kern_uuid.c revision 1.16.8.1 1 1.16.8.1 rmind /* $NetBSD: kern_uuid.c,v 1.16.8.1 2010/05/30 05:17:57 rmind Exp $ */
2 1.1 tsarna
3 1.1 tsarna /*
4 1.1 tsarna * Copyright (c) 2002 Marcel Moolenaar
5 1.1 tsarna * All rights reserved.
6 1.1 tsarna *
7 1.1 tsarna * Redistribution and use in source and binary forms, with or without
8 1.1 tsarna * modification, are permitted provided that the following conditions
9 1.1 tsarna * are met:
10 1.1 tsarna *
11 1.1 tsarna * 1. Redistributions of source code must retain the above copyright
12 1.1 tsarna * notice, this list of conditions and the following disclaimer.
13 1.1 tsarna * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 tsarna * notice, this list of conditions and the following disclaimer in the
15 1.1 tsarna * documentation and/or other materials provided with the distribution.
16 1.1 tsarna *
17 1.1 tsarna * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 1.1 tsarna * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 1.1 tsarna * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 1.1 tsarna * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 1.1 tsarna * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 1.1 tsarna * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 1.1 tsarna * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 1.1 tsarna * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 1.1 tsarna * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 1.1 tsarna * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 1.2 thorpej *
28 1.2 thorpej * $FreeBSD: /repoman/r/ncvs/src/sys/kern/kern_uuid.c,v 1.7 2004/01/12 13:34:11 rse Exp $
29 1.1 tsarna */
30 1.1 tsarna
31 1.1 tsarna #include <sys/cdefs.h>
32 1.16.8.1 rmind __KERNEL_RCSID(0, "$NetBSD: kern_uuid.c,v 1.16.8.1 2010/05/30 05:17:57 rmind Exp $");
33 1.1 tsarna
34 1.1 tsarna #include <sys/param.h>
35 1.1 tsarna #include <sys/endian.h>
36 1.1 tsarna #include <sys/kernel.h>
37 1.10 ad #include <sys/mutex.h>
38 1.1 tsarna #include <sys/socket.h>
39 1.1 tsarna #include <sys/systm.h>
40 1.1 tsarna #include <sys/uuid.h>
41 1.1 tsarna
42 1.1 tsarna /* NetBSD */
43 1.1 tsarna #include <sys/proc.h>
44 1.1 tsarna #include <sys/mount.h>
45 1.1 tsarna #include <sys/syscallargs.h>
46 1.1 tsarna #include <sys/uio.h>
47 1.1 tsarna
48 1.1 tsarna #include <net/if.h>
49 1.1 tsarna #include <net/if_dl.h>
50 1.1 tsarna #include <net/if_types.h>
51 1.1 tsarna
52 1.1 tsarna /*
53 1.1 tsarna * See also:
54 1.1 tsarna * http://www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt
55 1.1 tsarna * http://www.opengroup.org/onlinepubs/009629399/apdxa.htm
56 1.1 tsarna *
57 1.1 tsarna * Note that the generator state is itself an UUID, but the time and clock
58 1.1 tsarna * sequence fields are written in the native byte order.
59 1.1 tsarna */
60 1.1 tsarna
61 1.1 tsarna CTASSERT(sizeof(struct uuid) == 16);
62 1.1 tsarna
63 1.1 tsarna /* We use an alternative, more convenient representation in the generator. */
64 1.1 tsarna struct uuid_private {
65 1.1 tsarna union {
66 1.1 tsarna uint64_t ll; /* internal. */
67 1.1 tsarna struct {
68 1.1 tsarna uint32_t low;
69 1.1 tsarna uint16_t mid;
70 1.1 tsarna uint16_t hi;
71 1.1 tsarna } x;
72 1.1 tsarna } time;
73 1.1 tsarna uint16_t seq; /* Big-endian. */
74 1.1 tsarna uint16_t node[UUID_NODE_LEN>>1];
75 1.1 tsarna };
76 1.1 tsarna
77 1.1 tsarna CTASSERT(sizeof(struct uuid_private) == 16);
78 1.1 tsarna
79 1.1 tsarna static struct uuid_private uuid_last;
80 1.1 tsarna
81 1.1 tsarna /* "UUID generator mutex lock" */
82 1.10 ad static kmutex_t uuid_mutex;
83 1.10 ad
84 1.10 ad void
85 1.10 ad uuid_init(void)
86 1.10 ad {
87 1.10 ad
88 1.10 ad mutex_init(&uuid_mutex, MUTEX_DEFAULT, IPL_NONE);
89 1.10 ad }
90 1.1 tsarna
91 1.1 tsarna /*
92 1.1 tsarna * Return the first MAC address we encounter or, if none was found,
93 1.1 tsarna * construct a sufficiently random multicast address. We don't try
94 1.1 tsarna * to return the same MAC address as previously returned. We always
95 1.1 tsarna * generate a new multicast address if no MAC address exists in the
96 1.1 tsarna * system.
97 1.1 tsarna * It would be nice to know if 'ifnet' or any of its sub-structures
98 1.1 tsarna * has been changed in any way. If not, we could simply skip the
99 1.1 tsarna * scan and safely return the MAC address we returned before.
100 1.1 tsarna */
101 1.1 tsarna static void
102 1.1 tsarna uuid_node(uint16_t *node)
103 1.1 tsarna {
104 1.1 tsarna struct ifnet *ifp;
105 1.1 tsarna struct ifaddr *ifa;
106 1.1 tsarna struct sockaddr_dl *sdl;
107 1.1 tsarna int i, s;
108 1.1 tsarna
109 1.1 tsarna s = splnet();
110 1.13 ad KERNEL_LOCK(1, NULL);
111 1.4 matt IFNET_FOREACH(ifp) {
112 1.1 tsarna /* Walk the address list */
113 1.4 matt IFADDR_FOREACH(ifa, ifp) {
114 1.1 tsarna sdl = (struct sockaddr_dl*)ifa->ifa_addr;
115 1.1 tsarna if (sdl != NULL && sdl->sdl_family == AF_LINK &&
116 1.1 tsarna sdl->sdl_type == IFT_ETHER) {
117 1.1 tsarna /* Got a MAC address. */
118 1.11 dyoung memcpy(node, CLLADDR(sdl), UUID_NODE_LEN);
119 1.13 ad KERNEL_UNLOCK_ONE(NULL);
120 1.1 tsarna splx(s);
121 1.1 tsarna return;
122 1.1 tsarna }
123 1.1 tsarna }
124 1.1 tsarna }
125 1.13 ad KERNEL_UNLOCK_ONE(NULL);
126 1.1 tsarna splx(s);
127 1.1 tsarna
128 1.1 tsarna for (i = 0; i < (UUID_NODE_LEN>>1); i++)
129 1.1 tsarna node[i] = (uint16_t)arc4random();
130 1.1 tsarna *((uint8_t*)node) |= 0x01;
131 1.1 tsarna }
132 1.1 tsarna
133 1.1 tsarna /*
134 1.1 tsarna * Get the current time as a 60 bit count of 100-nanosecond intervals
135 1.1 tsarna * since 00:00:00.00, October 15,1582. We apply a magic offset to convert
136 1.1 tsarna * the Unix time since 00:00:00.00, January 1, 1970 to the date of the
137 1.1 tsarna * Gregorian reform to the Christian calendar.
138 1.1 tsarna */
139 1.1 tsarna static uint64_t
140 1.1 tsarna uuid_time(void)
141 1.1 tsarna {
142 1.16.8.1 rmind struct timespec tsp;
143 1.5 christos uint64_t xtime = 0x01B21DD213814000LL;
144 1.1 tsarna
145 1.16.8.1 rmind nanotime(&tsp);
146 1.16.8.1 rmind xtime += (uint64_t)tsp.tv_sec * 10000000LL;
147 1.16.8.1 rmind xtime += (uint64_t)(tsp.tv_nsec / 100);
148 1.5 christos return (xtime & ((1LL << 60) - 1LL));
149 1.1 tsarna }
150 1.1 tsarna
151 1.2 thorpej /*
152 1.2 thorpej * Internal routine to actually generate the UUID.
153 1.2 thorpej */
154 1.2 thorpej static void
155 1.2 thorpej uuid_generate(struct uuid_private *uuid, uint64_t *timep, int count)
156 1.2 thorpej {
157 1.5 christos uint64_t xtime;
158 1.2 thorpej
159 1.10 ad mutex_enter(&uuid_mutex);
160 1.2 thorpej
161 1.2 thorpej uuid_node(uuid->node);
162 1.5 christos xtime = uuid_time();
163 1.5 christos *timep = xtime;
164 1.2 thorpej
165 1.2 thorpej if (uuid_last.time.ll == 0LL || uuid_last.node[0] != uuid->node[0] ||
166 1.2 thorpej uuid_last.node[1] != uuid->node[1] ||
167 1.2 thorpej uuid_last.node[2] != uuid->node[2])
168 1.2 thorpej uuid->seq = (uint16_t)arc4random() & 0x3fff;
169 1.5 christos else if (uuid_last.time.ll >= xtime)
170 1.2 thorpej uuid->seq = (uuid_last.seq + 1) & 0x3fff;
171 1.2 thorpej else
172 1.2 thorpej uuid->seq = uuid_last.seq;
173 1.2 thorpej
174 1.2 thorpej uuid_last = *uuid;
175 1.5 christos uuid_last.time.ll = (xtime + count - 1) & ((1LL << 60) - 1LL);
176 1.2 thorpej
177 1.10 ad mutex_exit(&uuid_mutex);
178 1.2 thorpej }
179 1.2 thorpej
180 1.16 joerg static int
181 1.16 joerg kern_uuidgen(struct uuid *store, int count, bool to_user)
182 1.1 tsarna {
183 1.1 tsarna struct uuid_private uuid;
184 1.5 christos uint64_t xtime;
185 1.16 joerg int error = 0, i;
186 1.1 tsarna
187 1.16 joerg KASSERT(count >= 1);
188 1.1 tsarna
189 1.2 thorpej /* Generate the base UUID. */
190 1.16 joerg uuid_generate(&uuid, &xtime, count);
191 1.1 tsarna
192 1.1 tsarna /* Set sequence and variant and deal with byte order. */
193 1.1 tsarna uuid.seq = htobe16(uuid.seq | 0x8000);
194 1.1 tsarna
195 1.16 joerg for (i = 0; i < count; xtime++, i++) {
196 1.1 tsarna /* Set time and version (=1) and deal with byte order. */
197 1.5 christos uuid.time.x.low = (uint32_t)xtime;
198 1.5 christos uuid.time.x.mid = (uint16_t)(xtime >> 32);
199 1.5 christos uuid.time.x.hi = ((uint16_t)(xtime >> 48) & 0xfff) | (1 << 12);
200 1.16 joerg if (to_user) {
201 1.16 joerg error = copyout(&uuid, store + i, sizeof(uuid));
202 1.16 joerg if (error != 0)
203 1.16 joerg break;
204 1.16 joerg } else {
205 1.16 joerg memcpy(store + i, &uuid, sizeof(uuid));
206 1.16 joerg }
207 1.12 dsl }
208 1.1 tsarna
209 1.16 joerg return error;
210 1.16 joerg }
211 1.16 joerg
212 1.16 joerg int
213 1.16 joerg sys_uuidgen(struct lwp *l, const struct sys_uuidgen_args *uap, register_t *retval)
214 1.16 joerg {
215 1.16 joerg /*
216 1.16 joerg * Limit the number of UUIDs that can be created at the same time
217 1.16 joerg * to some arbitrary number. This isn't really necessary, but I
218 1.16 joerg * like to have some sort of upper-bound that's less than 2G :-)
219 1.16 joerg * XXX needs to be tunable.
220 1.16 joerg */
221 1.16 joerg if (SCARG(uap,count) < 1 || SCARG(uap,count) > 2048)
222 1.16 joerg return (EINVAL);
223 1.16 joerg
224 1.16 joerg return kern_uuidgen(SCARG(uap, store), SCARG(uap,count), true);
225 1.16 joerg }
226 1.16 joerg
227 1.16 joerg int
228 1.16 joerg uuidgen(struct uuid *store, int count)
229 1.16 joerg {
230 1.16 joerg return kern_uuidgen(store,count, false);
231 1.1 tsarna }
232 1.1 tsarna
233 1.1 tsarna int
234 1.2 thorpej uuid_snprintf(char *buf, size_t sz, const struct uuid *uuid)
235 1.1 tsarna {
236 1.2 thorpej const struct uuid_private *id;
237 1.1 tsarna int cnt;
238 1.1 tsarna
239 1.2 thorpej id = (const struct uuid_private *)uuid;
240 1.1 tsarna cnt = snprintf(buf, sz, "%08x-%04x-%04x-%04x-%04x%04x%04x",
241 1.1 tsarna id->time.x.low, id->time.x.mid, id->time.x.hi, be16toh(id->seq),
242 1.1 tsarna be16toh(id->node[0]), be16toh(id->node[1]), be16toh(id->node[2]));
243 1.1 tsarna return (cnt);
244 1.1 tsarna }
245 1.1 tsarna
246 1.1 tsarna int
247 1.2 thorpej uuid_printf(const struct uuid *uuid)
248 1.1 tsarna {
249 1.2 thorpej char buf[UUID_STR_LEN];
250 1.1 tsarna
251 1.2 thorpej (void) uuid_snprintf(buf, sizeof(buf), uuid);
252 1.1 tsarna printf("%s", buf);
253 1.2 thorpej return (0);
254 1.1 tsarna }
255 1.1 tsarna
256 1.1 tsarna /*
257 1.2 thorpej * Encode/Decode UUID into octet-stream.
258 1.1 tsarna * http://www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt
259 1.1 tsarna *
260 1.1 tsarna * 0 1 2 3
261 1.1 tsarna * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
262 1.1 tsarna * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
263 1.1 tsarna * | time_low |
264 1.1 tsarna * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
265 1.1 tsarna * | time_mid | time_hi_and_version |
266 1.1 tsarna * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
267 1.1 tsarna * |clk_seq_hi_res | clk_seq_low | node (0-1) |
268 1.1 tsarna * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
269 1.1 tsarna * | node (2-5) |
270 1.1 tsarna * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
271 1.1 tsarna */
272 1.1 tsarna
273 1.1 tsarna void
274 1.2 thorpej uuid_enc_le(void *buf, const struct uuid *uuid)
275 1.1 tsarna {
276 1.2 thorpej uint8_t *p = buf;
277 1.1 tsarna int i;
278 1.1 tsarna
279 1.1 tsarna le32enc(p, uuid->time_low);
280 1.1 tsarna le16enc(p + 4, uuid->time_mid);
281 1.1 tsarna le16enc(p + 6, uuid->time_hi_and_version);
282 1.1 tsarna p[8] = uuid->clock_seq_hi_and_reserved;
283 1.1 tsarna p[9] = uuid->clock_seq_low;
284 1.1 tsarna for (i = 0; i < _UUID_NODE_LEN; i++)
285 1.1 tsarna p[10 + i] = uuid->node[i];
286 1.1 tsarna }
287 1.1 tsarna
288 1.1 tsarna void
289 1.2 thorpej uuid_dec_le(void const *buf, struct uuid *uuid)
290 1.1 tsarna {
291 1.2 thorpej const uint8_t *p = buf;
292 1.1 tsarna int i;
293 1.1 tsarna
294 1.1 tsarna uuid->time_low = le32dec(p);
295 1.1 tsarna uuid->time_mid = le16dec(p + 4);
296 1.1 tsarna uuid->time_hi_and_version = le16dec(p + 6);
297 1.1 tsarna uuid->clock_seq_hi_and_reserved = p[8];
298 1.1 tsarna uuid->clock_seq_low = p[9];
299 1.1 tsarna for (i = 0; i < _UUID_NODE_LEN; i++)
300 1.1 tsarna uuid->node[i] = p[10 + i];
301 1.1 tsarna }
302 1.2 thorpej
303 1.1 tsarna void
304 1.2 thorpej uuid_enc_be(void *buf, const struct uuid *uuid)
305 1.1 tsarna {
306 1.2 thorpej uint8_t *p = buf;
307 1.1 tsarna int i;
308 1.1 tsarna
309 1.1 tsarna be32enc(p, uuid->time_low);
310 1.1 tsarna be16enc(p + 4, uuid->time_mid);
311 1.1 tsarna be16enc(p + 6, uuid->time_hi_and_version);
312 1.1 tsarna p[8] = uuid->clock_seq_hi_and_reserved;
313 1.1 tsarna p[9] = uuid->clock_seq_low;
314 1.1 tsarna for (i = 0; i < _UUID_NODE_LEN; i++)
315 1.1 tsarna p[10 + i] = uuid->node[i];
316 1.1 tsarna }
317 1.1 tsarna
318 1.1 tsarna void
319 1.2 thorpej uuid_dec_be(void const *buf, struct uuid *uuid)
320 1.1 tsarna {
321 1.2 thorpej const uint8_t *p = buf;
322 1.1 tsarna int i;
323 1.1 tsarna
324 1.1 tsarna uuid->time_low = be32dec(p);
325 1.14 plunky uuid->time_mid = be16dec(p + 4);
326 1.1 tsarna uuid->time_hi_and_version = be16dec(p + 6);
327 1.1 tsarna uuid->clock_seq_hi_and_reserved = p[8];
328 1.1 tsarna uuid->clock_seq_low = p[9];
329 1.1 tsarna for (i = 0; i < _UUID_NODE_LEN; i++)
330 1.1 tsarna uuid->node[i] = p[10 + i];
331 1.1 tsarna }
332