/*
    316 	 * It's not necessary to lock in order to see the correct value
    317 	 * of c->c_flags.  If the callout could potentially have been
    318 	 * running, the current thread should have stopped it.
    319 	 */
    320 	KASSERTMSG((c->c_flags & CALLOUT_PENDING) == 0,
    321 	    "pending callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
    322 	    c, c->c_func, c->c_flags, __builtin_return_address(0));
    323 	KASSERTMSG(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c,
    324 	    "running callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
    325 	    c, c->c_func, c->c_flags, __builtin_return_address(0));
    326 	c->c_magic = 0;
    327 }
    328 
    329 /*
    330  * callout_schedule_locked:
    331  *
    332  *	Schedule a callout to run.  The function and argument must
    333  *	already be set in the callout structure.  Must be called with
    334  *	callout_lock.
    335  */
    336 static void
    337 callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
    338 {
    339 	struct callout_cpu *cc, *occ;
    340 	int old_time;
    341 
    342 	KASSERT(to_ticks >= 0);
    343 	KASSERT(c->c_func != NULL);
    344 
    345 	/* Initialize the time here, it won't change. */
    346 	occ = c->c_cpu;
    347 	c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
    348 
    349 	/*
    350 	 * If this timeout is already scheduled and now is moved
    351 	 * earlier, reschedule it now.  Otherwise leave it in place
    352 	 * and let it be rescheduled later.
    353 	 */
    354 	if ((c->c_flags & CALLOUT_PENDING) != 0) {
    355 		/* Leave on existing CPU. */
    356 		old_time = c->c_time;
    357 		c->c_time = to_ticks + occ->cc_ticks;
    358 		if (c->c_time - old_time < 0) {
    359 			CIRCQ_REMOVE(&c->c_list);
    360 			CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    361 		}
    362 		mutex_spin_exit(lock);
    363 		return;
    364 	}
    365 
    366 	cc = curcpu()->ci_data.cpu_callout;
    367 	if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
    368 	    !mutex_tryenter(cc->cc_lock)) {
    369 		/* Leave on existing CPU. */
    370 		c->c_time = to_ticks + occ->cc_ticks;
    371 		c->c_flags |= CALLOUT_PENDING;
    372 		CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    373 	} else {
    374 		/* Move to this CPU. */
    375 		c->c_cpu = cc;
    376 		c->c_time = to_ticks + cc->cc_ticks;
    377 		c->c_flags |= CALLOUT_PENDING;
    378 		CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
    379 		mutex_spin_exit(cc->cc_lock);
    380 	}
    381 	mutex_spin_exit(lock);
    382 }
    383 
    384 /*
    385  * callout_reset:
    386  *
    387  *	Reset a callout structure with a new function and argument, and
    388  *	schedule it to run.
    389  */
    390 void
    391 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
    392 {
    393 	callout_impl_t *c = (callout_impl_t *)cs;
    394 	kmutex_t *lock;
    395 
    396 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    397 	KASSERT(func != NULL);
    398 
    399 	lock = callout_lock(c);
    400 	c->c_func = func;
    401 	c->c_arg = arg;
    402 	callout_schedule_locked(c, lock, to_ticks);
    403 }
    404 
    405 /*
    406  * callout_schedule:
    407  *
    408  *	Schedule a callout to run.  The function and argument must
    409  *	already be set in the callout structure.
    410  */
    411 void
    412 callout_schedule(callout_t *cs, int to_ticks)
    413 {
    414 	callout_impl_t *c = (callout_impl_t *)cs;
    415 	kmutex_t *lock;
    416 
    417 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    418 
    419 	lock = callout_lock(c);
    420 	callout_schedule_locked(c, lock, to_ticks);
    421 }
    422 
    423 /*
    424  * callout_stop:
    425  *
    426  *	Try to cancel a pending callout.  It may be too late: the callout
    427  *	could be running on another CPU.  If called from interrupt context,
    428  *	the callout could already be in progress at a lower priority.
    429  */
    430 bool
    431 callout_stop(callout_t *cs)
    432 {
    433 	callout_impl_t *c = (callout_impl_t *)cs;
    434 	struct callout_cpu *cc;
    435 	kmutex_t *lock;
    436 	bool expired;
    437 
    438 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    439 
    440 	lock = callout_lock(c);
    441 
    442 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    443 		CIRCQ_REMOVE(&c->c_list);
    444 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    445 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    446 
    447 	cc = c->c_cpu;
    448 	if (cc->cc_active == c) {
    449 		/*
    450 		 * This is for non-MPSAFE callouts only.  To synchronize
    451 		 * effectively we must be called with kernel_lock held.
    452 		 * It's also taken in callout_softclock.
    453 		 */
    454 		cc->cc_cancel = c;
    455 	}
    456 
    457 	mutex_spin_exit(lock);
    458 
    459 	return expired;
    460 }
    461 
    462 /*
    463  * callout_halt:
    464  *
    465  *	Cancel a pending callout.  If in-flight, block until it completes.
    466  *	May not be called from a hard interrupt handler.  If the callout
    467  * 	can take locks, the caller of callout_halt() must not hold any of
    468  *	those locks, otherwise the two could deadlock.  If 'interlock' is
    469  *	non-NULL and we must wait for the callout to complete, it will be
    470  *	released and re-acquired before returning.
    471  */
    472 bool
    473 callout_halt(callout_t *cs, void *interlock)
    474 {
    475 	callout_impl_t *c = (callout_impl_t *)cs;
    476 	kmutex_t *lock;
    477 	int flags;
    478 
    479 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    480 	KASSERT(!cpu_intr_p());
    481 	KASSERT(interlock == NULL || mutex_owned(interlock));
    482 
    483 	/* Fast path. */
    484 	lock = callout_lock(c);
    485 	flags = c->c_flags;
    486 	if ((flags & CALLOUT_PENDING) != 0)
    487 		CIRCQ_REMOVE(&c->c_list);
    488 	c->c_flags = flags & ~(CALLOUT_PENDING|CALLOUT_FIRED);
    489 	if (__predict_false(flags & CALLOUT_FIRED)) {
    490 		callout_wait(c, interlock, lock);
    491 		return true;
    492 	}
    493 	mutex_spin_exit(lock);
    494 	return false;
    495 }
    496 
    497 /*
    498  * callout_wait:
    499  *
    500  *	Slow path for callout_halt().  Deliberately marked __noinline to
    501  *	prevent unneeded overhead in the caller.
    502  */
    503 static void __noinline
    504 callout_wait(callout_impl_t *c, void *interlock, kmutex_t *lock)
    505 {
    506 	struct callout_cpu *cc;
    507 	struct lwp *l;
    508 	kmutex_t *relock;
    509 
    510 	l = curlwp;
    511 	relock = NULL;
    512 	for (;;) {
    513 		/*
    514 		 * At this point we know the callout is not pending, but it
    515 		 * could be running on a CPU somewhere.  That can be curcpu
    516 		 * in a few cases:
    517 		 *
    518 		 * - curlwp is a higher priority soft interrupt
    519 		 * - the callout blocked on a lock and is currently asleep
    520 		 * - the callout itself has called callout_halt() (nice!)
    521 		 */
    522 		cc = c->c_cpu;
    523 		if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
    524 			break;
    525 
    526 		/* It's running - need to wait for it to complete. */
    527 		if (interlock != NULL) {
    528 			/*
    529 			 * Avoid potential scheduler lock order problems by
    530 			 * dropping the interlock without the callout lock
    531 			 * held; then retry.
    532 			 */
    533 			mutex_spin_exit(lock);
    534 			mutex_exit(interlock);
    535 			relock = interlock;
    536 			interlock = NULL;
    537 		} else {
    538 			/* XXX Better to do priority inheritance. */
    539 			KASSERT(l->l_wchan == NULL);
    540 			cc->cc_nwait++;
    541 			cc->cc_ev_block.ev_count++;
    542 			l->l_kpriority = true;
    543 			sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
    544 			sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
    545 			    &sleep_syncobj, false);
    546 			sleepq_block(0, false, &sleep_syncobj);
    547 		}
    548 
    549 		/*
    550 		 * Re-lock the callout and check the state of play again.
    551 		 * It's a common design pattern for callouts to re-schedule
    552 		 * themselves so put a stop to it again if needed.
    553 		 */
    554 		lock = callout_lock(c);
    555 		if ((c->c_flags & CALLOUT_PENDING) != 0)
    556 			CIRCQ_REMOVE(&c->c_list);
    557 		c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    558 	}
    559 
    560 	mutex_spin_exit(lock);
    561 	if (__predict_false(relock != NULL))
    562 		mutex_enter(relock);
    563 }
    564 
    565 #ifdef notyet
    566 /*
    567  * callout_bind:
    568  *
    569  *	Bind a callout so that it will only execute on one CPU.
    570  *	The callout must be stopped, and must be MPSAFE.
    571  *
    572  *	XXX Disabled for now until it is decided how to handle
    573  *	offlined CPUs.  We may want weak+strong binding.
    574  */
    575 void
    576 callout_bind(callout_t *cs, struct cpu_info *ci)
    577 {
    578 	callout_impl_t *c = (callout_impl_t *)cs;
    579 	struct callout_cpu *cc;
    580 	kmutex_t *lock;
    581 
    582 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
    583 	KASSERT(c->c_cpu->cc_active != c);
    584 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    585 	KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
    586 
    587 	lock = callout_lock(c);
    588 	cc = ci->ci_data.cpu_callout;
    589 	c->c_flags |= CALLOUT_BOUND;
    590 	if (c->c_cpu != cc) {
    591 		/*
    592 		 * Assigning c_cpu effectively unlocks the callout
    593 		 * structure, as we don't hold the new CPU's lock.
    594 		 * Issue memory barrier to prevent accesses being
    595 		 * reordered.
    596 		 */
    597 		membar_exit();
    598 		c->c_cpu = cc;
    599 	}
    600 	mutex_spin_exit(lock);
    601 }
    602 #endif
    603 
    604 void
    605 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
    606 {
    607 	callout_impl_t *c = (callout_impl_t *)cs;
    608 	kmutex_t *lock;
    609 
    610 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    611 	KASSERT(func != NULL);
    612 
    613 	lock = callout_lock(c);
    614 	c->c_func = func;
    615 	c->c_arg = arg;
    616 	mutex_spin_exit(lock);
    617 }
    618 
    619 bool
    620 callout_expired(callout_t *cs)
    621 {
    622 	callout_impl_t *c = (callout_impl_t *)cs;
    623 	kmutex_t *lock;
    624 	bool rv;
    625 
    626 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    627 
    628 	lock = callout_lock(c);
    629 	rv = ((c->c_flags & CALLOUT_FIRED) != 0);
    630 	mutex_spin_exit(lock);
    631 
    632 	return rv;
    633 }
    634 
    635 bool
    636 callout_active(callout_t *cs)
    637 {
    638 	callout_impl_t *c = (callout_impl_t *)cs;
    639 	kmutex_t *lock;
    640 	bool rv;
    641 
    642 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    643 
    644 	lock = callout_lock(c);
    645 	rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
    646 	mutex_spin_exit(lock);
    647 
    648 	return rv;
    649 }
    650 
    651 bool
    652 callout_pending(callout_t *cs)
    653 {
    654 	callout_impl_t *c = (callout_impl_t *)cs;
    655 	kmutex_t *lock;
    656 	bool rv;
    657 
    658 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    659 
    660 	lock = callout_lock(c);
    661 	rv = ((c->c_flags & CALLOUT_PENDING) != 0);
    662 	mutex_spin_exit(lock);
    663 
    664 	return rv;
    665 }
    666 
    667 bool
    668 callout_invoking(callout_t *cs)
    669 {
    670 	callout_impl_t *c = (callout_impl_t *)cs;
    671 	kmutex_t *lock;
    672 	bool rv;
    673 
    674 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    675 
    676 	lock = callout_lock(c);
    677 	rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
    678 	mutex_spin_exit(lock);
    679 
    680 	return rv;
    681 }
    682 
    683 void
    684 callout_ack(callout_t *cs)
    685 {
    686 	callout_impl_t *c = (callout_impl_t *)cs;
    687 	kmutex_t *lock;
    688 
    689 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    690 
    691 	lock = callout_lock(c);
    692 	c->c_flags &= ~CALLOUT_INVOKING;
    693 	mutex_spin_exit(lock);
    694 }
    695 
    696 /*
    697  * callout_hardclock:
    698  *
    699  *	Called from hardclock() once every tick.  We schedule a soft
    700  *	interrupt if there is work to be done.
    701  */
    702 void
    703 callout_hardclock(void)
    704 {
    705 	struct callout_cpu *cc;
    706 	int needsoftclock, ticks;
    707 
    708 	cc = curcpu()->ci_data.cpu_callout;
    709 	mutex_spin_enter(cc->cc_lock);
    710 
    711 	ticks = ++cc->cc_ticks;
    712 
    713 	MOVEBUCKET(cc, 0, ticks);
    714 	if (MASKWHEEL(0, ticks) == 0) {
    715 		MOVEBUCKET(cc, 1, ticks);
    716 		if (MASKWHEEL(1, ticks) == 0) {
    717 			MOVEBUCKET(cc, 2, ticks);
    718 			if (MASKWHEEL(2, ticks) == 0)
    719 				MOVEBUCKET(cc, 3, ticks);
    720 		}
    721 	}
    722 
    723 	needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
    724 	mutex_spin_exit(cc->cc_lock);
    725 
    726 	if (needsoftclock)
    727 		softint_schedule(callout_sih);
    728 }
    729 
    730 /*
    731  * callout_softclock:
    732  *
    733  *	Soft interrupt handler, scheduled above if there is work to
    734  * 	be done.  Callouts are made in soft interrupt context.
    735  */
    736 static void
    737 callout_softclock(void *v)
    738 {
    739 	callout_impl_t *c;
    740 	struct callout_cpu *cc;
    741 	void (*func)(void *);
    742 	void *arg;
    743 	int mpsafe, count, ticks, delta;
    744 	lwp_t *l;
    745 
    746 	l = curlwp;
    747 	KASSERT(l->l_cpu == curcpu());
    748 	cc = l->l_cpu->ci_data.cpu_callout;
    749 
    750 	mutex_spin_enter(cc->cc_lock);
    751 	cc->cc_lwp = l;
    752 	while (!CIRCQ_EMPTY(&cc->cc_todo)) {
    753 		c = CIRCQ_FIRST(&cc->cc_todo);
    754 		KASSERT(c->c_magic == CALLOUT_MAGIC);
    755 		KASSERT(c->c_func != NULL);
    756 		KASSERT(c->c_cpu == cc);
    757 		KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
    758 		KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
    759 		CIRCQ_REMOVE(&c->c_list);
    760 
    761 		/* If due run it, otherwise insert it into the right bucket. */
    762 		ticks = cc->cc_ticks;
    763 		delta = (int)((unsigned)c->c_time - (unsigned)ticks);
    764 		if (delta > 0) {
    765 			CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
    766 			continue;
    767 		}
    768 		if (delta < 0)
    769 			cc->cc_ev_late.ev_count++;
    770 
    771 		c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
    772 		    (CALLOUT_FIRED | CALLOUT_INVOKING);
    773 		mpsafe = (c->c_flags & CALLOUT_MPSAFE);
    774 		func = c->c_func;
    775 		arg = c->c_arg;
    776 		cc->cc_active = c;
    777 
    778 		mutex_spin_exit(cc->cc_lock);
    779 		KASSERT(func != NULL);
    780 		if (__predict_false(!mpsafe)) {
    781 			KERNEL_LOCK(1, NULL);
    782 			(*func)(arg);
    783 			KERNEL_UNLOCK_ONE(NULL);
    784 		} else
    785 			(*func)(arg);
    786 		KASSERTMSG(l->l_blcnt == 0,
    787 		    "callout %p func %p leaked %d biglocks",
    788 		    c, func, l->l_blcnt);
    789 		mutex_spin_enter(cc->cc_lock);
    790 
    791 		/*
    792 		 * We can't touch 'c' here because it might be
    793 		 * freed already.  If LWPs waiting for callout
    794 		 * to complete, awaken them.
    795 		 */
    796 		cc->cc_active = NULL;
    797 		if ((count = cc->cc_nwait) != 0) {
    798 			cc->cc_nwait = 0;
    799 			/* sleepq_wake() drops the lock. */
    800 			sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
    801 			mutex_spin_enter(cc->cc_lock);
    802 		}
    803 	}
    804 	cc->cc_lwp = NULL;
    805 	mutex_spin_exit(cc->cc_lock);
    806 }
    807 #endif /* !CRASH */
    808 
    809 #ifdef DDB
    810 static void
    811 db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *kbucket,
    812     struct callout_circq *bucket)
    813 {
    814 	callout_impl_t *c, ci;
    815 	db_expr_t offset;
    816 	const char *name;
    817 	static char question[] = "?";
    818 	int b;
    819 
    820 	if (CIRCQ_LAST(bucket, kbucket))
    821 		return;
    822 
    823 	for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
    824 		db_read_bytes((db_addr_t)c, sizeof(ci), (char *)&ci);
    825 		c = &ci;
    826 		db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
    827 		    &offset);
    828 		name = name ? name : question;
    829 		b = (bucket - cc->cc_wheel);
    830 		if (b < 0)
    831 			b = -WHEELSIZE;
    832 		db_printf("%9d %2d/%-4d %16lx  %s\n",
    833 		    c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
    834 		    (u_long)c->c_arg, name);
    835 		if (CIRCQ_LAST(&c->c_list, kbucket))
    836 			break;
    837 	}
    838 }
    839 
    840 void
    841 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
    842 {
    843 	struct callout_cpu *cc;
    844 	struct cpu_info *ci;
    845 	int b;
    846 
    847 #ifndef CRASH
    848 	db_printf("hardclock_ticks now: %d\n", getticks());
    849 #endif
    850 	db_printf("    ticks  wheel               arg  func\n");
    851 
    852 	/*
    853 	 * Don't lock the callwheel; all the other CPUs are paused
    854 	 * anyhow, and we might be called in a circumstance where
    855 	 * some other CPU was paused while holding the lock.
    856 	 */
    857 	for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
    858 		db_read_bytes((db_addr_t)ci +
    859 		    offsetof(struct cpu_info, ci_data.cpu_callout),
    860 		    sizeof(cc), (char *)&cc);
    861 		db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
    862 		db_show_callout_bucket(&ccb, &cc->cc_todo, &ccb.cc_todo);
    863 	}
    864 	for (b = 0; b < BUCKETS; b++) {
    865 		for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
    866 			db_read_bytes((db_addr_t)ci +
    867 			    offsetof(struct cpu_info, ci_data.cpu_callout),
    868 			    sizeof(cc), (char *)&cc);
    869 			db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
    870 			db_show_callout_bucket(&ccb, &cc->cc_wheel[b],
    871 			    &ccb.cc_wheel[b]);
    872 		}
    873 	}
    874 }
    875 #endif /* DDB */
    876