Home | History | Annotate | Line # | Download | only in kern
kern_uuid.c revision 1.1.4.3
      1 /* $FreeBSD: /repoman/r/ncvs/src/sys/kern/kern_uuid.c,v 1.7 2004/01/12 13:34:11 rse Exp $ */
      2 /*	$NetBSD: kern_uuid.c,v 1.1.4.3 2004/09/03 12:45:39 skrll Exp $	*/
      3 
      4 /*
      5  * Copyright (c) 2002 Marcel Moolenaar
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     28  *
     29  * $FreeBSD: /repoman/r/ncvs/src/sys/kern/kern_uuid.c,v 1.7 2004/01/12 13:34:11 rse Exp $
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: kern_uuid.c,v 1.1.4.3 2004/09/03 12:45:39 skrll Exp $");
     34 
     35 #include <sys/param.h>
     36 #include <sys/endian.h>
     37 #include <sys/kernel.h>
     38 #include <sys/lock.h>
     39 #include <sys/socket.h>
     40 #include <sys/systm.h>
     41 #include <sys/uuid.h>
     42 
     43 /* NetBSD */
     44 #include <sys/proc.h>
     45 #include <sys/sa.h>
     46 #include <sys/mount.h>
     47 #include <sys/syscallargs.h>
     48 #include <sys/uio.h>
     49 
     50 #include <net/if.h>
     51 #include <net/if_dl.h>
     52 #include <net/if_types.h>
     53 
     54 /*
     55  * See also:
     56  *	http://www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt
     57  *	http://www.opengroup.org/onlinepubs/009629399/apdxa.htm
     58  *
     59  * Note that the generator state is itself an UUID, but the time and clock
     60  * sequence fields are written in the native byte order.
     61  */
     62 
     63 /* XXX Do we have a similar ASSERT()? */
     64 #define CTASSERT(x)
     65 
     66 CTASSERT(sizeof(struct uuid) == 16);
     67 
     68 /* We use an alternative, more convenient representation in the generator. */
     69 struct uuid_private {
     70 	union {
     71 		uint64_t	ll;		/* internal. */
     72 		struct {
     73 			uint32_t	low;
     74 			uint16_t	mid;
     75 			uint16_t	hi;
     76 		} x;
     77 	} time;
     78 	uint16_t	seq;			/* Big-endian. */
     79 	uint16_t	node[UUID_NODE_LEN>>1];
     80 };
     81 
     82 CTASSERT(sizeof(struct uuid_private) == 16);
     83 
     84 static struct uuid_private uuid_last;
     85 
     86 /* "UUID generator mutex lock" */
     87 static struct simplelock uuid_mutex = SIMPLELOCK_INITIALIZER;
     88 
     89 /*
     90  * Return the first MAC address we encounter or, if none was found,
     91  * construct a sufficiently random multicast address. We don't try
     92  * to return the same MAC address as previously returned. We always
     93  * generate a new multicast address if no MAC address exists in the
     94  * system.
     95  * It would be nice to know if 'ifnet' or any of its sub-structures
     96  * has been changed in any way. If not, we could simply skip the
     97  * scan and safely return the MAC address we returned before.
     98  */
     99 static void
    100 uuid_node(uint16_t *node)
    101 {
    102 	struct ifnet *ifp;
    103 	struct ifaddr *ifa;
    104 	struct sockaddr_dl *sdl;
    105 	int i, s;
    106 
    107 	s = splnet();
    108 	TAILQ_FOREACH(ifp, &ifnet, if_list) {
    109 		/* Walk the address list */
    110 		TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
    111 			sdl = (struct sockaddr_dl*)ifa->ifa_addr;
    112 			if (sdl != NULL && sdl->sdl_family == AF_LINK &&
    113 			    sdl->sdl_type == IFT_ETHER) {
    114 				/* Got a MAC address. */
    115 				memcpy(node, LLADDR(sdl), UUID_NODE_LEN);
    116 				splx(s);
    117 				return;
    118 			}
    119 		}
    120 	}
    121 	splx(s);
    122 
    123 	for (i = 0; i < (UUID_NODE_LEN>>1); i++)
    124 		node[i] = (uint16_t)arc4random();
    125 	*((uint8_t*)node) |= 0x01;
    126 }
    127 
    128 /*
    129  * Get the current time as a 60 bit count of 100-nanosecond intervals
    130  * since 00:00:00.00, October 15,1582. We apply a magic offset to convert
    131  * the Unix time since 00:00:00.00, January 1, 1970 to the date of the
    132  * Gregorian reform to the Christian calendar.
    133  */
    134 /*
    135  * At present, NetBSD has no timespec source, only timeval sources.  So,
    136  * we use timeval.
    137  */
    138 static uint64_t
    139 uuid_time(void)
    140 {
    141 	struct timeval tv;
    142 	uint64_t time = 0x01B21DD213814000LL;
    143 
    144 	microtime(&tv);
    145 	time += (uint64_t)tv.tv_sec * 10000000LL;
    146 	time += (uint64_t)(10 * tv.tv_usec);
    147 	return (time & ((1LL << 60) - 1LL));
    148 }
    149 
    150 /*
    151  * Internal routine to actually generate the UUID.
    152  */
    153 static void
    154 uuid_generate(struct uuid_private *uuid, uint64_t *timep, int count)
    155 {
    156 	uint64_t time;
    157 
    158 	simple_lock(&uuid_mutex);
    159 
    160 	uuid_node(uuid->node);
    161 	time = uuid_time();
    162 	*timep = time;
    163 
    164 	if (uuid_last.time.ll == 0LL || uuid_last.node[0] != uuid->node[0] ||
    165 	    uuid_last.node[1] != uuid->node[1] ||
    166 	    uuid_last.node[2] != uuid->node[2])
    167 		uuid->seq = (uint16_t)arc4random() & 0x3fff;
    168 	else if (uuid_last.time.ll >= time)
    169 		uuid->seq = (uuid_last.seq + 1) & 0x3fff;
    170 	else
    171 		uuid->seq = uuid_last.seq;
    172 
    173 	uuid_last = *uuid;
    174 	uuid_last.time.ll = (time + count - 1) & ((1LL << 60) - 1LL);
    175 
    176 	simple_unlock(&uuid_mutex);
    177 }
    178 
    179 int
    180 sys_uuidgen(struct lwp *l, void *v, register_t *retval)
    181 {
    182 	struct sys_uuidgen_args *uap = v;
    183 	struct uuid_private uuid;
    184 	uint64_t time;
    185 	int error;
    186 
    187 	/*
    188 	 * Limit the number of UUIDs that can be created at the same time
    189 	 * to some arbitrary number. This isn't really necessary, but I
    190 	 * like to have some sort of upper-bound that's less than 2G :-)
    191 	 * XXX needs to be tunable.
    192 	 */
    193 	if (SCARG(uap,count) < 1 || SCARG(uap,count) > 2048)
    194 		return (EINVAL);
    195 
    196 	/* XXX: pre-validate accessibility to the whole of the UUID store? */
    197 
    198 	/* Generate the base UUID. */
    199 	uuid_generate(&uuid, &time, SCARG(uap, count));
    200 
    201 	/* Set sequence and variant and deal with byte order. */
    202 	uuid.seq = htobe16(uuid.seq | 0x8000);
    203 
    204 	/* XXX: this should copyout larger chunks at a time. */
    205 	do {
    206 		/* Set time and version (=1) and deal with byte order. */
    207 		uuid.time.x.low = (uint32_t)time;
    208 		uuid.time.x.mid = (uint16_t)(time >> 32);
    209 		uuid.time.x.hi = ((uint16_t)(time >> 48) & 0xfff) | (1 << 12);
    210 		error = copyout(&uuid, SCARG(uap,store), sizeof(uuid));
    211 		SCARG(uap, store)++;
    212 		SCARG(uap, count)--;
    213 		time++;
    214 	} while (SCARG(uap, count) > 0 && error == 0);
    215 
    216 	return (error);
    217 }
    218 
    219 int
    220 uuid_snprintf(char *buf, size_t sz, const struct uuid *uuid)
    221 {
    222 	const struct uuid_private *id;
    223 	int cnt;
    224 
    225 	id = (const struct uuid_private *)uuid;
    226 	cnt = snprintf(buf, sz, "%08x-%04x-%04x-%04x-%04x%04x%04x",
    227 	    id->time.x.low, id->time.x.mid, id->time.x.hi, be16toh(id->seq),
    228 	    be16toh(id->node[0]), be16toh(id->node[1]), be16toh(id->node[2]));
    229 	return (cnt);
    230 }
    231 
    232 int
    233 uuid_printf(const struct uuid *uuid)
    234 {
    235 	char buf[UUID_STR_LEN];
    236 
    237 	(void) uuid_snprintf(buf, sizeof(buf), uuid);
    238 	printf("%s", buf);
    239 	return (0);
    240 }
    241 
    242 /*
    243  * Encode/Decode UUID into octet-stream.
    244  *   http://www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt
    245  *
    246  * 0                   1                   2                   3
    247  *   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    248  *  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    249  *  |                          time_low                             |
    250  *  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    251  *  |       time_mid                |         time_hi_and_version   |
    252  *  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    253  *  |clk_seq_hi_res |  clk_seq_low  |         node (0-1)            |
    254  *  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    255  *  |                         node (2-5)                            |
    256  *  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    257  */
    258 
    259 static void
    260 be16enc(void *buf, uint16_t u)
    261 {
    262 	uint8_t *p = buf;
    263 
    264 	p[0] = (u >> 8) & 0xff;
    265 	p[1] = u & 0xff;
    266 }
    267 
    268 static void
    269 le16enc(void *buf, uint16_t u)
    270 {
    271 	uint8_t *p = buf;
    272 
    273 	p[0] = u & 0xff;
    274 	p[1] = (u >> 8) & 0xff;
    275 }
    276 
    277 static uint16_t
    278 be16dec(const void *buf)
    279 {
    280 	const uint8_t *p = buf;
    281 
    282 	return ((p[0] << 8) | p[1]);
    283 }
    284 
    285 static uint16_t
    286 le16dec(const void *buf)
    287 {
    288 	const uint8_t *p = buf;
    289 
    290 	return ((p[1] << 8) | p[0]);
    291 }
    292 
    293 static void
    294 be32enc(void *buf, uint32_t u)
    295 {
    296 	uint8_t *p = buf;
    297 
    298 	p[0] = (u >> 24) & 0xff;
    299 	p[1] = (u >> 16) & 0xff;
    300 	p[2] = (u >> 8) & 0xff;
    301 	p[3] = u & 0xff;
    302 }
    303 
    304 static void
    305 le32enc(void *buf, uint32_t u)
    306 {
    307 	uint8_t *p = buf;
    308 
    309 	p[0] = u & 0xff;
    310 	p[1] = (u >> 8) & 0xff;
    311 	p[2] = (u >> 16) & 0xff;
    312 	p[3] = (u >> 24) & 0xff;
    313 }
    314 
    315 static uint32_t
    316 be32dec(const void *buf)
    317 {
    318 	const uint8_t *p = buf;
    319 
    320 	return ((p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]);
    321 }
    322 
    323 static uint32_t
    324 le32dec(const void *buf)
    325 {
    326 	const uint8_t *p = buf;
    327 
    328 	return ((p[3] << 24) | (p[2] << 16) | (p[1] << 8) | p[0]);
    329 }
    330 
    331 void
    332 uuid_enc_le(void *buf, const struct uuid *uuid)
    333 {
    334 	uint8_t *p = buf;
    335 	int i;
    336 
    337 	le32enc(p, uuid->time_low);
    338 	le16enc(p + 4, uuid->time_mid);
    339 	le16enc(p + 6, uuid->time_hi_and_version);
    340 	p[8] = uuid->clock_seq_hi_and_reserved;
    341 	p[9] = uuid->clock_seq_low;
    342 	for (i = 0; i < _UUID_NODE_LEN; i++)
    343 		p[10 + i] = uuid->node[i];
    344 }
    345 
    346 void
    347 uuid_dec_le(void const *buf, struct uuid *uuid)
    348 {
    349 	const uint8_t *p = buf;
    350 	int i;
    351 
    352 	uuid->time_low = le32dec(p);
    353 	uuid->time_mid = le16dec(p + 4);
    354 	uuid->time_hi_and_version = le16dec(p + 6);
    355 	uuid->clock_seq_hi_and_reserved = p[8];
    356 	uuid->clock_seq_low = p[9];
    357 	for (i = 0; i < _UUID_NODE_LEN; i++)
    358 		uuid->node[i] = p[10 + i];
    359 }
    360 
    361 void
    362 uuid_enc_be(void *buf, const struct uuid *uuid)
    363 {
    364 	uint8_t *p = buf;
    365 	int i;
    366 
    367 	be32enc(p, uuid->time_low);
    368 	be16enc(p + 4, uuid->time_mid);
    369 	be16enc(p + 6, uuid->time_hi_and_version);
    370 	p[8] = uuid->clock_seq_hi_and_reserved;
    371 	p[9] = uuid->clock_seq_low;
    372 	for (i = 0; i < _UUID_NODE_LEN; i++)
    373 		p[10 + i] = uuid->node[i];
    374 }
    375 
    376 void
    377 uuid_dec_be(void const *buf, struct uuid *uuid)
    378 {
    379 	const uint8_t *p = buf;
    380 	int i;
    381 
    382 	uuid->time_low = be32dec(p);
    383 	uuid->time_mid = le16dec(p + 4);
    384 	uuid->time_hi_and_version = be16dec(p + 6);
    385 	uuid->clock_seq_hi_and_reserved = p[8];
    386 	uuid->clock_seq_low = p[9];
    387 	for (i = 0; i < _UUID_NODE_LEN; i++)
    388 		uuid->node[i] = p[10 + i];
    389 }
    390