Home | History | Annotate | Line # | Download | only in kern
kern_timeout.c revision 1.76
      1 /*	$NetBSD: kern_timeout.c,v 1.76 2023/06/27 01:19:44 pho Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003, 2006, 2007, 2008, 2009, 2019 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
     34  * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
     35  * All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  *
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. The name of the author may not be used to endorse or promote products
     47  *    derived from this software without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
     50  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
     51  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     52  * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     53  * EXEMPLARY, OR CONSEQUENTIAL  DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     59  */
     60 
     61 #include <sys/cdefs.h>
     62 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.76 2023/06/27 01:19:44 pho Exp $");
     63 
     64 /*
     65  * Timeouts are kept in a hierarchical timing wheel.  The c_time is the
     66  * value of c_cpu->cc_ticks when the timeout should be called.  There are
     67  * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
     68  * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
     69  * a Timer Facility" by George Varghese and Tony Lauck.
     70  *
     71  * Some of the "math" in here is a bit tricky.  We have to beware of
     72  * wrapping ints.
     73  *
     74  * We use the fact that any element added to the queue must be added with
     75  * a positive time.  That means that any element `to' on the queue cannot
     76  * be scheduled to timeout further in time than INT_MAX, but c->c_time can
     77  * be positive or negative so comparing it with anything is dangerous.
     78  * The only way we can use the c->c_time value in any predictable way is
     79  * when we calculate how far in the future `to' will timeout - "c->c_time
     80  * - c->c_cpu->cc_ticks".  The result will always be positive for future
     81  * timeouts and 0 or negative for due timeouts.
     82  */
     83 
     84 #define	_CALLOUT_PRIVATE
     85 
     86 #include <sys/param.h>
     87 #include <sys/systm.h>
     88 #include <sys/kernel.h>
     89 #include <sys/callout.h>
     90 #include <sys/lwp.h>
     91 #include <sys/mutex.h>
     92 #include <sys/proc.h>
     93 #include <sys/sleepq.h>
     94 #include <sys/syncobj.h>
     95 #include <sys/evcnt.h>
     96 #include <sys/intr.h>
     97 #include <sys/cpu.h>
     98 #include <sys/kmem.h>
     99 #include <sys/sdt.h>
    100 
    101 #ifdef DDB
    102 #include <machine/db_machdep.h>
    103 #include <ddb/db_interface.h>
    104 #include <ddb/db_access.h>
    105 #include <ddb/db_cpu.h>
    106 #include <ddb/db_sym.h>
    107 #include <ddb/db_output.h>
    108 #endif
    109 
    110 #define BUCKETS		1024
    111 #define WHEELSIZE	256
    112 #define WHEELMASK	255
    113 #define WHEELBITS	8
    114 
    115 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
    116 
    117 #define BUCKET(cc, rel, abs)						\
    118     (((rel) <= (1 << (2*WHEELBITS)))					\
    119     	? ((rel) <= (1 << WHEELBITS))					\
    120             ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))]			\
    121             : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE]		\
    122         : ((rel) <= (1 << (3*WHEELBITS)))				\
    123             ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE]	\
    124             : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
    125 
    126 #define MOVEBUCKET(cc, wheel, time)					\
    127     CIRCQ_APPEND(&(cc)->cc_todo,					\
    128         &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
    129 
    130 /*
    131  * Circular queue definitions.
    132  */
    133 
    134 #define CIRCQ_INIT(list)						\
    135 do {									\
    136         (list)->cq_next_l = (list);					\
    137         (list)->cq_prev_l = (list);					\
    138 } while (/*CONSTCOND*/0)
    139 
    140 #define CIRCQ_INSERT(elem, list)					\
    141 do {									\
    142         (elem)->cq_prev_e = (list)->cq_prev_e;				\
    143         (elem)->cq_next_l = (list);					\
    144         (list)->cq_prev_l->cq_next_l = (elem);				\
    145         (list)->cq_prev_l = (elem);					\
    146 } while (/*CONSTCOND*/0)
    147 
    148 #define CIRCQ_APPEND(fst, snd)						\
    149 do {									\
    150         if (!CIRCQ_EMPTY(snd)) {					\
    151                 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l;		\
    152                 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l;		\
    153                 (snd)->cq_prev_l->cq_next_l = (fst);			\
    154                 (fst)->cq_prev_l = (snd)->cq_prev_l;			\
    155                 CIRCQ_INIT(snd);					\
    156         }								\
    157 } while (/*CONSTCOND*/0)
    158 
    159 #define CIRCQ_REMOVE(elem)						\
    160 do {									\
    161         (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e;		\
    162         (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e;		\
    163 } while (/*CONSTCOND*/0)
    164 
    165 #define CIRCQ_FIRST(list)	((list)->cq_next_e)
    166 #define CIRCQ_NEXT(elem)	((elem)->cq_next_e)
    167 #define CIRCQ_LAST(elem,list)	((elem)->cq_next_l == (list))
    168 #define CIRCQ_EMPTY(list)	((list)->cq_next_l == (list))
    169 
    170 struct callout_cpu {
    171 	kmutex_t	*cc_lock;
    172 	sleepq_t	cc_sleepq;
    173 	u_int		cc_nwait;
    174 	u_int		cc_ticks;
    175 	lwp_t		*cc_lwp;
    176 	callout_impl_t	*cc_active;
    177 	struct evcnt	cc_ev_late;
    178 	struct evcnt	cc_ev_block;
    179 	struct callout_circq cc_todo;		/* Worklist */
    180 	struct callout_circq cc_wheel[BUCKETS];	/* Queues of timeouts */
    181 	char		cc_name1[12];
    182 	char		cc_name2[12];
    183 	struct cpu_info	*cc_cpu;
    184 };
    185 
    186 #ifdef DDB
    187 static struct callout_cpu ccb;
    188 #endif
    189 
    190 #ifndef CRASH /* _KERNEL */
    191 static void	callout_softclock(void *);
    192 static void	callout_wait(callout_impl_t *, void *, kmutex_t *);
    193 
    194 static struct callout_cpu callout_cpu0 __cacheline_aligned;
    195 static void *callout_sih __read_mostly;
    196 
    197 SDT_PROBE_DEFINE2(sdt, kernel, callout, init,
    198     "struct callout *"/*ch*/,
    199     "unsigned"/*flags*/);
    200 SDT_PROBE_DEFINE1(sdt, kernel, callout, destroy,
    201     "struct callout *"/*ch*/);
    202 SDT_PROBE_DEFINE4(sdt, kernel, callout, setfunc,
    203     "struct callout *"/*ch*/,
    204     "void (*)(void *)"/*func*/,
    205     "void *"/*arg*/,
    206     "unsigned"/*flags*/);
    207 SDT_PROBE_DEFINE5(sdt, kernel, callout, schedule,
    208     "struct callout *"/*ch*/,
    209     "void (*)(void *)"/*func*/,
    210     "void *"/*arg*/,
    211     "unsigned"/*flags*/,
    212     "int"/*ticks*/);
    213 SDT_PROBE_DEFINE6(sdt, kernel, callout, migrate,
    214     "struct callout *"/*ch*/,
    215     "void (*)(void *)"/*func*/,
    216     "void *"/*arg*/,
    217     "unsigned"/*flags*/,
    218     "struct cpu_info *"/*ocpu*/,
    219     "struct cpu_info *"/*ncpu*/);
    220 SDT_PROBE_DEFINE4(sdt, kernel, callout, entry,
    221     "struct callout *"/*ch*/,
    222     "void (*)(void *)"/*func*/,
    223     "void *"/*arg*/,
    224     "unsigned"/*flags*/);
    225 SDT_PROBE_DEFINE4(sdt, kernel, callout, return,
    226     "struct callout *"/*ch*/,
    227     "void (*)(void *)"/*func*/,
    228     "void *"/*arg*/,
    229     "unsigned"/*flags*/);
    230 SDT_PROBE_DEFINE5(sdt, kernel, callout, stop,
    231     "struct callout *"/*ch*/,
    232     "void (*)(void *)"/*func*/,
    233     "void *"/*arg*/,
    234     "unsigned"/*flags*/,
    235     "bool"/*expired*/);
    236 SDT_PROBE_DEFINE4(sdt, kernel, callout, halt,
    237     "struct callout *"/*ch*/,
    238     "void (*)(void *)"/*func*/,
    239     "void *"/*arg*/,
    240     "unsigned"/*flags*/);
    241 SDT_PROBE_DEFINE5(sdt, kernel, callout, halt__done,
    242     "struct callout *"/*ch*/,
    243     "void (*)(void *)"/*func*/,
    244     "void *"/*arg*/,
    245     "unsigned"/*flags*/,
    246     "bool"/*expired*/);
    247 
    248 static inline kmutex_t *
    249 callout_lock(callout_impl_t *c)
    250 {
    251 	struct callout_cpu *cc;
    252 	kmutex_t *lock;
    253 
    254 	for (;;) {
    255 		cc = c->c_cpu;
    256 		lock = cc->cc_lock;
    257 		mutex_spin_enter(lock);
    258 		if (__predict_true(cc == c->c_cpu))
    259 			return lock;
    260 		mutex_spin_exit(lock);
    261 	}
    262 }
    263 
    264 /*
    265  * Check if the callout is currently running on an LWP that isn't curlwp.
    266  */
    267 static inline bool
    268 callout_running_somewhere_else(callout_impl_t *c, struct callout_cpu *cc)
    269 {
    270 	KASSERT(c->c_cpu == cc);
    271 
    272 	return cc->cc_active == c && cc->cc_lwp != curlwp;
    273 }
    274 
    275 /*
    276  * callout_startup:
    277  *
    278  *	Initialize the callout facility, called at system startup time.
    279  *	Do just enough to allow callouts to be safely registered.
    280  */
    281 void
    282 callout_startup(void)
    283 {
    284 	struct callout_cpu *cc;
    285 	int b;
    286 
    287 	KASSERT(curcpu()->ci_data.cpu_callout == NULL);
    288 
    289 	cc = &callout_cpu0;
    290 	cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    291 	CIRCQ_INIT(&cc->cc_todo);
    292 	for (b = 0; b < BUCKETS; b++)
    293 		CIRCQ_INIT(&cc->cc_wheel[b]);
    294 	curcpu()->ci_data.cpu_callout = cc;
    295 }
    296 
    297 /*
    298  * callout_init_cpu:
    299  *
    300  *	Per-CPU initialization.
    301  */
    302 CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
    303 
    304 void
    305 callout_init_cpu(struct cpu_info *ci)
    306 {
    307 	struct callout_cpu *cc;
    308 	int b;
    309 
    310 	if ((cc = ci->ci_data.cpu_callout) == NULL) {
    311 		cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
    312 		cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    313 		CIRCQ_INIT(&cc->cc_todo);
    314 		for (b = 0; b < BUCKETS; b++)
    315 			CIRCQ_INIT(&cc->cc_wheel[b]);
    316 	} else {
    317 		/* Boot CPU, one time only. */
    318 		callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    319 		    callout_softclock, NULL);
    320 		if (callout_sih == NULL)
    321 			panic("callout_init_cpu (2)");
    322 	}
    323 
    324 	sleepq_init(&cc->cc_sleepq);
    325 
    326 	snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
    327 	    cpu_index(ci));
    328 	evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
    329 	    NULL, "callout", cc->cc_name1);
    330 
    331 	snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
    332 	    cpu_index(ci));
    333 	evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
    334 	    NULL, "callout", cc->cc_name2);
    335 
    336 	cc->cc_cpu = ci;
    337 	ci->ci_data.cpu_callout = cc;
    338 }
    339 
    340 /*
    341  * callout_init:
    342  *
    343  *	Initialize a callout structure.  This must be quick, so we fill
    344  *	only the minimum number of fields.
    345  */
    346 void
    347 callout_init(callout_t *cs, u_int flags)
    348 {
    349 	callout_impl_t *c = (callout_impl_t *)cs;
    350 	struct callout_cpu *cc;
    351 
    352 	KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
    353 
    354 	SDT_PROBE2(sdt, kernel, callout, init,  cs, flags);
    355 
    356 	cc = curcpu()->ci_data.cpu_callout;
    357 	c->c_func = NULL;
    358 	c->c_magic = CALLOUT_MAGIC;
    359 	if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
    360 		c->c_flags = flags;
    361 		c->c_cpu = cc;
    362 		return;
    363 	}
    364 	c->c_flags = flags | CALLOUT_BOUND;
    365 	c->c_cpu = &callout_cpu0;
    366 }
    367 
    368 /*
    369  * callout_destroy:
    370  *
    371  *	Destroy a callout structure.  The callout must be stopped.
    372  */
    373 void
    374 callout_destroy(callout_t *cs)
    375 {
    376 	callout_impl_t *c = (callout_impl_t *)cs;
    377 
    378 	SDT_PROBE1(sdt, kernel, callout, destroy,  cs);
    379 
    380 	KASSERTMSG(c->c_magic == CALLOUT_MAGIC,
    381 	    "callout %p: c_magic (%#x) != CALLOUT_MAGIC (%#x)",
    382 	    c, c->c_magic, CALLOUT_MAGIC);
    383 	/*
    384 	 * It's not necessary to lock in order to see the correct value
    385 	 * of c->c_flags.  If the callout could potentially have been
    386 	 * running, the current thread should have stopped it.
    387 	 */
    388 	KASSERTMSG((c->c_flags & CALLOUT_PENDING) == 0,
    389 	    "pending callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
    390 	    c, c->c_func, c->c_flags, __builtin_return_address(0));
    391 	KASSERTMSG(!callout_running_somewhere_else(c, c->c_cpu),
    392 	    "running callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
    393 	    c, c->c_func, c->c_flags, __builtin_return_address(0));
    394 	c->c_magic = 0;
    395 }
    396 
    397 /*
    398  * callout_schedule_locked:
    399  *
    400  *	Schedule a callout to run.  The function and argument must
    401  *	already be set in the callout structure.  Must be called with
    402  *	callout_lock.
    403  */
    404 static void
    405 callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
    406 {
    407 	struct callout_cpu *cc, *occ;
    408 	int old_time;
    409 
    410 	SDT_PROBE5(sdt, kernel, callout, schedule,
    411 	    c, c->c_func, c->c_arg, c->c_flags, to_ticks);
    412 
    413 	KASSERT(to_ticks >= 0);
    414 	KASSERT(c->c_func != NULL);
    415 
    416 	/* Initialize the time here, it won't change. */
    417 	occ = c->c_cpu;
    418 	c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
    419 
    420 	/*
    421 	 * If this timeout is already scheduled and now is moved
    422 	 * earlier, reschedule it now.  Otherwise leave it in place
    423 	 * and let it be rescheduled later.
    424 	 */
    425 	if ((c->c_flags & CALLOUT_PENDING) != 0) {
    426 		/* Leave on existing CPU. */
    427 		old_time = c->c_time;
    428 		c->c_time = to_ticks + occ->cc_ticks;
    429 		if (c->c_time - old_time < 0) {
    430 			CIRCQ_REMOVE(&c->c_list);
    431 			CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    432 		}
    433 		mutex_spin_exit(lock);
    434 		return;
    435 	}
    436 
    437 	cc = curcpu()->ci_data.cpu_callout;
    438 	if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
    439 	    !mutex_tryenter(cc->cc_lock)) {
    440 		/* Leave on existing CPU. */
    441 		c->c_time = to_ticks + occ->cc_ticks;
    442 		c->c_flags |= CALLOUT_PENDING;
    443 		CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    444 	} else {
    445 		/* Move to this CPU. */
    446 		c->c_cpu = cc;
    447 		c->c_time = to_ticks + cc->cc_ticks;
    448 		c->c_flags |= CALLOUT_PENDING;
    449 		CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
    450 		mutex_spin_exit(cc->cc_lock);
    451 		SDT_PROBE6(sdt, kernel, callout, migrate,
    452 		    c, c->c_func, c->c_arg, c->c_flags,
    453 		    occ->cc_cpu, cc->cc_cpu);
    454 	}
    455 	mutex_spin_exit(lock);
    456 }
    457 
    458 /*
    459  * callout_reset:
    460  *
    461  *	Reset a callout structure with a new function and argument, and
    462  *	schedule it to run.
    463  */
    464 void
    465 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
    466 {
    467 	callout_impl_t *c = (callout_impl_t *)cs;
    468 	kmutex_t *lock;
    469 
    470 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    471 	KASSERT(func != NULL);
    472 
    473 	lock = callout_lock(c);
    474 	SDT_PROBE4(sdt, kernel, callout, setfunc,  cs, func, arg, c->c_flags);
    475 	c->c_func = func;
    476 	c->c_arg = arg;
    477 	callout_schedule_locked(c, lock, to_ticks);
    478 }
    479 
    480 /*
    481  * callout_schedule:
    482  *
    483  *	Schedule a callout to run.  The function and argument must
    484  *	already be set in the callout structure.
    485  */
    486 void
    487 callout_schedule(callout_t *cs, int to_ticks)
    488 {
    489 	callout_impl_t *c = (callout_impl_t *)cs;
    490 	kmutex_t *lock;
    491 
    492 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    493 
    494 	lock = callout_lock(c);
    495 	callout_schedule_locked(c, lock, to_ticks);
    496 }
    497 
    498 /*
    499  * callout_stop:
    500  *
    501  *	Try to cancel a pending callout.  It may be too late: the callout
    502  *	could be running on another CPU.  If called from interrupt context,
    503  *	the callout could already be in progress at a lower priority.
    504  */
    505 bool
    506 callout_stop(callout_t *cs)
    507 {
    508 	callout_impl_t *c = (callout_impl_t *)cs;
    509 	kmutex_t *lock;
    510 	bool expired;
    511 
    512 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    513 
    514 	lock = callout_lock(c);
    515 
    516 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    517 		CIRCQ_REMOVE(&c->c_list);
    518 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    519 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    520 
    521 	SDT_PROBE5(sdt, kernel, callout, stop,
    522 	    c, c->c_func, c->c_arg, c->c_flags, expired);
    523 
    524 	mutex_spin_exit(lock);
    525 
    526 	return expired;
    527 }
    528 
    529 /*
    530  * callout_halt:
    531  *
    532  *	Cancel a pending callout.  If in-flight, block until it completes.
    533  *	May not be called from a hard interrupt handler.  If the callout
    534  * 	can take locks, the caller of callout_halt() must not hold any of
    535  *	those locks, otherwise the two could deadlock.  If 'interlock' is
    536  *	non-NULL and we must wait for the callout to complete, it will be
    537  *	released and re-acquired before returning.
    538  */
    539 bool
    540 callout_halt(callout_t *cs, void *interlock)
    541 {
    542 	callout_impl_t *c = (callout_impl_t *)cs;
    543 	kmutex_t *lock;
    544 
    545 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    546 	KASSERT(!cpu_intr_p());
    547 	KASSERT(interlock == NULL || mutex_owned(interlock));
    548 
    549 	/* Fast path. */
    550 	lock = callout_lock(c);
    551 	SDT_PROBE4(sdt, kernel, callout, halt,
    552 	    c, c->c_func, c->c_arg, c->c_flags);
    553 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    554 		CIRCQ_REMOVE(&c->c_list);
    555 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    556 	if (__predict_false(callout_running_somewhere_else(c, c->c_cpu))) {
    557 		callout_wait(c, interlock, lock);
    558 		return true;
    559 	}
    560 	SDT_PROBE5(sdt, kernel, callout, halt__done,
    561 	    c, c->c_func, c->c_arg, c->c_flags, /*expired*/false);
    562 	mutex_spin_exit(lock);
    563 	return false;
    564 }
    565 
    566 /*
    567  * callout_wait:
    568  *
    569  *	Slow path for callout_halt().  Deliberately marked __noinline to
    570  *	prevent unneeded overhead in the caller.
    571  */
    572 static void __noinline
    573 callout_wait(callout_impl_t *c, void *interlock, kmutex_t *lock)
    574 {
    575 	struct callout_cpu *cc;
    576 	struct lwp *l;
    577 	kmutex_t *relock;
    578 
    579 	l = curlwp;
    580 	relock = NULL;
    581 	for (;;) {
    582 		/*
    583 		 * At this point we know the callout is not pending, but it
    584 		 * could be running on a CPU somewhere.  That can be curcpu
    585 		 * in a few cases:
    586 		 *
    587 		 * - curlwp is a higher priority soft interrupt
    588 		 * - the callout blocked on a lock and is currently asleep
    589 		 * - the callout itself has called callout_halt() (nice!)
    590 		 */
    591 		cc = c->c_cpu;
    592 		if (__predict_true(!callout_running_somewhere_else(c, cc)))
    593 			break;
    594 
    595 		/* It's running - need to wait for it to complete. */
    596 		if (interlock != NULL) {
    597 			/*
    598 			 * Avoid potential scheduler lock order problems by
    599 			 * dropping the interlock without the callout lock
    600 			 * held; then retry.
    601 			 */
    602 			mutex_spin_exit(lock);
    603 			mutex_exit(interlock);
    604 			relock = interlock;
    605 			interlock = NULL;
    606 		} else {
    607 			/* XXX Better to do priority inheritance. */
    608 			KASSERT(l->l_wchan == NULL);
    609 			cc->cc_nwait++;
    610 			cc->cc_ev_block.ev_count++;
    611 			l->l_kpriority = true;
    612 			sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
    613 			sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
    614 			    &sleep_syncobj, false);
    615 			sleepq_block(0, false, &sleep_syncobj);
    616 		}
    617 
    618 		/*
    619 		 * Re-lock the callout and check the state of play again.
    620 		 * It's a common design pattern for callouts to re-schedule
    621 		 * themselves so put a stop to it again if needed.
    622 		 */
    623 		lock = callout_lock(c);
    624 		if ((c->c_flags & CALLOUT_PENDING) != 0)
    625 			CIRCQ_REMOVE(&c->c_list);
    626 		c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    627 	}
    628 
    629 	SDT_PROBE5(sdt, kernel, callout, halt__done,
    630 	    c, c->c_func, c->c_arg, c->c_flags, /*expired*/true);
    631 
    632 	mutex_spin_exit(lock);
    633 	if (__predict_false(relock != NULL))
    634 		mutex_enter(relock);
    635 }
    636 
    637 #ifdef notyet
    638 /*
    639  * callout_bind:
    640  *
    641  *	Bind a callout so that it will only execute on one CPU.
    642  *	The callout must be stopped, and must be MPSAFE.
    643  *
    644  *	XXX Disabled for now until it is decided how to handle
    645  *	offlined CPUs.  We may want weak+strong binding.
    646  */
    647 void
    648 callout_bind(callout_t *cs, struct cpu_info *ci)
    649 {
    650 	callout_impl_t *c = (callout_impl_t *)cs;
    651 	struct callout_cpu *cc;
    652 	kmutex_t *lock;
    653 
    654 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
    655 	KASSERT(c->c_cpu->cc_active != c);
    656 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    657 	KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
    658 
    659 	lock = callout_lock(c);
    660 	cc = ci->ci_data.cpu_callout;
    661 	c->c_flags |= CALLOUT_BOUND;
    662 	if (c->c_cpu != cc) {
    663 		/*
    664 		 * Assigning c_cpu effectively unlocks the callout
    665 		 * structure, as we don't hold the new CPU's lock.
    666 		 * Issue memory barrier to prevent accesses being
    667 		 * reordered.
    668 		 */
    669 		membar_exit();
    670 		c->c_cpu = cc;
    671 	}
    672 	mutex_spin_exit(lock);
    673 }
    674 #endif
    675 
    676 void
    677 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
    678 {
    679 	callout_impl_t *c = (callout_impl_t *)cs;
    680 	kmutex_t *lock;
    681 
    682 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    683 	KASSERT(func != NULL);
    684 
    685 	lock = callout_lock(c);
    686 	SDT_PROBE4(sdt, kernel, callout, setfunc,  cs, func, arg, c->c_flags);
    687 	c->c_func = func;
    688 	c->c_arg = arg;
    689 	mutex_spin_exit(lock);
    690 }
    691 
    692 bool
    693 callout_expired(callout_t *cs)
    694 {
    695 	callout_impl_t *c = (callout_impl_t *)cs;
    696 	kmutex_t *lock;
    697 	bool rv;
    698 
    699 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    700 
    701 	lock = callout_lock(c);
    702 	rv = ((c->c_flags & CALLOUT_FIRED) != 0);
    703 	mutex_spin_exit(lock);
    704 
    705 	return rv;
    706 }
    707 
    708 bool
    709 callout_active(callout_t *cs)
    710 {
    711 	callout_impl_t *c = (callout_impl_t *)cs;
    712 	kmutex_t *lock;
    713 	bool rv;
    714 
    715 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    716 
    717 	lock = callout_lock(c);
    718 	rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
    719 	mutex_spin_exit(lock);
    720 
    721 	return rv;
    722 }
    723 
    724 bool
    725 callout_pending(callout_t *cs)
    726 {
    727 	callout_impl_t *c = (callout_impl_t *)cs;
    728 	kmutex_t *lock;
    729 	bool rv;
    730 
    731 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    732 
    733 	lock = callout_lock(c);
    734 	rv = ((c->c_flags & CALLOUT_PENDING) != 0);
    735 	mutex_spin_exit(lock);
    736 
    737 	return rv;
    738 }
    739 
    740 bool
    741 callout_invoking(callout_t *cs)
    742 {
    743 	callout_impl_t *c = (callout_impl_t *)cs;
    744 	kmutex_t *lock;
    745 	bool rv;
    746 
    747 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    748 
    749 	lock = callout_lock(c);
    750 	rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
    751 	mutex_spin_exit(lock);
    752 
    753 	return rv;
    754 }
    755 
    756 void
    757 callout_ack(callout_t *cs)
    758 {
    759 	callout_impl_t *c = (callout_impl_t *)cs;
    760 	kmutex_t *lock;
    761 
    762 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    763 
    764 	lock = callout_lock(c);
    765 	c->c_flags &= ~CALLOUT_INVOKING;
    766 	mutex_spin_exit(lock);
    767 }
    768 
    769 /*
    770  * callout_hardclock:
    771  *
    772  *	Called from hardclock() once every tick.  We schedule a soft
    773  *	interrupt if there is work to be done.
    774  */
    775 void
    776 callout_hardclock(void)
    777 {
    778 	struct callout_cpu *cc;
    779 	int needsoftclock, ticks;
    780 
    781 	cc = curcpu()->ci_data.cpu_callout;
    782 	mutex_spin_enter(cc->cc_lock);
    783 
    784 	ticks = ++cc->cc_ticks;
    785 
    786 	MOVEBUCKET(cc, 0, ticks);
    787 	if (MASKWHEEL(0, ticks) == 0) {
    788 		MOVEBUCKET(cc, 1, ticks);
    789 		if (MASKWHEEL(1, ticks) == 0) {
    790 			MOVEBUCKET(cc, 2, ticks);
    791 			if (MASKWHEEL(2, ticks) == 0)
    792 				MOVEBUCKET(cc, 3, ticks);
    793 		}
    794 	}
    795 
    796 	needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
    797 	mutex_spin_exit(cc->cc_lock);
    798 
    799 	if (needsoftclock)
    800 		softint_schedule(callout_sih);
    801 }
    802 
    803 /*
    804  * callout_softclock:
    805  *
    806  *	Soft interrupt handler, scheduled above if there is work to
    807  * 	be done.  Callouts are made in soft interrupt context.
    808  */
    809 static void
    810 callout_softclock(void *v)
    811 {
    812 	callout_impl_t *c;
    813 	struct callout_cpu *cc;
    814 	void (*func)(void *);
    815 	void *arg;
    816 	int mpsafe, count, ticks, delta;
    817 	u_int flags __unused;
    818 	lwp_t *l;
    819 
    820 	l = curlwp;
    821 	KASSERT(l->l_cpu == curcpu());
    822 	cc = l->l_cpu->ci_data.cpu_callout;
    823 
    824 	mutex_spin_enter(cc->cc_lock);
    825 	cc->cc_lwp = l;
    826 	while (!CIRCQ_EMPTY(&cc->cc_todo)) {
    827 		c = CIRCQ_FIRST(&cc->cc_todo);
    828 		KASSERT(c->c_magic == CALLOUT_MAGIC);
    829 		KASSERT(c->c_func != NULL);
    830 		KASSERT(c->c_cpu == cc);
    831 		KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
    832 		KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
    833 		CIRCQ_REMOVE(&c->c_list);
    834 
    835 		/* If due run it, otherwise insert it into the right bucket. */
    836 		ticks = cc->cc_ticks;
    837 		delta = (int)((unsigned)c->c_time - (unsigned)ticks);
    838 		if (delta > 0) {
    839 			CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
    840 			continue;
    841 		}
    842 		if (delta < 0)
    843 			cc->cc_ev_late.ev_count++;
    844 
    845 		c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
    846 		    (CALLOUT_FIRED | CALLOUT_INVOKING);
    847 		mpsafe = (c->c_flags & CALLOUT_MPSAFE);
    848 		func = c->c_func;
    849 		arg = c->c_arg;
    850 		cc->cc_active = c;
    851 		flags = c->c_flags;
    852 
    853 		mutex_spin_exit(cc->cc_lock);
    854 		KASSERT(func != NULL);
    855 		SDT_PROBE4(sdt, kernel, callout, entry,  c, func, arg, flags);
    856 		if (__predict_false(!mpsafe)) {
    857 			KERNEL_LOCK(1, NULL);
    858 			(*func)(arg);
    859 			KERNEL_UNLOCK_ONE(NULL);
    860 		} else
    861 			(*func)(arg);
    862 		SDT_PROBE4(sdt, kernel, callout, return,  c, func, arg, flags);
    863 		KASSERTMSG(l->l_blcnt == 0,
    864 		    "callout %p func %p leaked %d biglocks",
    865 		    c, func, l->l_blcnt);
    866 		mutex_spin_enter(cc->cc_lock);
    867 
    868 		/*
    869 		 * We can't touch 'c' here because it might be
    870 		 * freed already.  If LWPs waiting for callout
    871 		 * to complete, awaken them.
    872 		 */
    873 		cc->cc_active = NULL;
    874 		if ((count = cc->cc_nwait) != 0) {
    875 			cc->cc_nwait = 0;
    876 			/* sleepq_wake() drops the lock. */
    877 			sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
    878 			mutex_spin_enter(cc->cc_lock);
    879 		}
    880 	}
    881 	cc->cc_lwp = NULL;
    882 	mutex_spin_exit(cc->cc_lock);
    883 }
    884 #endif /* !CRASH */
    885 
    886 #ifdef DDB
    887 static void
    888 db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *kbucket,
    889     struct callout_circq *bucket)
    890 {
    891 	callout_impl_t *c, ci;
    892 	db_expr_t offset;
    893 	const char *name;
    894 	static char question[] = "?";
    895 	int b;
    896 
    897 	if (CIRCQ_LAST(bucket, kbucket))
    898 		return;
    899 
    900 	for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
    901 		db_read_bytes((db_addr_t)c, sizeof(ci), (char *)&ci);
    902 		c = &ci;
    903 		db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
    904 		    &offset);
    905 		name = name ? name : question;
    906 		b = (bucket - cc->cc_wheel);
    907 		if (b < 0)
    908 			b = -WHEELSIZE;
    909 		db_printf("%9d %2d/%-4d %16lx  %s\n",
    910 		    c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
    911 		    (u_long)c->c_arg, name);
    912 		if (CIRCQ_LAST(&c->c_list, kbucket))
    913 			break;
    914 	}
    915 }
    916 
    917 void
    918 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
    919 {
    920 	struct callout_cpu *cc;
    921 	struct cpu_info *ci;
    922 	int b;
    923 
    924 #ifndef CRASH
    925 	db_printf("hardclock_ticks now: %d\n", getticks());
    926 #endif
    927 	db_printf("    ticks  wheel               arg  func\n");
    928 
    929 	/*
    930 	 * Don't lock the callwheel; all the other CPUs are paused
    931 	 * anyhow, and we might be called in a circumstance where
    932 	 * some other CPU was paused while holding the lock.
    933 	 */
    934 	for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
    935 		db_read_bytes((db_addr_t)ci +
    936 		    offsetof(struct cpu_info, ci_data.cpu_callout),
    937 		    sizeof(cc), (char *)&cc);
    938 		db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
    939 		db_show_callout_bucket(&ccb, &cc->cc_todo, &ccb.cc_todo);
    940 	}
    941 	for (b = 0; b < BUCKETS; b++) {
    942 		for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
    943 			db_read_bytes((db_addr_t)ci +
    944 			    offsetof(struct cpu_info, ci_data.cpu_callout),
    945 			    sizeof(cc), (char *)&cc);
    946 			db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
    947 			db_show_callout_bucket(&ccb, &cc->cc_wheel[b],
    948 			    &ccb.cc_wheel[b]);
    949 		}
    950 	}
    951 }
    952 #endif /* DDB */
    953