Home | History | Annotate | Line # | Download | only in kern
kern_uuid.c revision 1.16
      1  1.16     joerg /*	$NetBSD: kern_uuid.c,v 1.16 2008/11/18 14:01:03 joerg Exp $	*/
      2   1.1    tsarna 
      3   1.1    tsarna /*
      4   1.1    tsarna  * Copyright (c) 2002 Marcel Moolenaar
      5   1.1    tsarna  * All rights reserved.
      6   1.1    tsarna  *
      7   1.1    tsarna  * Redistribution and use in source and binary forms, with or without
      8   1.1    tsarna  * modification, are permitted provided that the following conditions
      9   1.1    tsarna  * are met:
     10   1.1    tsarna  *
     11   1.1    tsarna  * 1. Redistributions of source code must retain the above copyright
     12   1.1    tsarna  *    notice, this list of conditions and the following disclaimer.
     13   1.1    tsarna  * 2. Redistributions in binary form must reproduce the above copyright
     14   1.1    tsarna  *    notice, this list of conditions and the following disclaimer in the
     15   1.1    tsarna  *    documentation and/or other materials provided with the distribution.
     16   1.1    tsarna  *
     17   1.1    tsarna  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     18   1.1    tsarna  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     19   1.1    tsarna  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20   1.1    tsarna  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     21   1.1    tsarna  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     22   1.1    tsarna  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23   1.1    tsarna  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24   1.1    tsarna  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25   1.1    tsarna  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     26   1.1    tsarna  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27   1.2   thorpej  *
     28   1.2   thorpej  * $FreeBSD: /repoman/r/ncvs/src/sys/kern/kern_uuid.c,v 1.7 2004/01/12 13:34:11 rse Exp $
     29   1.1    tsarna  */
     30   1.1    tsarna 
     31   1.1    tsarna #include <sys/cdefs.h>
     32  1.16     joerg __KERNEL_RCSID(0, "$NetBSD: kern_uuid.c,v 1.16 2008/11/18 14:01:03 joerg Exp $");
     33   1.1    tsarna 
     34   1.1    tsarna #include <sys/param.h>
     35   1.1    tsarna #include <sys/endian.h>
     36   1.1    tsarna #include <sys/kernel.h>
     37  1.10        ad #include <sys/mutex.h>
     38   1.1    tsarna #include <sys/socket.h>
     39   1.1    tsarna #include <sys/systm.h>
     40   1.1    tsarna #include <sys/uuid.h>
     41   1.1    tsarna 
     42   1.1    tsarna /* NetBSD */
     43   1.1    tsarna #include <sys/proc.h>
     44   1.1    tsarna #include <sys/mount.h>
     45   1.1    tsarna #include <sys/syscallargs.h>
     46   1.1    tsarna #include <sys/uio.h>
     47   1.1    tsarna 
     48   1.1    tsarna #include <net/if.h>
     49   1.1    tsarna #include <net/if_dl.h>
     50   1.1    tsarna #include <net/if_types.h>
     51   1.1    tsarna 
     52   1.1    tsarna /*
     53   1.1    tsarna  * See also:
     54   1.1    tsarna  *	http://www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt
     55   1.1    tsarna  *	http://www.opengroup.org/onlinepubs/009629399/apdxa.htm
     56   1.1    tsarna  *
     57   1.1    tsarna  * Note that the generator state is itself an UUID, but the time and clock
     58   1.1    tsarna  * sequence fields are written in the native byte order.
     59   1.1    tsarna  */
     60   1.1    tsarna 
     61   1.1    tsarna CTASSERT(sizeof(struct uuid) == 16);
     62   1.1    tsarna 
     63   1.1    tsarna /* We use an alternative, more convenient representation in the generator. */
     64   1.1    tsarna struct uuid_private {
     65   1.1    tsarna 	union {
     66   1.1    tsarna 		uint64_t	ll;		/* internal. */
     67   1.1    tsarna 		struct {
     68   1.1    tsarna 			uint32_t	low;
     69   1.1    tsarna 			uint16_t	mid;
     70   1.1    tsarna 			uint16_t	hi;
     71   1.1    tsarna 		} x;
     72   1.1    tsarna 	} time;
     73   1.1    tsarna 	uint16_t	seq;			/* Big-endian. */
     74   1.1    tsarna 	uint16_t	node[UUID_NODE_LEN>>1];
     75   1.1    tsarna };
     76   1.1    tsarna 
     77   1.1    tsarna CTASSERT(sizeof(struct uuid_private) == 16);
     78   1.1    tsarna 
     79   1.1    tsarna static struct uuid_private uuid_last;
     80   1.1    tsarna 
     81   1.1    tsarna /* "UUID generator mutex lock" */
     82  1.10        ad static kmutex_t uuid_mutex;
     83  1.10        ad 
     84  1.10        ad void
     85  1.10        ad uuid_init(void)
     86  1.10        ad {
     87  1.10        ad 
     88  1.10        ad 	mutex_init(&uuid_mutex, MUTEX_DEFAULT, IPL_NONE);
     89  1.10        ad }
     90   1.1    tsarna 
     91   1.1    tsarna /*
     92   1.1    tsarna  * Return the first MAC address we encounter or, if none was found,
     93   1.1    tsarna  * construct a sufficiently random multicast address. We don't try
     94   1.1    tsarna  * to return the same MAC address as previously returned. We always
     95   1.1    tsarna  * generate a new multicast address if no MAC address exists in the
     96   1.1    tsarna  * system.
     97   1.1    tsarna  * It would be nice to know if 'ifnet' or any of its sub-structures
     98   1.1    tsarna  * has been changed in any way. If not, we could simply skip the
     99   1.1    tsarna  * scan and safely return the MAC address we returned before.
    100   1.1    tsarna  */
    101   1.1    tsarna static void
    102   1.1    tsarna uuid_node(uint16_t *node)
    103   1.1    tsarna {
    104   1.1    tsarna 	struct ifnet *ifp;
    105   1.1    tsarna 	struct ifaddr *ifa;
    106   1.1    tsarna 	struct sockaddr_dl *sdl;
    107   1.1    tsarna 	int i, s;
    108   1.1    tsarna 
    109   1.1    tsarna 	s = splnet();
    110  1.13        ad 	KERNEL_LOCK(1, NULL);
    111   1.4      matt 	IFNET_FOREACH(ifp) {
    112   1.1    tsarna 		/* Walk the address list */
    113   1.4      matt 		IFADDR_FOREACH(ifa, ifp) {
    114   1.1    tsarna 			sdl = (struct sockaddr_dl*)ifa->ifa_addr;
    115   1.1    tsarna 			if (sdl != NULL && sdl->sdl_family == AF_LINK &&
    116   1.1    tsarna 			    sdl->sdl_type == IFT_ETHER) {
    117   1.1    tsarna 				/* Got a MAC address. */
    118  1.11    dyoung 				memcpy(node, CLLADDR(sdl), UUID_NODE_LEN);
    119  1.13        ad 				KERNEL_UNLOCK_ONE(NULL);
    120   1.1    tsarna 				splx(s);
    121   1.1    tsarna 				return;
    122   1.1    tsarna 			}
    123   1.1    tsarna 		}
    124   1.1    tsarna 	}
    125  1.13        ad 	KERNEL_UNLOCK_ONE(NULL);
    126   1.1    tsarna 	splx(s);
    127   1.1    tsarna 
    128   1.1    tsarna 	for (i = 0; i < (UUID_NODE_LEN>>1); i++)
    129   1.1    tsarna 		node[i] = (uint16_t)arc4random();
    130   1.1    tsarna 	*((uint8_t*)node) |= 0x01;
    131   1.1    tsarna }
    132   1.1    tsarna 
    133   1.1    tsarna /*
    134   1.1    tsarna  * Get the current time as a 60 bit count of 100-nanosecond intervals
    135   1.1    tsarna  * since 00:00:00.00, October 15,1582. We apply a magic offset to convert
    136   1.1    tsarna  * the Unix time since 00:00:00.00, January 1, 1970 to the date of the
    137   1.1    tsarna  * Gregorian reform to the Christian calendar.
    138   1.1    tsarna  */
    139   1.1    tsarna /*
    140   1.1    tsarna  * At present, NetBSD has no timespec source, only timeval sources.  So,
    141   1.1    tsarna  * we use timeval.
    142   1.1    tsarna  */
    143   1.1    tsarna static uint64_t
    144   1.1    tsarna uuid_time(void)
    145   1.1    tsarna {
    146   1.1    tsarna 	struct timeval tv;
    147   1.5  christos 	uint64_t xtime = 0x01B21DD213814000LL;
    148   1.1    tsarna 
    149   1.1    tsarna 	microtime(&tv);
    150   1.5  christos 	xtime += (uint64_t)tv.tv_sec * 10000000LL;
    151   1.5  christos 	xtime += (uint64_t)(10 * tv.tv_usec);
    152   1.5  christos 	return (xtime & ((1LL << 60) - 1LL));
    153   1.1    tsarna }
    154   1.1    tsarna 
    155   1.2   thorpej /*
    156   1.2   thorpej  * Internal routine to actually generate the UUID.
    157   1.2   thorpej  */
    158   1.2   thorpej static void
    159   1.2   thorpej uuid_generate(struct uuid_private *uuid, uint64_t *timep, int count)
    160   1.2   thorpej {
    161   1.5  christos 	uint64_t xtime;
    162   1.2   thorpej 
    163  1.10        ad 	mutex_enter(&uuid_mutex);
    164   1.2   thorpej 
    165   1.2   thorpej 	uuid_node(uuid->node);
    166   1.5  christos 	xtime = uuid_time();
    167   1.5  christos 	*timep = xtime;
    168   1.2   thorpej 
    169   1.2   thorpej 	if (uuid_last.time.ll == 0LL || uuid_last.node[0] != uuid->node[0] ||
    170   1.2   thorpej 	    uuid_last.node[1] != uuid->node[1] ||
    171   1.2   thorpej 	    uuid_last.node[2] != uuid->node[2])
    172   1.2   thorpej 		uuid->seq = (uint16_t)arc4random() & 0x3fff;
    173   1.5  christos 	else if (uuid_last.time.ll >= xtime)
    174   1.2   thorpej 		uuid->seq = (uuid_last.seq + 1) & 0x3fff;
    175   1.2   thorpej 	else
    176   1.2   thorpej 		uuid->seq = uuid_last.seq;
    177   1.2   thorpej 
    178   1.2   thorpej 	uuid_last = *uuid;
    179   1.5  christos 	uuid_last.time.ll = (xtime + count - 1) & ((1LL << 60) - 1LL);
    180   1.2   thorpej 
    181  1.10        ad 	mutex_exit(&uuid_mutex);
    182   1.2   thorpej }
    183   1.2   thorpej 
    184  1.16     joerg static int
    185  1.16     joerg kern_uuidgen(struct uuid *store, int count, bool to_user)
    186   1.1    tsarna {
    187   1.1    tsarna 	struct uuid_private uuid;
    188   1.5  christos 	uint64_t xtime;
    189  1.16     joerg 	int error = 0, i;
    190   1.1    tsarna 
    191  1.16     joerg 	KASSERT(count >= 1);
    192   1.1    tsarna 
    193   1.2   thorpej 	/* Generate the base UUID. */
    194  1.16     joerg 	uuid_generate(&uuid, &xtime, count);
    195   1.1    tsarna 
    196   1.1    tsarna 	/* Set sequence and variant and deal with byte order. */
    197   1.1    tsarna 	uuid.seq = htobe16(uuid.seq | 0x8000);
    198   1.1    tsarna 
    199  1.16     joerg 	for (i = 0; i < count; xtime++, i++) {
    200   1.1    tsarna 		/* Set time and version (=1) and deal with byte order. */
    201   1.5  christos 		uuid.time.x.low = (uint32_t)xtime;
    202   1.5  christos 		uuid.time.x.mid = (uint16_t)(xtime >> 32);
    203   1.5  christos 		uuid.time.x.hi = ((uint16_t)(xtime >> 48) & 0xfff) | (1 << 12);
    204  1.16     joerg 		if (to_user) {
    205  1.16     joerg 			error = copyout(&uuid, store + i, sizeof(uuid));
    206  1.16     joerg 			if (error != 0)
    207  1.16     joerg 				break;
    208  1.16     joerg 		} else {
    209  1.16     joerg 			memcpy(store + i, &uuid, sizeof(uuid));
    210  1.16     joerg 		}
    211  1.12       dsl 	}
    212   1.1    tsarna 
    213  1.16     joerg 	return error;
    214  1.16     joerg }
    215  1.16     joerg 
    216  1.16     joerg int
    217  1.16     joerg sys_uuidgen(struct lwp *l, const struct sys_uuidgen_args *uap, register_t *retval)
    218  1.16     joerg {
    219  1.16     joerg 	/*
    220  1.16     joerg 	 * Limit the number of UUIDs that can be created at the same time
    221  1.16     joerg 	 * to some arbitrary number. This isn't really necessary, but I
    222  1.16     joerg 	 * like to have some sort of upper-bound that's less than 2G :-)
    223  1.16     joerg 	 * XXX needs to be tunable.
    224  1.16     joerg 	 */
    225  1.16     joerg 	if (SCARG(uap,count) < 1 || SCARG(uap,count) > 2048)
    226  1.16     joerg 		return (EINVAL);
    227  1.16     joerg 
    228  1.16     joerg 	return kern_uuidgen(SCARG(uap, store), SCARG(uap,count), true);
    229  1.16     joerg }
    230  1.16     joerg 
    231  1.16     joerg int
    232  1.16     joerg uuidgen(struct uuid *store, int count)
    233  1.16     joerg {
    234  1.16     joerg 	return kern_uuidgen(store,count, false);
    235   1.1    tsarna }
    236   1.1    tsarna 
    237   1.1    tsarna int
    238   1.2   thorpej uuid_snprintf(char *buf, size_t sz, const struct uuid *uuid)
    239   1.1    tsarna {
    240   1.2   thorpej 	const struct uuid_private *id;
    241   1.1    tsarna 	int cnt;
    242   1.1    tsarna 
    243   1.2   thorpej 	id = (const struct uuid_private *)uuid;
    244   1.1    tsarna 	cnt = snprintf(buf, sz, "%08x-%04x-%04x-%04x-%04x%04x%04x",
    245   1.1    tsarna 	    id->time.x.low, id->time.x.mid, id->time.x.hi, be16toh(id->seq),
    246   1.1    tsarna 	    be16toh(id->node[0]), be16toh(id->node[1]), be16toh(id->node[2]));
    247   1.1    tsarna 	return (cnt);
    248   1.1    tsarna }
    249   1.1    tsarna 
    250   1.1    tsarna int
    251   1.2   thorpej uuid_printf(const struct uuid *uuid)
    252   1.1    tsarna {
    253   1.2   thorpej 	char buf[UUID_STR_LEN];
    254   1.1    tsarna 
    255   1.2   thorpej 	(void) uuid_snprintf(buf, sizeof(buf), uuid);
    256   1.1    tsarna 	printf("%s", buf);
    257   1.2   thorpej 	return (0);
    258   1.1    tsarna }
    259   1.1    tsarna 
    260   1.1    tsarna /*
    261   1.2   thorpej  * Encode/Decode UUID into octet-stream.
    262   1.1    tsarna  *   http://www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt
    263   1.1    tsarna  *
    264   1.1    tsarna  * 0                   1                   2                   3
    265   1.1    tsarna  *   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    266   1.1    tsarna  *  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    267   1.1    tsarna  *  |                          time_low                             |
    268   1.1    tsarna  *  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    269   1.1    tsarna  *  |       time_mid                |         time_hi_and_version   |
    270   1.1    tsarna  *  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    271   1.1    tsarna  *  |clk_seq_hi_res |  clk_seq_low  |         node (0-1)            |
    272   1.1    tsarna  *  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    273   1.1    tsarna  *  |                         node (2-5)                            |
    274   1.1    tsarna  *  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    275   1.1    tsarna  */
    276   1.1    tsarna 
    277   1.1    tsarna void
    278   1.2   thorpej uuid_enc_le(void *buf, const struct uuid *uuid)
    279   1.1    tsarna {
    280   1.2   thorpej 	uint8_t *p = buf;
    281   1.1    tsarna 	int i;
    282   1.1    tsarna 
    283   1.1    tsarna 	le32enc(p, uuid->time_low);
    284   1.1    tsarna 	le16enc(p + 4, uuid->time_mid);
    285   1.1    tsarna 	le16enc(p + 6, uuid->time_hi_and_version);
    286   1.1    tsarna 	p[8] = uuid->clock_seq_hi_and_reserved;
    287   1.1    tsarna 	p[9] = uuid->clock_seq_low;
    288   1.1    tsarna 	for (i = 0; i < _UUID_NODE_LEN; i++)
    289   1.1    tsarna 		p[10 + i] = uuid->node[i];
    290   1.1    tsarna }
    291   1.1    tsarna 
    292   1.1    tsarna void
    293   1.2   thorpej uuid_dec_le(void const *buf, struct uuid *uuid)
    294   1.1    tsarna {
    295   1.2   thorpej 	const uint8_t *p = buf;
    296   1.1    tsarna 	int i;
    297   1.1    tsarna 
    298   1.1    tsarna 	uuid->time_low = le32dec(p);
    299   1.1    tsarna 	uuid->time_mid = le16dec(p + 4);
    300   1.1    tsarna 	uuid->time_hi_and_version = le16dec(p + 6);
    301   1.1    tsarna 	uuid->clock_seq_hi_and_reserved = p[8];
    302   1.1    tsarna 	uuid->clock_seq_low = p[9];
    303   1.1    tsarna 	for (i = 0; i < _UUID_NODE_LEN; i++)
    304   1.1    tsarna 		uuid->node[i] = p[10 + i];
    305   1.1    tsarna }
    306   1.2   thorpej 
    307   1.1    tsarna void
    308   1.2   thorpej uuid_enc_be(void *buf, const struct uuid *uuid)
    309   1.1    tsarna {
    310   1.2   thorpej 	uint8_t *p = buf;
    311   1.1    tsarna 	int i;
    312   1.1    tsarna 
    313   1.1    tsarna 	be32enc(p, uuid->time_low);
    314   1.1    tsarna 	be16enc(p + 4, uuid->time_mid);
    315   1.1    tsarna 	be16enc(p + 6, uuid->time_hi_and_version);
    316   1.1    tsarna 	p[8] = uuid->clock_seq_hi_and_reserved;
    317   1.1    tsarna 	p[9] = uuid->clock_seq_low;
    318   1.1    tsarna 	for (i = 0; i < _UUID_NODE_LEN; i++)
    319   1.1    tsarna 		p[10 + i] = uuid->node[i];
    320   1.1    tsarna }
    321   1.1    tsarna 
    322   1.1    tsarna void
    323   1.2   thorpej uuid_dec_be(void const *buf, struct uuid *uuid)
    324   1.1    tsarna {
    325   1.2   thorpej 	const uint8_t *p = buf;
    326   1.1    tsarna 	int i;
    327   1.1    tsarna 
    328   1.1    tsarna 	uuid->time_low = be32dec(p);
    329  1.14    plunky 	uuid->time_mid = be16dec(p + 4);
    330   1.1    tsarna 	uuid->time_hi_and_version = be16dec(p + 6);
    331   1.1    tsarna 	uuid->clock_seq_hi_and_reserved = p[8];
    332   1.1    tsarna 	uuid->clock_seq_low = p[9];
    333   1.1    tsarna 	for (i = 0; i < _UUID_NODE_LEN; i++)
    334   1.1    tsarna 		uuid->node[i] = p[10 + i];
    335   1.1    tsarna }
    336