kern_uuid.c revision 1.17.8.1 1 1.17.8.1 yamt /* $NetBSD: kern_uuid.c,v 1.17.8.1 2012/04/17 00:08:27 yamt Exp $ */
2 1.1 tsarna
3 1.1 tsarna /*
4 1.1 tsarna * Copyright (c) 2002 Marcel Moolenaar
5 1.1 tsarna * All rights reserved.
6 1.1 tsarna *
7 1.1 tsarna * Redistribution and use in source and binary forms, with or without
8 1.1 tsarna * modification, are permitted provided that the following conditions
9 1.1 tsarna * are met:
10 1.1 tsarna *
11 1.1 tsarna * 1. Redistributions of source code must retain the above copyright
12 1.1 tsarna * notice, this list of conditions and the following disclaimer.
13 1.1 tsarna * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 tsarna * notice, this list of conditions and the following disclaimer in the
15 1.1 tsarna * documentation and/or other materials provided with the distribution.
16 1.1 tsarna *
17 1.1 tsarna * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 1.1 tsarna * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 1.1 tsarna * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 1.1 tsarna * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 1.1 tsarna * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 1.1 tsarna * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 1.1 tsarna * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 1.1 tsarna * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 1.1 tsarna * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 1.1 tsarna * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 1.2 thorpej *
28 1.2 thorpej * $FreeBSD: /repoman/r/ncvs/src/sys/kern/kern_uuid.c,v 1.7 2004/01/12 13:34:11 rse Exp $
29 1.1 tsarna */
30 1.1 tsarna
31 1.1 tsarna #include <sys/cdefs.h>
32 1.17.8.1 yamt __KERNEL_RCSID(0, "$NetBSD: kern_uuid.c,v 1.17.8.1 2012/04/17 00:08:27 yamt Exp $");
33 1.1 tsarna
34 1.1 tsarna #include <sys/param.h>
35 1.1 tsarna #include <sys/endian.h>
36 1.1 tsarna #include <sys/kernel.h>
37 1.10 ad #include <sys/mutex.h>
38 1.1 tsarna #include <sys/socket.h>
39 1.1 tsarna #include <sys/systm.h>
40 1.1 tsarna #include <sys/uuid.h>
41 1.1 tsarna
42 1.1 tsarna /* NetBSD */
43 1.1 tsarna #include <sys/proc.h>
44 1.1 tsarna #include <sys/mount.h>
45 1.1 tsarna #include <sys/syscallargs.h>
46 1.1 tsarna #include <sys/uio.h>
47 1.17.8.1 yamt #include <sys/cprng.h>
48 1.1 tsarna
49 1.1 tsarna #include <net/if.h>
50 1.1 tsarna #include <net/if_dl.h>
51 1.1 tsarna #include <net/if_types.h>
52 1.1 tsarna
53 1.1 tsarna /*
54 1.1 tsarna * See also:
55 1.1 tsarna * http://www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt
56 1.1 tsarna * http://www.opengroup.org/onlinepubs/009629399/apdxa.htm
57 1.1 tsarna *
58 1.1 tsarna * Note that the generator state is itself an UUID, but the time and clock
59 1.1 tsarna * sequence fields are written in the native byte order.
60 1.1 tsarna */
61 1.1 tsarna
62 1.1 tsarna CTASSERT(sizeof(struct uuid) == 16);
63 1.1 tsarna
64 1.1 tsarna /* We use an alternative, more convenient representation in the generator. */
65 1.1 tsarna struct uuid_private {
66 1.1 tsarna union {
67 1.1 tsarna uint64_t ll; /* internal. */
68 1.1 tsarna struct {
69 1.1 tsarna uint32_t low;
70 1.1 tsarna uint16_t mid;
71 1.1 tsarna uint16_t hi;
72 1.1 tsarna } x;
73 1.1 tsarna } time;
74 1.1 tsarna uint16_t seq; /* Big-endian. */
75 1.1 tsarna uint16_t node[UUID_NODE_LEN>>1];
76 1.1 tsarna };
77 1.1 tsarna
78 1.1 tsarna CTASSERT(sizeof(struct uuid_private) == 16);
79 1.1 tsarna
80 1.1 tsarna static struct uuid_private uuid_last;
81 1.1 tsarna
82 1.1 tsarna /* "UUID generator mutex lock" */
83 1.10 ad static kmutex_t uuid_mutex;
84 1.10 ad
85 1.10 ad void
86 1.10 ad uuid_init(void)
87 1.10 ad {
88 1.10 ad
89 1.10 ad mutex_init(&uuid_mutex, MUTEX_DEFAULT, IPL_NONE);
90 1.10 ad }
91 1.1 tsarna
92 1.1 tsarna /*
93 1.1 tsarna * Return the first MAC address we encounter or, if none was found,
94 1.1 tsarna * construct a sufficiently random multicast address. We don't try
95 1.1 tsarna * to return the same MAC address as previously returned. We always
96 1.1 tsarna * generate a new multicast address if no MAC address exists in the
97 1.1 tsarna * system.
98 1.1 tsarna * It would be nice to know if 'ifnet' or any of its sub-structures
99 1.1 tsarna * has been changed in any way. If not, we could simply skip the
100 1.1 tsarna * scan and safely return the MAC address we returned before.
101 1.1 tsarna */
102 1.1 tsarna static void
103 1.1 tsarna uuid_node(uint16_t *node)
104 1.1 tsarna {
105 1.1 tsarna struct ifnet *ifp;
106 1.1 tsarna struct ifaddr *ifa;
107 1.1 tsarna struct sockaddr_dl *sdl;
108 1.1 tsarna int i, s;
109 1.1 tsarna
110 1.1 tsarna s = splnet();
111 1.13 ad KERNEL_LOCK(1, NULL);
112 1.4 matt IFNET_FOREACH(ifp) {
113 1.1 tsarna /* Walk the address list */
114 1.4 matt IFADDR_FOREACH(ifa, ifp) {
115 1.1 tsarna sdl = (struct sockaddr_dl*)ifa->ifa_addr;
116 1.1 tsarna if (sdl != NULL && sdl->sdl_family == AF_LINK &&
117 1.1 tsarna sdl->sdl_type == IFT_ETHER) {
118 1.1 tsarna /* Got a MAC address. */
119 1.11 dyoung memcpy(node, CLLADDR(sdl), UUID_NODE_LEN);
120 1.13 ad KERNEL_UNLOCK_ONE(NULL);
121 1.1 tsarna splx(s);
122 1.1 tsarna return;
123 1.1 tsarna }
124 1.1 tsarna }
125 1.1 tsarna }
126 1.13 ad KERNEL_UNLOCK_ONE(NULL);
127 1.1 tsarna splx(s);
128 1.1 tsarna
129 1.1 tsarna for (i = 0; i < (UUID_NODE_LEN>>1); i++)
130 1.17.8.1 yamt node[i] = (uint16_t)cprng_fast32();
131 1.1 tsarna *((uint8_t*)node) |= 0x01;
132 1.1 tsarna }
133 1.1 tsarna
134 1.1 tsarna /*
135 1.1 tsarna * Get the current time as a 60 bit count of 100-nanosecond intervals
136 1.1 tsarna * since 00:00:00.00, October 15,1582. We apply a magic offset to convert
137 1.1 tsarna * the Unix time since 00:00:00.00, January 1, 1970 to the date of the
138 1.1 tsarna * Gregorian reform to the Christian calendar.
139 1.1 tsarna */
140 1.1 tsarna static uint64_t
141 1.1 tsarna uuid_time(void)
142 1.1 tsarna {
143 1.17 kardel struct timespec tsp;
144 1.5 christos uint64_t xtime = 0x01B21DD213814000LL;
145 1.1 tsarna
146 1.17 kardel nanotime(&tsp);
147 1.17 kardel xtime += (uint64_t)tsp.tv_sec * 10000000LL;
148 1.17 kardel xtime += (uint64_t)(tsp.tv_nsec / 100);
149 1.5 christos return (xtime & ((1LL << 60) - 1LL));
150 1.1 tsarna }
151 1.1 tsarna
152 1.2 thorpej /*
153 1.2 thorpej * Internal routine to actually generate the UUID.
154 1.2 thorpej */
155 1.2 thorpej static void
156 1.2 thorpej uuid_generate(struct uuid_private *uuid, uint64_t *timep, int count)
157 1.2 thorpej {
158 1.5 christos uint64_t xtime;
159 1.2 thorpej
160 1.10 ad mutex_enter(&uuid_mutex);
161 1.2 thorpej
162 1.2 thorpej uuid_node(uuid->node);
163 1.5 christos xtime = uuid_time();
164 1.5 christos *timep = xtime;
165 1.2 thorpej
166 1.2 thorpej if (uuid_last.time.ll == 0LL || uuid_last.node[0] != uuid->node[0] ||
167 1.2 thorpej uuid_last.node[1] != uuid->node[1] ||
168 1.2 thorpej uuid_last.node[2] != uuid->node[2])
169 1.17.8.1 yamt uuid->seq = (uint16_t)cprng_fast32() & 0x3fff;
170 1.5 christos else if (uuid_last.time.ll >= xtime)
171 1.2 thorpej uuid->seq = (uuid_last.seq + 1) & 0x3fff;
172 1.2 thorpej else
173 1.2 thorpej uuid->seq = uuid_last.seq;
174 1.2 thorpej
175 1.2 thorpej uuid_last = *uuid;
176 1.5 christos uuid_last.time.ll = (xtime + count - 1) & ((1LL << 60) - 1LL);
177 1.2 thorpej
178 1.10 ad mutex_exit(&uuid_mutex);
179 1.2 thorpej }
180 1.2 thorpej
181 1.16 joerg static int
182 1.16 joerg kern_uuidgen(struct uuid *store, int count, bool to_user)
183 1.1 tsarna {
184 1.1 tsarna struct uuid_private uuid;
185 1.5 christos uint64_t xtime;
186 1.16 joerg int error = 0, i;
187 1.1 tsarna
188 1.16 joerg KASSERT(count >= 1);
189 1.1 tsarna
190 1.2 thorpej /* Generate the base UUID. */
191 1.16 joerg uuid_generate(&uuid, &xtime, count);
192 1.1 tsarna
193 1.1 tsarna /* Set sequence and variant and deal with byte order. */
194 1.1 tsarna uuid.seq = htobe16(uuid.seq | 0x8000);
195 1.1 tsarna
196 1.16 joerg for (i = 0; i < count; xtime++, i++) {
197 1.1 tsarna /* Set time and version (=1) and deal with byte order. */
198 1.5 christos uuid.time.x.low = (uint32_t)xtime;
199 1.5 christos uuid.time.x.mid = (uint16_t)(xtime >> 32);
200 1.5 christos uuid.time.x.hi = ((uint16_t)(xtime >> 48) & 0xfff) | (1 << 12);
201 1.16 joerg if (to_user) {
202 1.16 joerg error = copyout(&uuid, store + i, sizeof(uuid));
203 1.16 joerg if (error != 0)
204 1.16 joerg break;
205 1.16 joerg } else {
206 1.16 joerg memcpy(store + i, &uuid, sizeof(uuid));
207 1.16 joerg }
208 1.12 dsl }
209 1.1 tsarna
210 1.16 joerg return error;
211 1.16 joerg }
212 1.16 joerg
213 1.16 joerg int
214 1.16 joerg sys_uuidgen(struct lwp *l, const struct sys_uuidgen_args *uap, register_t *retval)
215 1.16 joerg {
216 1.16 joerg /*
217 1.16 joerg * Limit the number of UUIDs that can be created at the same time
218 1.16 joerg * to some arbitrary number. This isn't really necessary, but I
219 1.16 joerg * like to have some sort of upper-bound that's less than 2G :-)
220 1.16 joerg * XXX needs to be tunable.
221 1.16 joerg */
222 1.16 joerg if (SCARG(uap,count) < 1 || SCARG(uap,count) > 2048)
223 1.16 joerg return (EINVAL);
224 1.16 joerg
225 1.16 joerg return kern_uuidgen(SCARG(uap, store), SCARG(uap,count), true);
226 1.16 joerg }
227 1.16 joerg
228 1.16 joerg int
229 1.16 joerg uuidgen(struct uuid *store, int count)
230 1.16 joerg {
231 1.16 joerg return kern_uuidgen(store,count, false);
232 1.1 tsarna }
233 1.1 tsarna
234 1.1 tsarna int
235 1.2 thorpej uuid_snprintf(char *buf, size_t sz, const struct uuid *uuid)
236 1.1 tsarna {
237 1.2 thorpej const struct uuid_private *id;
238 1.1 tsarna int cnt;
239 1.1 tsarna
240 1.2 thorpej id = (const struct uuid_private *)uuid;
241 1.1 tsarna cnt = snprintf(buf, sz, "%08x-%04x-%04x-%04x-%04x%04x%04x",
242 1.1 tsarna id->time.x.low, id->time.x.mid, id->time.x.hi, be16toh(id->seq),
243 1.1 tsarna be16toh(id->node[0]), be16toh(id->node[1]), be16toh(id->node[2]));
244 1.1 tsarna return (cnt);
245 1.1 tsarna }
246 1.1 tsarna
247 1.1 tsarna int
248 1.2 thorpej uuid_printf(const struct uuid *uuid)
249 1.1 tsarna {
250 1.2 thorpej char buf[UUID_STR_LEN];
251 1.1 tsarna
252 1.2 thorpej (void) uuid_snprintf(buf, sizeof(buf), uuid);
253 1.1 tsarna printf("%s", buf);
254 1.2 thorpej return (0);
255 1.1 tsarna }
256 1.1 tsarna
257 1.1 tsarna /*
258 1.2 thorpej * Encode/Decode UUID into octet-stream.
259 1.1 tsarna * http://www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt
260 1.1 tsarna *
261 1.1 tsarna * 0 1 2 3
262 1.1 tsarna * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
263 1.1 tsarna * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
264 1.1 tsarna * | time_low |
265 1.1 tsarna * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
266 1.1 tsarna * | time_mid | time_hi_and_version |
267 1.1 tsarna * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
268 1.1 tsarna * |clk_seq_hi_res | clk_seq_low | node (0-1) |
269 1.1 tsarna * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
270 1.1 tsarna * | node (2-5) |
271 1.1 tsarna * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
272 1.1 tsarna */
273 1.1 tsarna
274 1.1 tsarna void
275 1.2 thorpej uuid_enc_le(void *buf, const struct uuid *uuid)
276 1.1 tsarna {
277 1.2 thorpej uint8_t *p = buf;
278 1.1 tsarna int i;
279 1.1 tsarna
280 1.1 tsarna le32enc(p, uuid->time_low);
281 1.1 tsarna le16enc(p + 4, uuid->time_mid);
282 1.1 tsarna le16enc(p + 6, uuid->time_hi_and_version);
283 1.1 tsarna p[8] = uuid->clock_seq_hi_and_reserved;
284 1.1 tsarna p[9] = uuid->clock_seq_low;
285 1.1 tsarna for (i = 0; i < _UUID_NODE_LEN; i++)
286 1.1 tsarna p[10 + i] = uuid->node[i];
287 1.1 tsarna }
288 1.1 tsarna
289 1.1 tsarna void
290 1.2 thorpej uuid_dec_le(void const *buf, struct uuid *uuid)
291 1.1 tsarna {
292 1.2 thorpej const uint8_t *p = buf;
293 1.1 tsarna int i;
294 1.1 tsarna
295 1.1 tsarna uuid->time_low = le32dec(p);
296 1.1 tsarna uuid->time_mid = le16dec(p + 4);
297 1.1 tsarna uuid->time_hi_and_version = le16dec(p + 6);
298 1.1 tsarna uuid->clock_seq_hi_and_reserved = p[8];
299 1.1 tsarna uuid->clock_seq_low = p[9];
300 1.1 tsarna for (i = 0; i < _UUID_NODE_LEN; i++)
301 1.1 tsarna uuid->node[i] = p[10 + i];
302 1.1 tsarna }
303 1.2 thorpej
304 1.1 tsarna void
305 1.2 thorpej uuid_enc_be(void *buf, const struct uuid *uuid)
306 1.1 tsarna {
307 1.2 thorpej uint8_t *p = buf;
308 1.1 tsarna int i;
309 1.1 tsarna
310 1.1 tsarna be32enc(p, uuid->time_low);
311 1.1 tsarna be16enc(p + 4, uuid->time_mid);
312 1.1 tsarna be16enc(p + 6, uuid->time_hi_and_version);
313 1.1 tsarna p[8] = uuid->clock_seq_hi_and_reserved;
314 1.1 tsarna p[9] = uuid->clock_seq_low;
315 1.1 tsarna for (i = 0; i < _UUID_NODE_LEN; i++)
316 1.1 tsarna p[10 + i] = uuid->node[i];
317 1.1 tsarna }
318 1.1 tsarna
319 1.1 tsarna void
320 1.2 thorpej uuid_dec_be(void const *buf, struct uuid *uuid)
321 1.1 tsarna {
322 1.2 thorpej const uint8_t *p = buf;
323 1.1 tsarna int i;
324 1.1 tsarna
325 1.1 tsarna uuid->time_low = be32dec(p);
326 1.14 plunky uuid->time_mid = be16dec(p + 4);
327 1.1 tsarna uuid->time_hi_and_version = be16dec(p + 6);
328 1.1 tsarna uuid->clock_seq_hi_and_reserved = p[8];
329 1.1 tsarna uuid->clock_seq_low = p[9];
330 1.1 tsarna for (i = 0; i < _UUID_NODE_LEN; i++)
331 1.1 tsarna uuid->node[i] = p[10 + i];
332 1.1 tsarna }
333