Home | History | Annotate | Line # | Download | only in kern
kern_timeout.c revision 1.74
      1 /*	$NetBSD: kern_timeout.c,v 1.74 2023/06/27 01:15:22 pho Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003, 2006, 2007, 2008, 2009, 2019 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
     34  * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
     35  * All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  *
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. The name of the author may not be used to endorse or promote products
     47  *    derived from this software without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
     50  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
     51  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     52  * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     53  * EXEMPLARY, OR CONSEQUENTIAL  DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 #include <sys/cdefs.h>
     62 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.74 2023/06/27 01:15:22 pho Exp $");
     63 
     64 /*
     65  * Timeouts are kept in a hierarchical timing wheel.  The c_time is the
     66  * value of c_cpu->cc_ticks when the timeout should be called.  There are
     67  * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
     68  * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
     69  * a Timer Facility" by George Varghese and Tony Lauck.
     70  *
     71  * Some of the "math" in here is a bit tricky.  We have to beware of
     72  * wrapping ints.
     73  *
     74  * We use the fact that any element added to the queue must be added with
     75  * a positive time.  That means that any element `to' on the queue cannot
     76  * be scheduled to timeout further in time than INT_MAX, but c->c_time can
     77  * be positive or negative so comparing it with anything is dangerous.
     78  * The only way we can use the c->c_time value in any predictable way is
     79  * when we calculate how far in the future `to' will timeout - "c->c_time
     80  * - c->c_cpu->cc_ticks".  The result will always be positive for future
     81  * timeouts and 0 or negative for due timeouts.
     82  */
     83 
     84 #define	_CALLOUT_PRIVATE
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/kernel.h>
     89 #include <sys/callout.h>
     90 #include <sys/lwp.h>
     91 #include <sys/mutex.h>
     92 #include <sys/proc.h>
     93 #include <sys/sleepq.h>
     94 #include <sys/syncobj.h>
     95 #include <sys/evcnt.h>
     96 #include <sys/intr.h>
     97 #include <sys/cpu.h>
     98 #include <sys/kmem.h>
     99 #include <sys/sdt.h>
    100 
    101 #ifdef DDB
    102 #include <machine/db_machdep.h>
    103 #include <ddb/db_interface.h>
    104 #include <ddb/db_access.h>
    105 #include <ddb/db_cpu.h>
    106 #include <ddb/db_sym.h>
    107 #include <ddb/db_output.h>
    108 #endif
    109 
    110 #define BUCKETS		1024
    111 #define WHEELSIZE	256
    112 #define WHEELMASK	255
    113 #define WHEELBITS	8
    114 
    115 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
    116 
    117 #define BUCKET(cc, rel, abs)						\
    118     (((rel) <= (1 << (2*WHEELBITS)))					\
    119     	? ((rel) <= (1 << WHEELBITS))					\
    120             ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))]			\
    121             : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE]		\
    122         : ((rel) <= (1 << (3*WHEELBITS)))				\
    123             ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE]	\
    124             : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
    125 
    126 #define MOVEBUCKET(cc, wheel, time)					\
    127     CIRCQ_APPEND(&(cc)->cc_todo,					\
    128         &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
    129 
    130 /*
    131  * Circular queue definitions.
    132  */
    133 
    134 #define CIRCQ_INIT(list)						\
    135 do {									\
    136         (list)->cq_next_l = (list);					\
    137         (list)->cq_prev_l = (list);					\
    138 } while (/*CONSTCOND*/0)
    139 
    140 #define CIRCQ_INSERT(elem, list)					\
    141 do {									\
    142         (elem)->cq_prev_e = (list)->cq_prev_e;				\
    143         (elem)->cq_next_l = (list);					\
    144         (list)->cq_prev_l->cq_next_l = (elem);				\
    145         (list)->cq_prev_l = (elem);					\
    146 } while (/*CONSTCOND*/0)
    147 
    148 #define CIRCQ_APPEND(fst, snd)						\
    149 do {									\
    150         if (!CIRCQ_EMPTY(snd)) {					\
    151                 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l;		\
    152                 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l;		\
    153                 (snd)->cq_prev_l->cq_next_l = (fst);			\
    154                 (fst)->cq_prev_l = (snd)->cq_prev_l;			\
    155                 CIRCQ_INIT(snd);					\
    156         }								\
    157 } while (/*CONSTCOND*/0)
    158 
    159 #define CIRCQ_REMOVE(elem)						\
    160 do {									\
    161         (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e;		\
    162         (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e;		\
    163 } while (/*CONSTCOND*/0)
    164 
    165 #define CIRCQ_FIRST(list)	((list)->cq_next_e)
    166 #define CIRCQ_NEXT(elem)	((elem)->cq_next_e)
    167 #define CIRCQ_LAST(elem,list)	((elem)->cq_next_l == (list))
    168 #define CIRCQ_EMPTY(list)	((list)->cq_next_l == (list))
    169 
    170 struct callout_cpu {
    171 	kmutex_t	*cc_lock;
    172 	sleepq_t	cc_sleepq;
    173 	u_int		cc_nwait;
    174 	u_int		cc_ticks;
    175 	lwp_t		*cc_lwp;
    176 	callout_impl_t	*cc_active;
    177 	callout_impl_t	*cc_cancel;
    178 	struct evcnt	cc_ev_late;
    179 	struct evcnt	cc_ev_block;
    180 	struct callout_circq cc_todo;		/* Worklist */
    181 	struct callout_circq cc_wheel[BUCKETS];	/* Queues of timeouts */
    182 	char		cc_name1[12];
    183 	char		cc_name2[12];
    184 	struct cpu_info	*cc_cpu;
    185 };
    186 
    187 #ifdef DDB
    188 static struct callout_cpu ccb;
    189 #endif
    190 
    191 #ifndef CRASH /* _KERNEL */
    192 static void	callout_softclock(void *);
    193 static void	callout_wait(callout_impl_t *, void *, kmutex_t *);
    194 
    195 static struct callout_cpu callout_cpu0 __cacheline_aligned;
    196 static void *callout_sih __read_mostly;
    197 
    198 SDT_PROBE_DEFINE2(sdt, kernel, callout, init,
    199     "struct callout *"/*ch*/,
    200     "unsigned"/*flags*/);
    201 SDT_PROBE_DEFINE1(sdt, kernel, callout, destroy,
    202     "struct callout *"/*ch*/);
    203 SDT_PROBE_DEFINE4(sdt, kernel, callout, setfunc,
    204     "struct callout *"/*ch*/,
    205     "void (*)(void *)"/*func*/,
    206     "void *"/*arg*/,
    207     "unsigned"/*flags*/);
    208 SDT_PROBE_DEFINE5(sdt, kernel, callout, schedule,
    209     "struct callout *"/*ch*/,
    210     "void (*)(void *)"/*func*/,
    211     "void *"/*arg*/,
    212     "unsigned"/*flags*/,
    213     "int"/*ticks*/);
    214 SDT_PROBE_DEFINE6(sdt, kernel, callout, migrate,
    215     "struct callout *"/*ch*/,
    216     "void (*)(void *)"/*func*/,
    217     "void *"/*arg*/,
    218     "unsigned"/*flags*/,
    219     "struct cpu_info *"/*ocpu*/,
    220     "struct cpu_info *"/*ncpu*/);
    221 SDT_PROBE_DEFINE4(sdt, kernel, callout, entry,
    222     "struct callout *"/*ch*/,
    223     "void (*)(void *)"/*func*/,
    224     "void *"/*arg*/,
    225     "unsigned"/*flags*/);
    226 SDT_PROBE_DEFINE4(sdt, kernel, callout, return,
    227     "struct callout *"/*ch*/,
    228     "void (*)(void *)"/*func*/,
    229     "void *"/*arg*/,
    230     "unsigned"/*flags*/);
    231 SDT_PROBE_DEFINE5(sdt, kernel, callout, stop,
    232     "struct callout *"/*ch*/,
    233     "void (*)(void *)"/*func*/,
    234     "void *"/*arg*/,
    235     "unsigned"/*flags*/,
    236     "bool"/*expired*/);
    237 SDT_PROBE_DEFINE4(sdt, kernel, callout, halt,
    238     "struct callout *"/*ch*/,
    239     "void (*)(void *)"/*func*/,
    240     "void *"/*arg*/,
    241     "unsigned"/*flags*/);
    242 SDT_PROBE_DEFINE5(sdt, kernel, callout, halt__done,
    243     "struct callout *"/*ch*/,
    244     "void (*)(void *)"/*func*/,
    245     "void *"/*arg*/,
    246     "unsigned"/*flags*/,
    247     "bool"/*expired*/);
    248 
    249 static inline kmutex_t *
    250 callout_lock(callout_impl_t *c)
    251 {
    252 	struct callout_cpu *cc;
    253 	kmutex_t *lock;
    254 
    255 	for (;;) {
    256 		cc = c->c_cpu;
    257 		lock = cc->cc_lock;
    258 		mutex_spin_enter(lock);
    259 		if (__predict_true(cc == c->c_cpu))
    260 			return lock;
    261 		mutex_spin_exit(lock);
    262 	}
    263 }
    264 
    265 /*
    266  * callout_startup:
    267  *
    268  *	Initialize the callout facility, called at system startup time.
    269  *	Do just enough to allow callouts to be safely registered.
    270  */
    271 void
    272 callout_startup(void)
    273 {
    274 	struct callout_cpu *cc;
    275 	int b;
    276 
    277 	KASSERT(curcpu()->ci_data.cpu_callout == NULL);
    278 
    279 	cc = &callout_cpu0;
    280 	cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    281 	CIRCQ_INIT(&cc->cc_todo);
    282 	for (b = 0; b < BUCKETS; b++)
    283 		CIRCQ_INIT(&cc->cc_wheel[b]);
    284 	curcpu()->ci_data.cpu_callout = cc;
    285 }
    286 
    287 /*
    288  * callout_init_cpu:
    289  *
    290  *	Per-CPU initialization.
    291  */
    292 CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
    293 
    294 void
    295 callout_init_cpu(struct cpu_info *ci)
    296 {
    297 	struct callout_cpu *cc;
    298 	int b;
    299 
    300 	if ((cc = ci->ci_data.cpu_callout) == NULL) {
    301 		cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
    302 		cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    303 		CIRCQ_INIT(&cc->cc_todo);
    304 		for (b = 0; b < BUCKETS; b++)
    305 			CIRCQ_INIT(&cc->cc_wheel[b]);
    306 	} else {
    307 		/* Boot CPU, one time only. */
    308 		callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    309 		    callout_softclock, NULL);
    310 		if (callout_sih == NULL)
    311 			panic("callout_init_cpu (2)");
    312 	}
    313 
    314 	sleepq_init(&cc->cc_sleepq);
    315 
    316 	snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
    317 	    cpu_index(ci));
    318 	evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
    319 	    NULL, "callout", cc->cc_name1);
    320 
    321 	snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
    322 	    cpu_index(ci));
    323 	evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
    324 	    NULL, "callout", cc->cc_name2);
    325 
    326 	cc->cc_cpu = ci;
    327 	ci->ci_data.cpu_callout = cc;
    328 }
    329 
    330 /*
    331  * callout_init:
    332  *
    333  *	Initialize a callout structure.  This must be quick, so we fill
    334  *	only the minimum number of fields.
    335  */
    336 void
    337 callout_init(callout_t *cs, u_int flags)
    338 {
    339 	callout_impl_t *c = (callout_impl_t *)cs;
    340 	struct callout_cpu *cc;
    341 
    342 	KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
    343 
    344 	SDT_PROBE2(sdt, kernel, callout, init,  cs, flags);
    345 
    346 	cc = curcpu()->ci_data.cpu_callout;
    347 	c->c_func = NULL;
    348 	c->c_magic = CALLOUT_MAGIC;
    349 	if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
    350 		c->c_flags = flags;
    351 		c->c_cpu = cc;
    352 		return;
    353 	}
    354 	c->c_flags = flags | CALLOUT_BOUND;
    355 	c->c_cpu = &callout_cpu0;
    356 }
    357 
    358 /*
    359  * callout_destroy:
    360  *
    361  *	Destroy a callout structure.  The callout must be stopped.
    362  */
    363 void
    364 callout_destroy(callout_t *cs)
    365 {
    366 	callout_impl_t *c = (callout_impl_t *)cs;
    367 
    368 	SDT_PROBE1(sdt, kernel, callout, destroy,  cs);
    369 
    370 	KASSERTMSG(c->c_magic == CALLOUT_MAGIC,
    371 	    "callout %p: c_magic (%#x) != CALLOUT_MAGIC (%#x)",
    372 	    c, c->c_magic, CALLOUT_MAGIC);
    373 	/*
    374 	 * It's not necessary to lock in order to see the correct value
    375 	 * of c->c_flags.  If the callout could potentially have been
    376 	 * running, the current thread should have stopped it.
    377 	 */
    378 	KASSERTMSG((c->c_flags & CALLOUT_PENDING) == 0,
    379 	    "pending callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
    380 	    c, c->c_func, c->c_flags, __builtin_return_address(0));
    381 	KASSERTMSG(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c,
    382 	    "running callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
    383 	    c, c->c_func, c->c_flags, __builtin_return_address(0));
    384 	c->c_magic = 0;
    385 }
    386 
    387 /*
    388  * callout_schedule_locked:
    389  *
    390  *	Schedule a callout to run.  The function and argument must
    391  *	already be set in the callout structure.  Must be called with
    392  *	callout_lock.
    393  */
    394 static void
    395 callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
    396 {
    397 	struct callout_cpu *cc, *occ;
    398 	int old_time;
    399 
    400 	SDT_PROBE5(sdt, kernel, callout, schedule,
    401 	    c, c->c_func, c->c_arg, c->c_flags, to_ticks);
    402 
    403 	KASSERT(to_ticks >= 0);
    404 	KASSERT(c->c_func != NULL);
    405 
    406 	/* Initialize the time here, it won't change. */
    407 	occ = c->c_cpu;
    408 	c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
    409 
    410 	/*
    411 	 * If this timeout is already scheduled and now is moved
    412 	 * earlier, reschedule it now.  Otherwise leave it in place
    413 	 * and let it be rescheduled later.
    414 	 */
    415 	if ((c->c_flags & CALLOUT_PENDING) != 0) {
    416 		/* Leave on existing CPU. */
    417 		old_time = c->c_time;
    418 		c->c_time = to_ticks + occ->cc_ticks;
    419 		if (c->c_time - old_time < 0) {
    420 			CIRCQ_REMOVE(&c->c_list);
    421 			CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    422 		}
    423 		mutex_spin_exit(lock);
    424 		return;
    425 	}
    426 
    427 	cc = curcpu()->ci_data.cpu_callout;
    428 	if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
    429 	    !mutex_tryenter(cc->cc_lock)) {
    430 		/* Leave on existing CPU. */
    431 		c->c_time = to_ticks + occ->cc_ticks;
    432 		c->c_flags |= CALLOUT_PENDING;
    433 		CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    434 	} else {
    435 		/* Move to this CPU. */
    436 		c->c_cpu = cc;
    437 		c->c_time = to_ticks + cc->cc_ticks;
    438 		c->c_flags |= CALLOUT_PENDING;
    439 		CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
    440 		mutex_spin_exit(cc->cc_lock);
    441 		SDT_PROBE6(sdt, kernel, callout, migrate,
    442 		    c, c->c_func, c->c_arg, c->c_flags,
    443 		    occ->cc_cpu, cc->cc_cpu);
    444 	}
    445 	mutex_spin_exit(lock);
    446 }
    447 
    448 /*
    449  * callout_reset:
    450  *
    451  *	Reset a callout structure with a new function and argument, and
    452  *	schedule it to run.
    453  */
    454 void
    455 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
    456 {
    457 	callout_impl_t *c = (callout_impl_t *)cs;
    458 	kmutex_t *lock;
    459 
    460 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    461 	KASSERT(func != NULL);
    462 
    463 	lock = callout_lock(c);
    464 	SDT_PROBE4(sdt, kernel, callout, setfunc,  cs, func, arg, c->c_flags);
    465 	c->c_func = func;
    466 	c->c_arg = arg;
    467 	callout_schedule_locked(c, lock, to_ticks);
    468 }
    469 
    470 /*
    471  * callout_schedule:
    472  *
    473  *	Schedule a callout to run.  The function and argument must
    474  *	already be set in the callout structure.
    475  */
    476 void
    477 callout_schedule(callout_t *cs, int to_ticks)
    478 {
    479 	callout_impl_t *c = (callout_impl_t *)cs;
    480 	kmutex_t *lock;
    481 
    482 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    483 
    484 	lock = callout_lock(c);
    485 	callout_schedule_locked(c, lock, to_ticks);
    486 }
    487 
    488 /*
    489  * callout_stop:
    490  *
    491  *	Try to cancel a pending callout.  It may be too late: the callout
    492  *	could be running on another CPU.  If called from interrupt context,
    493  *	the callout could already be in progress at a lower priority.
    494  */
    495 bool
    496 callout_stop(callout_t *cs)
    497 {
    498 	callout_impl_t *c = (callout_impl_t *)cs;
    499 	struct callout_cpu *cc;
    500 	kmutex_t *lock;
    501 	bool expired;
    502 
    503 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    504 
    505 	lock = callout_lock(c);
    506 
    507 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    508 		CIRCQ_REMOVE(&c->c_list);
    509 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    510 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    511 
    512 	cc = c->c_cpu;
    513 	if (cc->cc_active == c) {
    514 		/*
    515 		 * This is for non-MPSAFE callouts only.  To synchronize
    516 		 * effectively we must be called with kernel_lock held.
    517 		 * It's also taken in callout_softclock.
    518 		 */
    519 		cc->cc_cancel = c;
    520 	}
    521 
    522 	SDT_PROBE5(sdt, kernel, callout, stop,
    523 	    c, c->c_func, c->c_arg, c->c_flags, expired);
    524 
    525 	mutex_spin_exit(lock);
    526 
    527 	return expired;
    528 }
    529 
    530 /*
    531  * callout_halt:
    532  *
    533  *	Cancel a pending callout.  If in-flight, block until it completes.
    534  *	May not be called from a hard interrupt handler.  If the callout
    535  * 	can take locks, the caller of callout_halt() must not hold any of
    536  *	those locks, otherwise the two could deadlock.  If 'interlock' is
    537  *	non-NULL and we must wait for the callout to complete, it will be
    538  *	released and re-acquired before returning.
    539  */
    540 bool
    541 callout_halt(callout_t *cs, void *interlock)
    542 {
    543 	callout_impl_t *c = (callout_impl_t *)cs;
    544 	kmutex_t *lock;
    545 	struct callout_cpu *cc;
    546 
    547 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    548 	KASSERT(!cpu_intr_p());
    549 	KASSERT(interlock == NULL || mutex_owned(interlock));
    550 
    551 	/* Fast path. */
    552 	lock = callout_lock(c);
    553 	SDT_PROBE4(sdt, kernel, callout, halt,
    554 	    c, c->c_func, c->c_arg, c->c_flags);
    555 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    556 		CIRCQ_REMOVE(&c->c_list);
    557 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    558 	cc = c->c_cpu;
    559 	if (__predict_false(cc->cc_active == c && cc->cc_lwp != curlwp)) {
    560 		callout_wait(c, interlock, lock);
    561 		return true;
    562 	}
    563 	SDT_PROBE5(sdt, kernel, callout, halt__done,
    564 	    c, c->c_func, c->c_arg, c->c_flags, /*expired*/false);
    565 	mutex_spin_exit(lock);
    566 	return false;
    567 }
    568 
    569 /*
    570  * callout_wait:
    571  *
    572  *	Slow path for callout_halt().  Deliberately marked __noinline to
    573  *	prevent unneeded overhead in the caller.
    574  */
    575 static void __noinline
    576 callout_wait(callout_impl_t *c, void *interlock, kmutex_t *lock)
    577 {
    578 	struct callout_cpu *cc;
    579 	struct lwp *l;
    580 	kmutex_t *relock;
    581 
    582 	l = curlwp;
    583 	relock = NULL;
    584 	for (;;) {
    585 		/*
    586 		 * At this point we know the callout is not pending, but it
    587 		 * could be running on a CPU somewhere.  That can be curcpu
    588 		 * in a few cases:
    589 		 *
    590 		 * - curlwp is a higher priority soft interrupt
    591 		 * - the callout blocked on a lock and is currently asleep
    592 		 * - the callout itself has called callout_halt() (nice!)
    593 		 */
    594 		cc = c->c_cpu;
    595 		if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
    596 			break;
    597 
    598 		/* It's running - need to wait for it to complete. */
    599 		if (interlock != NULL) {
    600 			/*
    601 			 * Avoid potential scheduler lock order problems by
    602 			 * dropping the interlock without the callout lock
    603 			 * held; then retry.
    604 			 */
    605 			mutex_spin_exit(lock);
    606 			mutex_exit(interlock);
    607 			relock = interlock;
    608 			interlock = NULL;
    609 		} else {
    610 			/* XXX Better to do priority inheritance. */
    611 			KASSERT(l->l_wchan == NULL);
    612 			cc->cc_nwait++;
    613 			cc->cc_ev_block.ev_count++;
    614 			l->l_kpriority = true;
    615 			sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
    616 			sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
    617 			    &sleep_syncobj, false);
    618 			sleepq_block(0, false, &sleep_syncobj);
    619 		}
    620 
    621 		/*
    622 		 * Re-lock the callout and check the state of play again.
    623 		 * It's a common design pattern for callouts to re-schedule
    624 		 * themselves so put a stop to it again if needed.
    625 		 */
    626 		lock = callout_lock(c);
    627 		if ((c->c_flags & CALLOUT_PENDING) != 0)
    628 			CIRCQ_REMOVE(&c->c_list);
    629 		c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    630 	}
    631 
    632 	SDT_PROBE5(sdt, kernel, callout, halt__done,
    633 	    c, c->c_func, c->c_arg, c->c_flags, /*expired*/true);
    634 
    635 	mutex_spin_exit(lock);
    636 	if (__predict_false(relock != NULL))
    637 		mutex_enter(relock);
    638 }
    639 
    640 #ifdef notyet
    641 /*
    642  * callout_bind:
    643  *
    644  *	Bind a callout so that it will only execute on one CPU.
    645  *	The callout must be stopped, and must be MPSAFE.
    646  *
    647  *	XXX Disabled for now until it is decided how to handle
    648  *	offlined CPUs.  We may want weak+strong binding.
    649  */
    650 void
    651 callout_bind(callout_t *cs, struct cpu_info *ci)
    652 {
    653 	callout_impl_t *c = (callout_impl_t *)cs;
    654 	struct callout_cpu *cc;
    655 	kmutex_t *lock;
    656 
    657 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
    658 	KASSERT(c->c_cpu->cc_active != c);
    659 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    660 	KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
    661 
    662 	lock = callout_lock(c);
    663 	cc = ci->ci_data.cpu_callout;
    664 	c->c_flags |= CALLOUT_BOUND;
    665 	if (c->c_cpu != cc) {
    666 		/*
    667 		 * Assigning c_cpu effectively unlocks the callout
    668 		 * structure, as we don't hold the new CPU's lock.
    669 		 * Issue memory barrier to prevent accesses being
    670 		 * reordered.
    671 		 */
    672 		membar_exit();
    673 		c->c_cpu = cc;
    674 	}
    675 	mutex_spin_exit(lock);
    676 }
    677 #endif
    678 
    679 void
    680 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
    681 {
    682 	callout_impl_t *c = (callout_impl_t *)cs;
    683 	kmutex_t *lock;
    684 
    685 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    686 	KASSERT(func != NULL);
    687 
    688 	lock = callout_lock(c);
    689 	SDT_PROBE4(sdt, kernel, callout, setfunc,  cs, func, arg, c->c_flags);
    690 	c->c_func = func;
    691 	c->c_arg = arg;
    692 	mutex_spin_exit(lock);
    693 }
    694 
    695 bool
    696 callout_expired(callout_t *cs)
    697 {
    698 	callout_impl_t *c = (callout_impl_t *)cs;
    699 	kmutex_t *lock;
    700 	bool rv;
    701 
    702 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    703 
    704 	lock = callout_lock(c);
    705 	rv = ((c->c_flags & CALLOUT_FIRED) != 0);
    706 	mutex_spin_exit(lock);
    707 
    708 	return rv;
    709 }
    710 
    711 bool
    712 callout_active(callout_t *cs)
    713 {
    714 	callout_impl_t *c = (callout_impl_t *)cs;
    715 	kmutex_t *lock;
    716 	bool rv;
    717 
    718 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    719 
    720 	lock = callout_lock(c);
    721 	rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
    722 	mutex_spin_exit(lock);
    723 
    724 	return rv;
    725 }
    726 
    727 bool
    728 callout_pending(callout_t *cs)
    729 {
    730 	callout_impl_t *c = (callout_impl_t *)cs;
    731 	kmutex_t *lock;
    732 	bool rv;
    733 
    734 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    735 
    736 	lock = callout_lock(c);
    737 	rv = ((c->c_flags & CALLOUT_PENDING) != 0);
    738 	mutex_spin_exit(lock);
    739 
    740 	return rv;
    741 }
    742 
    743 bool
    744 callout_invoking(callout_t *cs)
    745 {
    746 	callout_impl_t *c = (callout_impl_t *)cs;
    747 	kmutex_t *lock;
    748 	bool rv;
    749 
    750 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    751 
    752 	lock = callout_lock(c);
    753 	rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
    754 	mutex_spin_exit(lock);
    755 
    756 	return rv;
    757 }
    758 
    759 void
    760 callout_ack(callout_t *cs)
    761 {
    762 	callout_impl_t *c = (callout_impl_t *)cs;
    763 	kmutex_t *lock;
    764 
    765 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    766 
    767 	lock = callout_lock(c);
    768 	c->c_flags &= ~CALLOUT_INVOKING;
    769 	mutex_spin_exit(lock);
    770 }
    771 
    772 /*
    773  * callout_hardclock:
    774  *
    775  *	Called from hardclock() once every tick.  We schedule a soft
    776  *	interrupt if there is work to be done.
    777  */
    778 void
    779 callout_hardclock(void)
    780 {
    781 	struct callout_cpu *cc;
    782 	int needsoftclock, ticks;
    783 
    784 	cc = curcpu()->ci_data.cpu_callout;
    785 	mutex_spin_enter(cc->cc_lock);
    786 
    787 	ticks = ++cc->cc_ticks;
    788 
    789 	MOVEBUCKET(cc, 0, ticks);
    790 	if (MASKWHEEL(0, ticks) == 0) {
    791 		MOVEBUCKET(cc, 1, ticks);
    792 		if (MASKWHEEL(1, ticks) == 0) {
    793 			MOVEBUCKET(cc, 2, ticks);
    794 			if (MASKWHEEL(2, ticks) == 0)
    795 				MOVEBUCKET(cc, 3, ticks);
    796 		}
    797 	}
    798 
    799 	needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
    800 	mutex_spin_exit(cc->cc_lock);
    801 
    802 	if (needsoftclock)
    803 		softint_schedule(callout_sih);
    804 }
    805 
    806 /*
    807  * callout_softclock:
    808  *
    809  *	Soft interrupt handler, scheduled above if there is work to
    810  * 	be done.  Callouts are made in soft interrupt context.
    811  */
    812 static void
    813 callout_softclock(void *v)
    814 {
    815 	callout_impl_t *c;
    816 	struct callout_cpu *cc;
    817 	void (*func)(void *);
    818 	void *arg;
    819 	int mpsafe, count, ticks, delta;
    820 	u_int flags __unused;
    821 	lwp_t *l;
    822 
    823 	l = curlwp;
    824 	KASSERT(l->l_cpu == curcpu());
    825 	cc = l->l_cpu->ci_data.cpu_callout;
    826 
    827 	mutex_spin_enter(cc->cc_lock);
    828 	cc->cc_lwp = l;
    829 	while (!CIRCQ_EMPTY(&cc->cc_todo)) {
    830 		c = CIRCQ_FIRST(&cc->cc_todo);
    831 		KASSERT(c->c_magic == CALLOUT_MAGIC);
    832 		KASSERT(c->c_func != NULL);
    833 		KASSERT(c->c_cpu == cc);
    834 		KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
    835 		KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
    836 		CIRCQ_REMOVE(&c->c_list);
    837 
    838 		/* If due run it, otherwise insert it into the right bucket. */
    839 		ticks = cc->cc_ticks;
    840 		delta = (int)((unsigned)c->c_time - (unsigned)ticks);
    841 		if (delta > 0) {
    842 			CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
    843 			continue;
    844 		}
    845 		if (delta < 0)
    846 			cc->cc_ev_late.ev_count++;
    847 
    848 		c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
    849 		    (CALLOUT_FIRED | CALLOUT_INVOKING);
    850 		mpsafe = (c->c_flags & CALLOUT_MPSAFE);
    851 		func = c->c_func;
    852 		arg = c->c_arg;
    853 		cc->cc_active = c;
    854 		flags = c->c_flags;
    855 
    856 		mutex_spin_exit(cc->cc_lock);
    857 		KASSERT(func != NULL);
    858 		SDT_PROBE4(sdt, kernel, callout, entry,  c, func, arg, flags);
    859 		if (__predict_false(!mpsafe)) {
    860 			KERNEL_LOCK(1, NULL);
    861 			(*func)(arg);
    862 			KERNEL_UNLOCK_ONE(NULL);
    863 		} else
    864 			(*func)(arg);
    865 		SDT_PROBE4(sdt, kernel, callout, return,  c, func, arg, flags);
    866 		KASSERTMSG(l->l_blcnt == 0,
    867 		    "callout %p func %p leaked %d biglocks",
    868 		    c, func, l->l_blcnt);
    869 		mutex_spin_enter(cc->cc_lock);
    870 
    871 		/*
    872 		 * We can't touch 'c' here because it might be
    873 		 * freed already.  If LWPs waiting for callout
    874 		 * to complete, awaken them.
    875 		 */
    876 		cc->cc_active = NULL;
    877 		if ((count = cc->cc_nwait) != 0) {
    878 			cc->cc_nwait = 0;
    879 			/* sleepq_wake() drops the lock. */
    880 			sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
    881 			mutex_spin_enter(cc->cc_lock);
    882 		}
    883 	}
    884 	cc->cc_lwp = NULL;
    885 	mutex_spin_exit(cc->cc_lock);
    886 }
    887 #endif /* !CRASH */
    888 
    889 #ifdef DDB
    890 static void
    891 db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *kbucket,
    892     struct callout_circq *bucket)
    893 {
    894 	callout_impl_t *c, ci;
    895 	db_expr_t offset;
    896 	const char *name;
    897 	static char question[] = "?";
    898 	int b;
    899 
    900 	if (CIRCQ_LAST(bucket, kbucket))
    901 		return;
    902 
    903 	for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
    904 		db_read_bytes((db_addr_t)c, sizeof(ci), (char *)&ci);
    905 		c = &ci;
    906 		db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
    907 		    &offset);
    908 		name = name ? name : question;
    909 		b = (bucket - cc->cc_wheel);
    910 		if (b < 0)
    911 			b = -WHEELSIZE;
    912 		db_printf("%9d %2d/%-4d %16lx  %s\n",
    913 		    c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
    914 		    (u_long)c->c_arg, name);
    915 		if (CIRCQ_LAST(&c->c_list, kbucket))
    916 			break;
    917 	}
    918 }
    919 
    920 void
    921 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
    922 {
    923 	struct callout_cpu *cc;
    924 	struct cpu_info *ci;
    925 	int b;
    926 
    927 #ifndef CRASH
    928 	db_printf("hardclock_ticks now: %d\n", getticks());
    929 #endif
    930 	db_printf("    ticks  wheel               arg  func\n");
    931 
    932 	/*
    933 	 * Don't lock the callwheel; all the other CPUs are paused
    934 	 * anyhow, and we might be called in a circumstance where
    935 	 * some other CPU was paused while holding the lock.
    936 	 */
    937 	for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
    938 		db_read_bytes((db_addr_t)ci +
    939 		    offsetof(struct cpu_info, ci_data.cpu_callout),
    940 		    sizeof(cc), (char *)&cc);
    941 		db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
    942 		db_show_callout_bucket(&ccb, &cc->cc_todo, &ccb.cc_todo);
    943 	}
    944 	for (b = 0; b < BUCKETS; b++) {
    945 		for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
    946 			db_read_bytes((db_addr_t)ci +
    947 			    offsetof(struct cpu_info, ci_data.cpu_callout),
    948 			    sizeof(cc), (char *)&cc);
    949 			db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
    950 			db_show_callout_bucket(&ccb, &cc->cc_wheel[b],
    951 			    &ccb.cc_wheel[b]);
    952 		}
    953 	}
    954 }
    955 #endif /* DDB */
    956