kern_uuid.c revision 1.2 1 1.2 thorpej /* $NetBSD: kern_uuid.c,v 1.2 2004/08/30 02:56:03 thorpej Exp $ */
2 1.1 tsarna
3 1.1 tsarna /*
4 1.1 tsarna * Copyright (c) 2002 Marcel Moolenaar
5 1.1 tsarna * All rights reserved.
6 1.1 tsarna *
7 1.1 tsarna * Redistribution and use in source and binary forms, with or without
8 1.1 tsarna * modification, are permitted provided that the following conditions
9 1.1 tsarna * are met:
10 1.1 tsarna *
11 1.1 tsarna * 1. Redistributions of source code must retain the above copyright
12 1.1 tsarna * notice, this list of conditions and the following disclaimer.
13 1.1 tsarna * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 tsarna * notice, this list of conditions and the following disclaimer in the
15 1.1 tsarna * documentation and/or other materials provided with the distribution.
16 1.1 tsarna *
17 1.1 tsarna * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 1.1 tsarna * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 1.1 tsarna * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 1.1 tsarna * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 1.1 tsarna * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 1.1 tsarna * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 1.1 tsarna * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 1.1 tsarna * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 1.1 tsarna * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 1.1 tsarna * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 1.2 thorpej *
28 1.2 thorpej * $FreeBSD: /repoman/r/ncvs/src/sys/kern/kern_uuid.c,v 1.7 2004/01/12 13:34:11 rse Exp $
29 1.1 tsarna */
30 1.1 tsarna
31 1.1 tsarna #include <sys/cdefs.h>
32 1.2 thorpej __KERNEL_RCSID(0, "$NetBSD: kern_uuid.c,v 1.2 2004/08/30 02:56:03 thorpej Exp $");
33 1.1 tsarna
34 1.1 tsarna #include <sys/param.h>
35 1.1 tsarna #include <sys/endian.h>
36 1.1 tsarna #include <sys/kernel.h>
37 1.1 tsarna #include <sys/lock.h>
38 1.1 tsarna #include <sys/socket.h>
39 1.1 tsarna #include <sys/systm.h>
40 1.1 tsarna #include <sys/uuid.h>
41 1.1 tsarna
42 1.1 tsarna /* NetBSD */
43 1.1 tsarna #include <sys/proc.h>
44 1.1 tsarna #include <sys/sa.h>
45 1.1 tsarna #include <sys/mount.h>
46 1.1 tsarna #include <sys/syscallargs.h>
47 1.1 tsarna #include <sys/uio.h>
48 1.1 tsarna
49 1.1 tsarna #include <net/if.h>
50 1.1 tsarna #include <net/if_dl.h>
51 1.1 tsarna #include <net/if_types.h>
52 1.1 tsarna
53 1.1 tsarna /*
54 1.1 tsarna * See also:
55 1.1 tsarna * http://www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt
56 1.1 tsarna * http://www.opengroup.org/onlinepubs/009629399/apdxa.htm
57 1.1 tsarna *
58 1.1 tsarna * Note that the generator state is itself an UUID, but the time and clock
59 1.1 tsarna * sequence fields are written in the native byte order.
60 1.1 tsarna */
61 1.1 tsarna
62 1.1 tsarna /* XXX Do we have a similar ASSERT()? */
63 1.1 tsarna #define CTASSERT(x)
64 1.1 tsarna
65 1.1 tsarna CTASSERT(sizeof(struct uuid) == 16);
66 1.1 tsarna
67 1.1 tsarna /* We use an alternative, more convenient representation in the generator. */
68 1.1 tsarna struct uuid_private {
69 1.1 tsarna union {
70 1.1 tsarna uint64_t ll; /* internal. */
71 1.1 tsarna struct {
72 1.1 tsarna uint32_t low;
73 1.1 tsarna uint16_t mid;
74 1.1 tsarna uint16_t hi;
75 1.1 tsarna } x;
76 1.1 tsarna } time;
77 1.1 tsarna uint16_t seq; /* Big-endian. */
78 1.1 tsarna uint16_t node[UUID_NODE_LEN>>1];
79 1.1 tsarna };
80 1.1 tsarna
81 1.1 tsarna CTASSERT(sizeof(struct uuid_private) == 16);
82 1.1 tsarna
83 1.1 tsarna static struct uuid_private uuid_last;
84 1.1 tsarna
85 1.1 tsarna /* "UUID generator mutex lock" */
86 1.1 tsarna static struct simplelock uuid_mutex = SIMPLELOCK_INITIALIZER;
87 1.1 tsarna
88 1.1 tsarna /*
89 1.1 tsarna * Return the first MAC address we encounter or, if none was found,
90 1.1 tsarna * construct a sufficiently random multicast address. We don't try
91 1.1 tsarna * to return the same MAC address as previously returned. We always
92 1.1 tsarna * generate a new multicast address if no MAC address exists in the
93 1.1 tsarna * system.
94 1.1 tsarna * It would be nice to know if 'ifnet' or any of its sub-structures
95 1.1 tsarna * has been changed in any way. If not, we could simply skip the
96 1.1 tsarna * scan and safely return the MAC address we returned before.
97 1.1 tsarna */
98 1.1 tsarna static void
99 1.1 tsarna uuid_node(uint16_t *node)
100 1.1 tsarna {
101 1.1 tsarna struct ifnet *ifp;
102 1.1 tsarna struct ifaddr *ifa;
103 1.1 tsarna struct sockaddr_dl *sdl;
104 1.1 tsarna int i, s;
105 1.1 tsarna
106 1.1 tsarna s = splnet();
107 1.1 tsarna TAILQ_FOREACH(ifp, &ifnet, if_list) {
108 1.1 tsarna /* Walk the address list */
109 1.1 tsarna TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
110 1.1 tsarna sdl = (struct sockaddr_dl*)ifa->ifa_addr;
111 1.1 tsarna if (sdl != NULL && sdl->sdl_family == AF_LINK &&
112 1.1 tsarna sdl->sdl_type == IFT_ETHER) {
113 1.1 tsarna /* Got a MAC address. */
114 1.1 tsarna memcpy(node, LLADDR(sdl), UUID_NODE_LEN);
115 1.1 tsarna splx(s);
116 1.1 tsarna return;
117 1.1 tsarna }
118 1.1 tsarna }
119 1.1 tsarna }
120 1.1 tsarna splx(s);
121 1.1 tsarna
122 1.1 tsarna for (i = 0; i < (UUID_NODE_LEN>>1); i++)
123 1.1 tsarna node[i] = (uint16_t)arc4random();
124 1.1 tsarna *((uint8_t*)node) |= 0x01;
125 1.1 tsarna }
126 1.1 tsarna
127 1.1 tsarna /*
128 1.1 tsarna * Get the current time as a 60 bit count of 100-nanosecond intervals
129 1.1 tsarna * since 00:00:00.00, October 15,1582. We apply a magic offset to convert
130 1.1 tsarna * the Unix time since 00:00:00.00, January 1, 1970 to the date of the
131 1.1 tsarna * Gregorian reform to the Christian calendar.
132 1.1 tsarna */
133 1.1 tsarna /*
134 1.1 tsarna * At present, NetBSD has no timespec source, only timeval sources. So,
135 1.1 tsarna * we use timeval.
136 1.1 tsarna */
137 1.1 tsarna static uint64_t
138 1.1 tsarna uuid_time(void)
139 1.1 tsarna {
140 1.1 tsarna struct timeval tv;
141 1.1 tsarna uint64_t time = 0x01B21DD213814000LL;
142 1.1 tsarna
143 1.1 tsarna microtime(&tv);
144 1.1 tsarna time += (uint64_t)tv.tv_sec * 10000000LL;
145 1.1 tsarna time += (uint64_t)(10 * tv.tv_usec);
146 1.1 tsarna return (time & ((1LL << 60) - 1LL));
147 1.1 tsarna }
148 1.1 tsarna
149 1.2 thorpej /*
150 1.2 thorpej * Internal routine to actually generate the UUID.
151 1.2 thorpej */
152 1.2 thorpej static void
153 1.2 thorpej uuid_generate(struct uuid_private *uuid, uint64_t *timep, int count)
154 1.2 thorpej {
155 1.2 thorpej uint64_t time;
156 1.2 thorpej
157 1.2 thorpej simple_lock(&uuid_mutex);
158 1.2 thorpej
159 1.2 thorpej uuid_node(uuid->node);
160 1.2 thorpej time = uuid_time();
161 1.2 thorpej *timep = time;
162 1.2 thorpej
163 1.2 thorpej if (uuid_last.time.ll == 0LL || uuid_last.node[0] != uuid->node[0] ||
164 1.2 thorpej uuid_last.node[1] != uuid->node[1] ||
165 1.2 thorpej uuid_last.node[2] != uuid->node[2])
166 1.2 thorpej uuid->seq = (uint16_t)arc4random() & 0x3fff;
167 1.2 thorpej else if (uuid_last.time.ll >= time)
168 1.2 thorpej uuid->seq = (uuid_last.seq + 1) & 0x3fff;
169 1.2 thorpej else
170 1.2 thorpej uuid->seq = uuid_last.seq;
171 1.2 thorpej
172 1.2 thorpej uuid_last = *uuid;
173 1.2 thorpej uuid_last.time.ll = (time + count - 1) & ((1LL << 60) - 1LL);
174 1.2 thorpej
175 1.2 thorpej simple_unlock(&uuid_mutex);
176 1.2 thorpej }
177 1.2 thorpej
178 1.1 tsarna int
179 1.1 tsarna sys_uuidgen(struct lwp *l, void *v, register_t *retval)
180 1.1 tsarna {
181 1.1 tsarna struct sys_uuidgen_args *uap = v;
182 1.1 tsarna struct uuid_private uuid;
183 1.1 tsarna uint64_t time;
184 1.1 tsarna int error;
185 1.1 tsarna
186 1.1 tsarna /*
187 1.1 tsarna * Limit the number of UUIDs that can be created at the same time
188 1.1 tsarna * to some arbitrary number. This isn't really necessary, but I
189 1.1 tsarna * like to have some sort of upper-bound that's less than 2G :-)
190 1.1 tsarna * XXX needs to be tunable.
191 1.1 tsarna */
192 1.1 tsarna if (SCARG(uap,count) < 1 || SCARG(uap,count) > 2048)
193 1.1 tsarna return (EINVAL);
194 1.1 tsarna
195 1.1 tsarna /* XXX: pre-validate accessibility to the whole of the UUID store? */
196 1.1 tsarna
197 1.2 thorpej /* Generate the base UUID. */
198 1.2 thorpej uuid_generate(&uuid, &time, SCARG(uap, count));
199 1.1 tsarna
200 1.1 tsarna /* Set sequence and variant and deal with byte order. */
201 1.1 tsarna uuid.seq = htobe16(uuid.seq | 0x8000);
202 1.1 tsarna
203 1.1 tsarna /* XXX: this should copyout larger chunks at a time. */
204 1.1 tsarna do {
205 1.1 tsarna /* Set time and version (=1) and deal with byte order. */
206 1.1 tsarna uuid.time.x.low = (uint32_t)time;
207 1.1 tsarna uuid.time.x.mid = (uint16_t)(time >> 32);
208 1.1 tsarna uuid.time.x.hi = ((uint16_t)(time >> 48) & 0xfff) | (1 << 12);
209 1.1 tsarna error = copyout(&uuid, SCARG(uap,store), sizeof(uuid));
210 1.2 thorpej SCARG(uap, store)++;
211 1.2 thorpej SCARG(uap, count)--;
212 1.1 tsarna time++;
213 1.2 thorpej } while (SCARG(uap, count) > 0 && error == 0);
214 1.1 tsarna
215 1.1 tsarna return (error);
216 1.1 tsarna }
217 1.1 tsarna
218 1.1 tsarna int
219 1.2 thorpej uuid_snprintf(char *buf, size_t sz, const struct uuid *uuid)
220 1.1 tsarna {
221 1.2 thorpej const struct uuid_private *id;
222 1.1 tsarna int cnt;
223 1.1 tsarna
224 1.2 thorpej id = (const struct uuid_private *)uuid;
225 1.1 tsarna cnt = snprintf(buf, sz, "%08x-%04x-%04x-%04x-%04x%04x%04x",
226 1.1 tsarna id->time.x.low, id->time.x.mid, id->time.x.hi, be16toh(id->seq),
227 1.1 tsarna be16toh(id->node[0]), be16toh(id->node[1]), be16toh(id->node[2]));
228 1.1 tsarna return (cnt);
229 1.1 tsarna }
230 1.1 tsarna
231 1.1 tsarna int
232 1.2 thorpej uuid_printf(const struct uuid *uuid)
233 1.1 tsarna {
234 1.2 thorpej char buf[UUID_STR_LEN];
235 1.1 tsarna
236 1.2 thorpej (void) uuid_snprintf(buf, sizeof(buf), uuid);
237 1.1 tsarna printf("%s", buf);
238 1.2 thorpej return (0);
239 1.1 tsarna }
240 1.1 tsarna
241 1.1 tsarna /*
242 1.2 thorpej * Encode/Decode UUID into octet-stream.
243 1.1 tsarna * http://www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt
244 1.1 tsarna *
245 1.1 tsarna * 0 1 2 3
246 1.1 tsarna * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
247 1.1 tsarna * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
248 1.1 tsarna * | time_low |
249 1.1 tsarna * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
250 1.1 tsarna * | time_mid | time_hi_and_version |
251 1.1 tsarna * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
252 1.1 tsarna * |clk_seq_hi_res | clk_seq_low | node (0-1) |
253 1.1 tsarna * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
254 1.1 tsarna * | node (2-5) |
255 1.1 tsarna * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
256 1.1 tsarna */
257 1.1 tsarna
258 1.2 thorpej static void
259 1.2 thorpej be16enc(void *buf, uint16_t u)
260 1.2 thorpej {
261 1.2 thorpej uint8_t *p = buf;
262 1.2 thorpej
263 1.2 thorpej p[0] = (u >> 8) & 0xff;
264 1.2 thorpej p[1] = u & 0xff;
265 1.2 thorpej }
266 1.2 thorpej
267 1.2 thorpej static void
268 1.2 thorpej le16enc(void *buf, uint16_t u)
269 1.2 thorpej {
270 1.2 thorpej uint8_t *p = buf;
271 1.2 thorpej
272 1.2 thorpej p[0] = u & 0xff;
273 1.2 thorpej p[1] = (u >> 8) & 0xff;
274 1.2 thorpej }
275 1.2 thorpej
276 1.2 thorpej static uint16_t
277 1.2 thorpej be16dec(const void *buf)
278 1.2 thorpej {
279 1.2 thorpej const uint8_t *p = buf;
280 1.2 thorpej
281 1.2 thorpej return ((p[0] << 8) | p[1]);
282 1.2 thorpej }
283 1.2 thorpej
284 1.2 thorpej static uint16_t
285 1.2 thorpej le16dec(const void *buf)
286 1.2 thorpej {
287 1.2 thorpej const uint8_t *p = buf;
288 1.2 thorpej
289 1.2 thorpej return ((p[1] << 8) | p[0]);
290 1.2 thorpej }
291 1.2 thorpej
292 1.2 thorpej static void
293 1.2 thorpej be32enc(void *buf, uint32_t u)
294 1.2 thorpej {
295 1.2 thorpej uint8_t *p = buf;
296 1.2 thorpej
297 1.2 thorpej p[0] = (u >> 24) & 0xff;
298 1.2 thorpej p[1] = (u >> 16) & 0xff;
299 1.2 thorpej p[2] = (u >> 8) & 0xff;
300 1.2 thorpej p[3] = u & 0xff;
301 1.2 thorpej }
302 1.2 thorpej
303 1.2 thorpej static void
304 1.2 thorpej le32enc(void *buf, uint32_t u)
305 1.2 thorpej {
306 1.2 thorpej uint8_t *p = buf;
307 1.2 thorpej
308 1.2 thorpej p[0] = u & 0xff;
309 1.2 thorpej p[1] = (u >> 8) & 0xff;
310 1.2 thorpej p[2] = (u >> 16) & 0xff;
311 1.2 thorpej p[3] = (u >> 24) & 0xff;
312 1.2 thorpej }
313 1.2 thorpej
314 1.2 thorpej static uint32_t
315 1.2 thorpej be32dec(const void *buf)
316 1.2 thorpej {
317 1.2 thorpej const uint8_t *p = buf;
318 1.2 thorpej
319 1.2 thorpej return ((p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]);
320 1.2 thorpej }
321 1.2 thorpej
322 1.2 thorpej static uint32_t
323 1.2 thorpej le32dec(const void *buf)
324 1.2 thorpej {
325 1.2 thorpej const uint8_t *p = buf;
326 1.2 thorpej
327 1.2 thorpej return ((p[3] << 24) | (p[2] << 16) | (p[1] << 8) | p[0]);
328 1.2 thorpej }
329 1.2 thorpej
330 1.1 tsarna void
331 1.2 thorpej uuid_enc_le(void *buf, const struct uuid *uuid)
332 1.1 tsarna {
333 1.2 thorpej uint8_t *p = buf;
334 1.1 tsarna int i;
335 1.1 tsarna
336 1.1 tsarna le32enc(p, uuid->time_low);
337 1.1 tsarna le16enc(p + 4, uuid->time_mid);
338 1.1 tsarna le16enc(p + 6, uuid->time_hi_and_version);
339 1.1 tsarna p[8] = uuid->clock_seq_hi_and_reserved;
340 1.1 tsarna p[9] = uuid->clock_seq_low;
341 1.1 tsarna for (i = 0; i < _UUID_NODE_LEN; i++)
342 1.1 tsarna p[10 + i] = uuid->node[i];
343 1.1 tsarna }
344 1.1 tsarna
345 1.1 tsarna void
346 1.2 thorpej uuid_dec_le(void const *buf, struct uuid *uuid)
347 1.1 tsarna {
348 1.2 thorpej const uint8_t *p = buf;
349 1.1 tsarna int i;
350 1.1 tsarna
351 1.1 tsarna uuid->time_low = le32dec(p);
352 1.1 tsarna uuid->time_mid = le16dec(p + 4);
353 1.1 tsarna uuid->time_hi_and_version = le16dec(p + 6);
354 1.1 tsarna uuid->clock_seq_hi_and_reserved = p[8];
355 1.1 tsarna uuid->clock_seq_low = p[9];
356 1.1 tsarna for (i = 0; i < _UUID_NODE_LEN; i++)
357 1.1 tsarna uuid->node[i] = p[10 + i];
358 1.1 tsarna }
359 1.2 thorpej
360 1.1 tsarna void
361 1.2 thorpej uuid_enc_be(void *buf, const struct uuid *uuid)
362 1.1 tsarna {
363 1.2 thorpej uint8_t *p = buf;
364 1.1 tsarna int i;
365 1.1 tsarna
366 1.1 tsarna be32enc(p, uuid->time_low);
367 1.1 tsarna be16enc(p + 4, uuid->time_mid);
368 1.1 tsarna be16enc(p + 6, uuid->time_hi_and_version);
369 1.1 tsarna p[8] = uuid->clock_seq_hi_and_reserved;
370 1.1 tsarna p[9] = uuid->clock_seq_low;
371 1.1 tsarna for (i = 0; i < _UUID_NODE_LEN; i++)
372 1.1 tsarna p[10 + i] = uuid->node[i];
373 1.1 tsarna }
374 1.1 tsarna
375 1.1 tsarna void
376 1.2 thorpej uuid_dec_be(void const *buf, struct uuid *uuid)
377 1.1 tsarna {
378 1.2 thorpej const uint8_t *p = buf;
379 1.1 tsarna int i;
380 1.1 tsarna
381 1.1 tsarna uuid->time_low = be32dec(p);
382 1.1 tsarna uuid->time_mid = le16dec(p + 4);
383 1.1 tsarna uuid->time_hi_and_version = be16dec(p + 6);
384 1.1 tsarna uuid->clock_seq_hi_and_reserved = p[8];
385 1.1 tsarna uuid->clock_seq_low = p[9];
386 1.1 tsarna for (i = 0; i < _UUID_NODE_LEN; i++)
387 1.1 tsarna uuid->node[i] = p[10 + i];
388 1.1 tsarna }
389