kern_timeout.c revision 1.77 1 /* $NetBSD: kern_timeout.c,v 1.77 2023/09/23 18:48:04 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2006, 2007, 2008, 2009, 2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
34 * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 *
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. The name of the author may not be used to endorse or promote products
47 * derived from this software without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
50 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
51 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
52 * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
53 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 */
60
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.77 2023/09/23 18:48:04 ad Exp $");
63
64 /*
65 * Timeouts are kept in a hierarchical timing wheel. The c_time is the
66 * value of c_cpu->cc_ticks when the timeout should be called. There are
67 * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
68 * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
69 * a Timer Facility" by George Varghese and Tony Lauck.
70 *
71 * Some of the "math" in here is a bit tricky. We have to beware of
72 * wrapping ints.
73 *
74 * We use the fact that any element added to the queue must be added with
75 * a positive time. That means that any element `to' on the queue cannot
76 * be scheduled to timeout further in time than INT_MAX, but c->c_time can
77 * be positive or negative so comparing it with anything is dangerous.
78 * The only way we can use the c->c_time value in any predictable way is
79 * when we calculate how far in the future `to' will timeout - "c->c_time
80 * - c->c_cpu->cc_ticks". The result will always be positive for future
81 * timeouts and 0 or negative for due timeouts.
82 */
83
84 #define _CALLOUT_PRIVATE
85
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/callout.h>
90 #include <sys/lwp.h>
91 #include <sys/mutex.h>
92 #include <sys/proc.h>
93 #include <sys/sleepq.h>
94 #include <sys/syncobj.h>
95 #include <sys/evcnt.h>
96 #include <sys/intr.h>
97 #include <sys/cpu.h>
98 #include <sys/kmem.h>
99 #include <sys/sdt.h>
100
101 #ifdef DDB
102 #include <machine/db_machdep.h>
103 #include <ddb/db_interface.h>
104 #include <ddb/db_access.h>
105 #include <ddb/db_cpu.h>
106 #include <ddb/db_sym.h>
107 #include <ddb/db_output.h>
108 #endif
109
110 #define BUCKETS 1024
111 #define WHEELSIZE 256
112 #define WHEELMASK 255
113 #define WHEELBITS 8
114
115 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
116
117 #define BUCKET(cc, rel, abs) \
118 (((rel) <= (1 << (2*WHEELBITS))) \
119 ? ((rel) <= (1 << WHEELBITS)) \
120 ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))] \
121 : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE] \
122 : ((rel) <= (1 << (3*WHEELBITS))) \
123 ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE] \
124 : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
125
126 #define MOVEBUCKET(cc, wheel, time) \
127 CIRCQ_APPEND(&(cc)->cc_todo, \
128 &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
129
130 /*
131 * Circular queue definitions.
132 */
133
134 #define CIRCQ_INIT(list) \
135 do { \
136 (list)->cq_next_l = (list); \
137 (list)->cq_prev_l = (list); \
138 } while (/*CONSTCOND*/0)
139
140 #define CIRCQ_INSERT(elem, list) \
141 do { \
142 (elem)->cq_prev_e = (list)->cq_prev_e; \
143 (elem)->cq_next_l = (list); \
144 (list)->cq_prev_l->cq_next_l = (elem); \
145 (list)->cq_prev_l = (elem); \
146 } while (/*CONSTCOND*/0)
147
148 #define CIRCQ_APPEND(fst, snd) \
149 do { \
150 if (!CIRCQ_EMPTY(snd)) { \
151 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l; \
152 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l; \
153 (snd)->cq_prev_l->cq_next_l = (fst); \
154 (fst)->cq_prev_l = (snd)->cq_prev_l; \
155 CIRCQ_INIT(snd); \
156 } \
157 } while (/*CONSTCOND*/0)
158
159 #define CIRCQ_REMOVE(elem) \
160 do { \
161 (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e; \
162 (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e; \
163 } while (/*CONSTCOND*/0)
164
165 #define CIRCQ_FIRST(list) ((list)->cq_next_e)
166 #define CIRCQ_NEXT(elem) ((elem)->cq_next_e)
167 #define CIRCQ_LAST(elem,list) ((elem)->cq_next_l == (list))
168 #define CIRCQ_EMPTY(list) ((list)->cq_next_l == (list))
169
170 struct callout_cpu {
171 kmutex_t *cc_lock;
172 sleepq_t cc_sleepq;
173 u_int cc_nwait;
174 u_int cc_ticks;
175 lwp_t *cc_lwp;
176 callout_impl_t *cc_active;
177 struct evcnt cc_ev_late;
178 struct evcnt cc_ev_block;
179 struct callout_circq cc_todo; /* Worklist */
180 struct callout_circq cc_wheel[BUCKETS]; /* Queues of timeouts */
181 char cc_name1[12];
182 char cc_name2[12];
183 struct cpu_info *cc_cpu;
184 };
185
186 #ifdef DDB
187 static struct callout_cpu ccb;
188 #endif
189
190 #ifndef CRASH /* _KERNEL */
191 static void callout_softclock(void *);
192 static void callout_wait(callout_impl_t *, void *, kmutex_t *);
193
194 static struct callout_cpu callout_cpu0 __cacheline_aligned;
195 static void *callout_sih __read_mostly;
196
197 SDT_PROBE_DEFINE2(sdt, kernel, callout, init,
198 "struct callout *"/*ch*/,
199 "unsigned"/*flags*/);
200 SDT_PROBE_DEFINE1(sdt, kernel, callout, destroy,
201 "struct callout *"/*ch*/);
202 SDT_PROBE_DEFINE4(sdt, kernel, callout, setfunc,
203 "struct callout *"/*ch*/,
204 "void (*)(void *)"/*func*/,
205 "void *"/*arg*/,
206 "unsigned"/*flags*/);
207 SDT_PROBE_DEFINE5(sdt, kernel, callout, schedule,
208 "struct callout *"/*ch*/,
209 "void (*)(void *)"/*func*/,
210 "void *"/*arg*/,
211 "unsigned"/*flags*/,
212 "int"/*ticks*/);
213 SDT_PROBE_DEFINE6(sdt, kernel, callout, migrate,
214 "struct callout *"/*ch*/,
215 "void (*)(void *)"/*func*/,
216 "void *"/*arg*/,
217 "unsigned"/*flags*/,
218 "struct cpu_info *"/*ocpu*/,
219 "struct cpu_info *"/*ncpu*/);
220 SDT_PROBE_DEFINE4(sdt, kernel, callout, entry,
221 "struct callout *"/*ch*/,
222 "void (*)(void *)"/*func*/,
223 "void *"/*arg*/,
224 "unsigned"/*flags*/);
225 SDT_PROBE_DEFINE4(sdt, kernel, callout, return,
226 "struct callout *"/*ch*/,
227 "void (*)(void *)"/*func*/,
228 "void *"/*arg*/,
229 "unsigned"/*flags*/);
230 SDT_PROBE_DEFINE5(sdt, kernel, callout, stop,
231 "struct callout *"/*ch*/,
232 "void (*)(void *)"/*func*/,
233 "void *"/*arg*/,
234 "unsigned"/*flags*/,
235 "bool"/*expired*/);
236 SDT_PROBE_DEFINE4(sdt, kernel, callout, halt,
237 "struct callout *"/*ch*/,
238 "void (*)(void *)"/*func*/,
239 "void *"/*arg*/,
240 "unsigned"/*flags*/);
241 SDT_PROBE_DEFINE5(sdt, kernel, callout, halt__done,
242 "struct callout *"/*ch*/,
243 "void (*)(void *)"/*func*/,
244 "void *"/*arg*/,
245 "unsigned"/*flags*/,
246 "bool"/*expired*/);
247
248 static inline kmutex_t *
249 callout_lock(callout_impl_t *c)
250 {
251 struct callout_cpu *cc;
252 kmutex_t *lock;
253
254 for (;;) {
255 cc = c->c_cpu;
256 lock = cc->cc_lock;
257 mutex_spin_enter(lock);
258 if (__predict_true(cc == c->c_cpu))
259 return lock;
260 mutex_spin_exit(lock);
261 }
262 }
263
264 /*
265 * Check if the callout is currently running on an LWP that isn't curlwp.
266 */
267 static inline bool
268 callout_running_somewhere_else(callout_impl_t *c, struct callout_cpu *cc)
269 {
270 KASSERT(c->c_cpu == cc);
271
272 return cc->cc_active == c && cc->cc_lwp != curlwp;
273 }
274
275 /*
276 * callout_startup:
277 *
278 * Initialize the callout facility, called at system startup time.
279 * Do just enough to allow callouts to be safely registered.
280 */
281 void
282 callout_startup(void)
283 {
284 struct callout_cpu *cc;
285 int b;
286
287 KASSERT(curcpu()->ci_data.cpu_callout == NULL);
288
289 cc = &callout_cpu0;
290 cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
291 CIRCQ_INIT(&cc->cc_todo);
292 for (b = 0; b < BUCKETS; b++)
293 CIRCQ_INIT(&cc->cc_wheel[b]);
294 curcpu()->ci_data.cpu_callout = cc;
295 }
296
297 /*
298 * callout_init_cpu:
299 *
300 * Per-CPU initialization.
301 */
302 CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
303
304 void
305 callout_init_cpu(struct cpu_info *ci)
306 {
307 struct callout_cpu *cc;
308 int b;
309
310 if ((cc = ci->ci_data.cpu_callout) == NULL) {
311 cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
312 cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
313 CIRCQ_INIT(&cc->cc_todo);
314 for (b = 0; b < BUCKETS; b++)
315 CIRCQ_INIT(&cc->cc_wheel[b]);
316 } else {
317 /* Boot CPU, one time only. */
318 callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
319 callout_softclock, NULL);
320 if (callout_sih == NULL)
321 panic("callout_init_cpu (2)");
322 }
323
324 sleepq_init(&cc->cc_sleepq);
325
326 snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
327 cpu_index(ci));
328 evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
329 NULL, "callout", cc->cc_name1);
330
331 snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
332 cpu_index(ci));
333 evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
334 NULL, "callout", cc->cc_name2);
335
336 cc->cc_cpu = ci;
337 ci->ci_data.cpu_callout = cc;
338 }
339
340 /*
341 * callout_init:
342 *
343 * Initialize a callout structure. This must be quick, so we fill
344 * only the minimum number of fields.
345 */
346 void
347 callout_init(callout_t *cs, u_int flags)
348 {
349 callout_impl_t *c = (callout_impl_t *)cs;
350 struct callout_cpu *cc;
351
352 KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
353
354 SDT_PROBE2(sdt, kernel, callout, init, cs, flags);
355
356 cc = curcpu()->ci_data.cpu_callout;
357 c->c_func = NULL;
358 c->c_magic = CALLOUT_MAGIC;
359 if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
360 c->c_flags = flags;
361 c->c_cpu = cc;
362 return;
363 }
364 c->c_flags = flags | CALLOUT_BOUND;
365 c->c_cpu = &callout_cpu0;
366 }
367
368 /*
369 * callout_destroy:
370 *
371 * Destroy a callout structure. The callout must be stopped.
372 */
373 void
374 callout_destroy(callout_t *cs)
375 {
376 callout_impl_t *c = (callout_impl_t *)cs;
377
378 SDT_PROBE1(sdt, kernel, callout, destroy, cs);
379
380 KASSERTMSG(c->c_magic == CALLOUT_MAGIC,
381 "callout %p: c_magic (%#x) != CALLOUT_MAGIC (%#x)",
382 c, c->c_magic, CALLOUT_MAGIC);
383 /*
384 * It's not necessary to lock in order to see the correct value
385 * of c->c_flags. If the callout could potentially have been
386 * running, the current thread should have stopped it.
387 */
388 KASSERTMSG((c->c_flags & CALLOUT_PENDING) == 0,
389 "pending callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
390 c, c->c_func, c->c_flags, __builtin_return_address(0));
391 KASSERTMSG(!callout_running_somewhere_else(c, c->c_cpu),
392 "running callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
393 c, c->c_func, c->c_flags, __builtin_return_address(0));
394 c->c_magic = 0;
395 }
396
397 /*
398 * callout_schedule_locked:
399 *
400 * Schedule a callout to run. The function and argument must
401 * already be set in the callout structure. Must be called with
402 * callout_lock.
403 */
404 static void
405 callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
406 {
407 struct callout_cpu *cc, *occ;
408 int old_time;
409
410 SDT_PROBE5(sdt, kernel, callout, schedule,
411 c, c->c_func, c->c_arg, c->c_flags, to_ticks);
412
413 KASSERT(to_ticks >= 0);
414 KASSERT(c->c_func != NULL);
415
416 /* Initialize the time here, it won't change. */
417 occ = c->c_cpu;
418 c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
419
420 /*
421 * If this timeout is already scheduled and now is moved
422 * earlier, reschedule it now. Otherwise leave it in place
423 * and let it be rescheduled later.
424 */
425 if ((c->c_flags & CALLOUT_PENDING) != 0) {
426 /* Leave on existing CPU. */
427 old_time = c->c_time;
428 c->c_time = to_ticks + occ->cc_ticks;
429 if (c->c_time - old_time < 0) {
430 CIRCQ_REMOVE(&c->c_list);
431 CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
432 }
433 mutex_spin_exit(lock);
434 return;
435 }
436
437 cc = curcpu()->ci_data.cpu_callout;
438 if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
439 !mutex_tryenter(cc->cc_lock)) {
440 /* Leave on existing CPU. */
441 c->c_time = to_ticks + occ->cc_ticks;
442 c->c_flags |= CALLOUT_PENDING;
443 CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
444 } else {
445 /* Move to this CPU. */
446 c->c_cpu = cc;
447 c->c_time = to_ticks + cc->cc_ticks;
448 c->c_flags |= CALLOUT_PENDING;
449 CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
450 mutex_spin_exit(cc->cc_lock);
451 SDT_PROBE6(sdt, kernel, callout, migrate,
452 c, c->c_func, c->c_arg, c->c_flags,
453 occ->cc_cpu, cc->cc_cpu);
454 }
455 mutex_spin_exit(lock);
456 }
457
458 /*
459 * callout_reset:
460 *
461 * Reset a callout structure with a new function and argument, and
462 * schedule it to run.
463 */
464 void
465 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
466 {
467 callout_impl_t *c = (callout_impl_t *)cs;
468 kmutex_t *lock;
469
470 KASSERT(c->c_magic == CALLOUT_MAGIC);
471 KASSERT(func != NULL);
472
473 lock = callout_lock(c);
474 SDT_PROBE4(sdt, kernel, callout, setfunc, cs, func, arg, c->c_flags);
475 c->c_func = func;
476 c->c_arg = arg;
477 callout_schedule_locked(c, lock, to_ticks);
478 }
479
480 /*
481 * callout_schedule:
482 *
483 * Schedule a callout to run. The function and argument must
484 * already be set in the callout structure.
485 */
486 void
487 callout_schedule(callout_t *cs, int to_ticks)
488 {
489 callout_impl_t *c = (callout_impl_t *)cs;
490 kmutex_t *lock;
491
492 KASSERT(c->c_magic == CALLOUT_MAGIC);
493
494 lock = callout_lock(c);
495 callout_schedule_locked(c, lock, to_ticks);
496 }
497
498 /*
499 * callout_stop:
500 *
501 * Try to cancel a pending callout. It may be too late: the callout
502 * could be running on another CPU. If called from interrupt context,
503 * the callout could already be in progress at a lower priority.
504 */
505 bool
506 callout_stop(callout_t *cs)
507 {
508 callout_impl_t *c = (callout_impl_t *)cs;
509 kmutex_t *lock;
510 bool expired;
511
512 KASSERT(c->c_magic == CALLOUT_MAGIC);
513
514 lock = callout_lock(c);
515
516 if ((c->c_flags & CALLOUT_PENDING) != 0)
517 CIRCQ_REMOVE(&c->c_list);
518 expired = ((c->c_flags & CALLOUT_FIRED) != 0);
519 c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
520
521 SDT_PROBE5(sdt, kernel, callout, stop,
522 c, c->c_func, c->c_arg, c->c_flags, expired);
523
524 mutex_spin_exit(lock);
525
526 return expired;
527 }
528
529 /*
530 * callout_halt:
531 *
532 * Cancel a pending callout. If in-flight, block until it completes.
533 * May not be called from a hard interrupt handler. If the callout
534 * can take locks, the caller of callout_halt() must not hold any of
535 * those locks, otherwise the two could deadlock. If 'interlock' is
536 * non-NULL and we must wait for the callout to complete, it will be
537 * released and re-acquired before returning.
538 */
539 bool
540 callout_halt(callout_t *cs, void *interlock)
541 {
542 callout_impl_t *c = (callout_impl_t *)cs;
543 kmutex_t *lock;
544
545 KASSERT(c->c_magic == CALLOUT_MAGIC);
546 KASSERT(!cpu_intr_p());
547 KASSERT(interlock == NULL || mutex_owned(interlock));
548
549 /* Fast path. */
550 lock = callout_lock(c);
551 SDT_PROBE4(sdt, kernel, callout, halt,
552 c, c->c_func, c->c_arg, c->c_flags);
553 if ((c->c_flags & CALLOUT_PENDING) != 0)
554 CIRCQ_REMOVE(&c->c_list);
555 c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
556 if (__predict_false(callout_running_somewhere_else(c, c->c_cpu))) {
557 callout_wait(c, interlock, lock);
558 return true;
559 }
560 SDT_PROBE5(sdt, kernel, callout, halt__done,
561 c, c->c_func, c->c_arg, c->c_flags, /*expired*/false);
562 mutex_spin_exit(lock);
563 return false;
564 }
565
566 /*
567 * callout_wait:
568 *
569 * Slow path for callout_halt(). Deliberately marked __noinline to
570 * prevent unneeded overhead in the caller.
571 */
572 static void __noinline
573 callout_wait(callout_impl_t *c, void *interlock, kmutex_t *lock)
574 {
575 struct callout_cpu *cc;
576 struct lwp *l;
577 kmutex_t *relock;
578
579 l = curlwp;
580 relock = NULL;
581 for (;;) {
582 /*
583 * At this point we know the callout is not pending, but it
584 * could be running on a CPU somewhere. That can be curcpu
585 * in a few cases:
586 *
587 * - curlwp is a higher priority soft interrupt
588 * - the callout blocked on a lock and is currently asleep
589 * - the callout itself has called callout_halt() (nice!)
590 */
591 cc = c->c_cpu;
592 if (__predict_true(!callout_running_somewhere_else(c, cc)))
593 break;
594
595 /* It's running - need to wait for it to complete. */
596 if (interlock != NULL) {
597 /*
598 * Avoid potential scheduler lock order problems by
599 * dropping the interlock without the callout lock
600 * held; then retry.
601 */
602 mutex_spin_exit(lock);
603 mutex_exit(interlock);
604 relock = interlock;
605 interlock = NULL;
606 } else {
607 /* XXX Better to do priority inheritance. */
608 KASSERT(l->l_wchan == NULL);
609 cc->cc_nwait++;
610 cc->cc_ev_block.ev_count++;
611 sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
612 sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
613 &sleep_syncobj, false);
614 sleepq_block(0, false, &sleep_syncobj);
615 }
616
617 /*
618 * Re-lock the callout and check the state of play again.
619 * It's a common design pattern for callouts to re-schedule
620 * themselves so put a stop to it again if needed.
621 */
622 lock = callout_lock(c);
623 if ((c->c_flags & CALLOUT_PENDING) != 0)
624 CIRCQ_REMOVE(&c->c_list);
625 c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
626 }
627
628 SDT_PROBE5(sdt, kernel, callout, halt__done,
629 c, c->c_func, c->c_arg, c->c_flags, /*expired*/true);
630
631 mutex_spin_exit(lock);
632 if (__predict_false(relock != NULL))
633 mutex_enter(relock);
634 }
635
636 #ifdef notyet
637 /*
638 * callout_bind:
639 *
640 * Bind a callout so that it will only execute on one CPU.
641 * The callout must be stopped, and must be MPSAFE.
642 *
643 * XXX Disabled for now until it is decided how to handle
644 * offlined CPUs. We may want weak+strong binding.
645 */
646 void
647 callout_bind(callout_t *cs, struct cpu_info *ci)
648 {
649 callout_impl_t *c = (callout_impl_t *)cs;
650 struct callout_cpu *cc;
651 kmutex_t *lock;
652
653 KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
654 KASSERT(c->c_cpu->cc_active != c);
655 KASSERT(c->c_magic == CALLOUT_MAGIC);
656 KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
657
658 lock = callout_lock(c);
659 cc = ci->ci_data.cpu_callout;
660 c->c_flags |= CALLOUT_BOUND;
661 if (c->c_cpu != cc) {
662 /*
663 * Assigning c_cpu effectively unlocks the callout
664 * structure, as we don't hold the new CPU's lock.
665 * Issue memory barrier to prevent accesses being
666 * reordered.
667 */
668 membar_exit();
669 c->c_cpu = cc;
670 }
671 mutex_spin_exit(lock);
672 }
673 #endif
674
675 void
676 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
677 {
678 callout_impl_t *c = (callout_impl_t *)cs;
679 kmutex_t *lock;
680
681 KASSERT(c->c_magic == CALLOUT_MAGIC);
682 KASSERT(func != NULL);
683
684 lock = callout_lock(c);
685 SDT_PROBE4(sdt, kernel, callout, setfunc, cs, func, arg, c->c_flags);
686 c->c_func = func;
687 c->c_arg = arg;
688 mutex_spin_exit(lock);
689 }
690
691 bool
692 callout_expired(callout_t *cs)
693 {
694 callout_impl_t *c = (callout_impl_t *)cs;
695 kmutex_t *lock;
696 bool rv;
697
698 KASSERT(c->c_magic == CALLOUT_MAGIC);
699
700 lock = callout_lock(c);
701 rv = ((c->c_flags & CALLOUT_FIRED) != 0);
702 mutex_spin_exit(lock);
703
704 return rv;
705 }
706
707 bool
708 callout_active(callout_t *cs)
709 {
710 callout_impl_t *c = (callout_impl_t *)cs;
711 kmutex_t *lock;
712 bool rv;
713
714 KASSERT(c->c_magic == CALLOUT_MAGIC);
715
716 lock = callout_lock(c);
717 rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
718 mutex_spin_exit(lock);
719
720 return rv;
721 }
722
723 bool
724 callout_pending(callout_t *cs)
725 {
726 callout_impl_t *c = (callout_impl_t *)cs;
727 kmutex_t *lock;
728 bool rv;
729
730 KASSERT(c->c_magic == CALLOUT_MAGIC);
731
732 lock = callout_lock(c);
733 rv = ((c->c_flags & CALLOUT_PENDING) != 0);
734 mutex_spin_exit(lock);
735
736 return rv;
737 }
738
739 bool
740 callout_invoking(callout_t *cs)
741 {
742 callout_impl_t *c = (callout_impl_t *)cs;
743 kmutex_t *lock;
744 bool rv;
745
746 KASSERT(c->c_magic == CALLOUT_MAGIC);
747
748 lock = callout_lock(c);
749 rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
750 mutex_spin_exit(lock);
751
752 return rv;
753 }
754
755 void
756 callout_ack(callout_t *cs)
757 {
758 callout_impl_t *c = (callout_impl_t *)cs;
759 kmutex_t *lock;
760
761 KASSERT(c->c_magic == CALLOUT_MAGIC);
762
763 lock = callout_lock(c);
764 c->c_flags &= ~CALLOUT_INVOKING;
765 mutex_spin_exit(lock);
766 }
767
768 /*
769 * callout_hardclock:
770 *
771 * Called from hardclock() once every tick. We schedule a soft
772 * interrupt if there is work to be done.
773 */
774 void
775 callout_hardclock(void)
776 {
777 struct callout_cpu *cc;
778 int needsoftclock, ticks;
779
780 cc = curcpu()->ci_data.cpu_callout;
781 mutex_spin_enter(cc->cc_lock);
782
783 ticks = ++cc->cc_ticks;
784
785 MOVEBUCKET(cc, 0, ticks);
786 if (MASKWHEEL(0, ticks) == 0) {
787 MOVEBUCKET(cc, 1, ticks);
788 if (MASKWHEEL(1, ticks) == 0) {
789 MOVEBUCKET(cc, 2, ticks);
790 if (MASKWHEEL(2, ticks) == 0)
791 MOVEBUCKET(cc, 3, ticks);
792 }
793 }
794
795 needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
796 mutex_spin_exit(cc->cc_lock);
797
798 if (needsoftclock)
799 softint_schedule(callout_sih);
800 }
801
802 /*
803 * callout_softclock:
804 *
805 * Soft interrupt handler, scheduled above if there is work to
806 * be done. Callouts are made in soft interrupt context.
807 */
808 static void
809 callout_softclock(void *v)
810 {
811 callout_impl_t *c;
812 struct callout_cpu *cc;
813 void (*func)(void *);
814 void *arg;
815 int mpsafe, count, ticks, delta;
816 u_int flags __unused;
817 lwp_t *l;
818
819 l = curlwp;
820 KASSERT(l->l_cpu == curcpu());
821 cc = l->l_cpu->ci_data.cpu_callout;
822
823 mutex_spin_enter(cc->cc_lock);
824 cc->cc_lwp = l;
825 while (!CIRCQ_EMPTY(&cc->cc_todo)) {
826 c = CIRCQ_FIRST(&cc->cc_todo);
827 KASSERT(c->c_magic == CALLOUT_MAGIC);
828 KASSERT(c->c_func != NULL);
829 KASSERT(c->c_cpu == cc);
830 KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
831 KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
832 CIRCQ_REMOVE(&c->c_list);
833
834 /* If due run it, otherwise insert it into the right bucket. */
835 ticks = cc->cc_ticks;
836 delta = (int)((unsigned)c->c_time - (unsigned)ticks);
837 if (delta > 0) {
838 CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
839 continue;
840 }
841 if (delta < 0)
842 cc->cc_ev_late.ev_count++;
843
844 c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
845 (CALLOUT_FIRED | CALLOUT_INVOKING);
846 mpsafe = (c->c_flags & CALLOUT_MPSAFE);
847 func = c->c_func;
848 arg = c->c_arg;
849 cc->cc_active = c;
850 flags = c->c_flags;
851
852 mutex_spin_exit(cc->cc_lock);
853 KASSERT(func != NULL);
854 SDT_PROBE4(sdt, kernel, callout, entry, c, func, arg, flags);
855 if (__predict_false(!mpsafe)) {
856 KERNEL_LOCK(1, NULL);
857 (*func)(arg);
858 KERNEL_UNLOCK_ONE(NULL);
859 } else
860 (*func)(arg);
861 SDT_PROBE4(sdt, kernel, callout, return, c, func, arg, flags);
862 KASSERTMSG(l->l_blcnt == 0,
863 "callout %p func %p leaked %d biglocks",
864 c, func, l->l_blcnt);
865 mutex_spin_enter(cc->cc_lock);
866
867 /*
868 * We can't touch 'c' here because it might be
869 * freed already. If LWPs waiting for callout
870 * to complete, awaken them.
871 */
872 cc->cc_active = NULL;
873 if ((count = cc->cc_nwait) != 0) {
874 cc->cc_nwait = 0;
875 /* sleepq_wake() drops the lock. */
876 sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
877 mutex_spin_enter(cc->cc_lock);
878 }
879 }
880 cc->cc_lwp = NULL;
881 mutex_spin_exit(cc->cc_lock);
882 }
883 #endif /* !CRASH */
884
885 #ifdef DDB
886 static void
887 db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *kbucket,
888 struct callout_circq *bucket)
889 {
890 callout_impl_t *c, ci;
891 db_expr_t offset;
892 const char *name;
893 static char question[] = "?";
894 int b;
895
896 if (CIRCQ_LAST(bucket, kbucket))
897 return;
898
899 for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
900 db_read_bytes((db_addr_t)c, sizeof(ci), (char *)&ci);
901 c = &ci;
902 db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
903 &offset);
904 name = name ? name : question;
905 b = (bucket - cc->cc_wheel);
906 if (b < 0)
907 b = -WHEELSIZE;
908 db_printf("%9d %2d/%-4d %16lx %s\n",
909 c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
910 (u_long)c->c_arg, name);
911 if (CIRCQ_LAST(&c->c_list, kbucket))
912 break;
913 }
914 }
915
916 void
917 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
918 {
919 struct callout_cpu *cc;
920 struct cpu_info *ci;
921 int b;
922
923 #ifndef CRASH
924 db_printf("hardclock_ticks now: %d\n", getticks());
925 #endif
926 db_printf(" ticks wheel arg func\n");
927
928 /*
929 * Don't lock the callwheel; all the other CPUs are paused
930 * anyhow, and we might be called in a circumstance where
931 * some other CPU was paused while holding the lock.
932 */
933 for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
934 db_read_bytes((db_addr_t)ci +
935 offsetof(struct cpu_info, ci_data.cpu_callout),
936 sizeof(cc), (char *)&cc);
937 db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
938 db_show_callout_bucket(&ccb, &cc->cc_todo, &ccb.cc_todo);
939 }
940 for (b = 0; b < BUCKETS; b++) {
941 for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
942 db_read_bytes((db_addr_t)ci +
943 offsetof(struct cpu_info, ci_data.cpu_callout),
944 sizeof(cc), (char *)&cc);
945 db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
946 db_show_callout_bucket(&ccb, &cc->cc_wheel[b],
947 &ccb.cc_wheel[b]);
948 }
949 }
950 }
951 #endif /* DDB */
952