Home | History | Annotate | Line # | Download | only in kern
kern_uuid.c revision 1.17
      1 /*	$NetBSD: kern_uuid.c,v 1.17 2010/05/04 19:23:56 kardel Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002 Marcel Moolenaar
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  *
     28  * $FreeBSD: /repoman/r/ncvs/src/sys/kern/kern_uuid.c,v 1.7 2004/01/12 13:34:11 rse Exp $
     29  */
     30 
     31 #include <sys/cdefs.h>
     32 __KERNEL_RCSID(0, "$NetBSD: kern_uuid.c,v 1.17 2010/05/04 19:23:56 kardel Exp $");
     33 
     34 #include <sys/param.h>
     35 #include <sys/endian.h>
     36 #include <sys/kernel.h>
     37 #include <sys/mutex.h>
     38 #include <sys/socket.h>
     39 #include <sys/systm.h>
     40 #include <sys/uuid.h>
     41 
     42 /* NetBSD */
     43 #include <sys/proc.h>
     44 #include <sys/mount.h>
     45 #include <sys/syscallargs.h>
     46 #include <sys/uio.h>
     47 
     48 #include <net/if.h>
     49 #include <net/if_dl.h>
     50 #include <net/if_types.h>
     51 
     52 /*
     53  * See also:
     54  *	http://www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt
     55  *	http://www.opengroup.org/onlinepubs/009629399/apdxa.htm
     56  *
     57  * Note that the generator state is itself an UUID, but the time and clock
     58  * sequence fields are written in the native byte order.
     59  */
     60 
     61 CTASSERT(sizeof(struct uuid) == 16);
     62 
     63 /* We use an alternative, more convenient representation in the generator. */
     64 struct uuid_private {
     65 	union {
     66 		uint64_t	ll;		/* internal. */
     67 		struct {
     68 			uint32_t	low;
     69 			uint16_t	mid;
     70 			uint16_t	hi;
     71 		} x;
     72 	} time;
     73 	uint16_t	seq;			/* Big-endian. */
     74 	uint16_t	node[UUID_NODE_LEN>>1];
     75 };
     76 
     77 CTASSERT(sizeof(struct uuid_private) == 16);
     78 
     79 static struct uuid_private uuid_last;
     80 
     81 /* "UUID generator mutex lock" */
     82 static kmutex_t uuid_mutex;
     83 
     84 void
     85 uuid_init(void)
     86 {
     87 
     88 	mutex_init(&uuid_mutex, MUTEX_DEFAULT, IPL_NONE);
     89 }
     90 
     91 /*
     92  * Return the first MAC address we encounter or, if none was found,
     93  * construct a sufficiently random multicast address. We don't try
     94  * to return the same MAC address as previously returned. We always
     95  * generate a new multicast address if no MAC address exists in the
     96  * system.
     97  * It would be nice to know if 'ifnet' or any of its sub-structures
     98  * has been changed in any way. If not, we could simply skip the
     99  * scan and safely return the MAC address we returned before.
    100  */
    101 static void
    102 uuid_node(uint16_t *node)
    103 {
    104 	struct ifnet *ifp;
    105 	struct ifaddr *ifa;
    106 	struct sockaddr_dl *sdl;
    107 	int i, s;
    108 
    109 	s = splnet();
    110 	KERNEL_LOCK(1, NULL);
    111 	IFNET_FOREACH(ifp) {
    112 		/* Walk the address list */
    113 		IFADDR_FOREACH(ifa, ifp) {
    114 			sdl = (struct sockaddr_dl*)ifa->ifa_addr;
    115 			if (sdl != NULL && sdl->sdl_family == AF_LINK &&
    116 			    sdl->sdl_type == IFT_ETHER) {
    117 				/* Got a MAC address. */
    118 				memcpy(node, CLLADDR(sdl), UUID_NODE_LEN);
    119 				KERNEL_UNLOCK_ONE(NULL);
    120 				splx(s);
    121 				return;
    122 			}
    123 		}
    124 	}
    125 	KERNEL_UNLOCK_ONE(NULL);
    126 	splx(s);
    127 
    128 	for (i = 0; i < (UUID_NODE_LEN>>1); i++)
    129 		node[i] = (uint16_t)arc4random();
    130 	*((uint8_t*)node) |= 0x01;
    131 }
    132 
    133 /*
    134  * Get the current time as a 60 bit count of 100-nanosecond intervals
    135  * since 00:00:00.00, October 15,1582. We apply a magic offset to convert
    136  * the Unix time since 00:00:00.00, January 1, 1970 to the date of the
    137  * Gregorian reform to the Christian calendar.
    138  */
    139 static uint64_t
    140 uuid_time(void)
    141 {
    142 	struct timespec tsp;
    143 	uint64_t xtime = 0x01B21DD213814000LL;
    144 
    145 	nanotime(&tsp);
    146 	xtime += (uint64_t)tsp.tv_sec * 10000000LL;
    147 	xtime += (uint64_t)(tsp.tv_nsec / 100);
    148 	return (xtime & ((1LL << 60) - 1LL));
    149 }
    150 
    151 /*
    152  * Internal routine to actually generate the UUID.
    153  */
    154 static void
    155 uuid_generate(struct uuid_private *uuid, uint64_t *timep, int count)
    156 {
    157 	uint64_t xtime;
    158 
    159 	mutex_enter(&uuid_mutex);
    160 
    161 	uuid_node(uuid->node);
    162 	xtime = uuid_time();
    163 	*timep = xtime;
    164 
    165 	if (uuid_last.time.ll == 0LL || uuid_last.node[0] != uuid->node[0] ||
    166 	    uuid_last.node[1] != uuid->node[1] ||
    167 	    uuid_last.node[2] != uuid->node[2])
    168 		uuid->seq = (uint16_t)arc4random() & 0x3fff;
    169 	else if (uuid_last.time.ll >= xtime)
    170 		uuid->seq = (uuid_last.seq + 1) & 0x3fff;
    171 	else
    172 		uuid->seq = uuid_last.seq;
    173 
    174 	uuid_last = *uuid;
    175 	uuid_last.time.ll = (xtime + count - 1) & ((1LL << 60) - 1LL);
    176 
    177 	mutex_exit(&uuid_mutex);
    178 }
    179 
    180 static int
    181 kern_uuidgen(struct uuid *store, int count, bool to_user)
    182 {
    183 	struct uuid_private uuid;
    184 	uint64_t xtime;
    185 	int error = 0, i;
    186 
    187 	KASSERT(count >= 1);
    188 
    189 	/* Generate the base UUID. */
    190 	uuid_generate(&uuid, &xtime, count);
    191 
    192 	/* Set sequence and variant and deal with byte order. */
    193 	uuid.seq = htobe16(uuid.seq | 0x8000);
    194 
    195 	for (i = 0; i < count; xtime++, i++) {
    196 		/* Set time and version (=1) and deal with byte order. */
    197 		uuid.time.x.low = (uint32_t)xtime;
    198 		uuid.time.x.mid = (uint16_t)(xtime >> 32);
    199 		uuid.time.x.hi = ((uint16_t)(xtime >> 48) & 0xfff) | (1 << 12);
    200 		if (to_user) {
    201 			error = copyout(&uuid, store + i, sizeof(uuid));
    202 			if (error != 0)
    203 				break;
    204 		} else {
    205 			memcpy(store + i, &uuid, sizeof(uuid));
    206 		}
    207 	}
    208 
    209 	return error;
    210 }
    211 
    212 int
    213 sys_uuidgen(struct lwp *l, const struct sys_uuidgen_args *uap, register_t *retval)
    214 {
    215 	/*
    216 	 * Limit the number of UUIDs that can be created at the same time
    217 	 * to some arbitrary number. This isn't really necessary, but I
    218 	 * like to have some sort of upper-bound that's less than 2G :-)
    219 	 * XXX needs to be tunable.
    220 	 */
    221 	if (SCARG(uap,count) < 1 || SCARG(uap,count) > 2048)
    222 		return (EINVAL);
    223 
    224 	return kern_uuidgen(SCARG(uap, store), SCARG(uap,count), true);
    225 }
    226 
    227 int
    228 uuidgen(struct uuid *store, int count)
    229 {
    230 	return kern_uuidgen(store,count, false);
    231 }
    232 
    233 int
    234 uuid_snprintf(char *buf, size_t sz, const struct uuid *uuid)
    235 {
    236 	const struct uuid_private *id;
    237 	int cnt;
    238 
    239 	id = (const struct uuid_private *)uuid;
    240 	cnt = snprintf(buf, sz, "%08x-%04x-%04x-%04x-%04x%04x%04x",
    241 	    id->time.x.low, id->time.x.mid, id->time.x.hi, be16toh(id->seq),
    242 	    be16toh(id->node[0]), be16toh(id->node[1]), be16toh(id->node[2]));
    243 	return (cnt);
    244 }
    245 
    246 int
    247 uuid_printf(const struct uuid *uuid)
    248 {
    249 	char buf[UUID_STR_LEN];
    250 
    251 	(void) uuid_snprintf(buf, sizeof(buf), uuid);
    252 	printf("%s", buf);
    253 	return (0);
    254 }
    255 
    256 /*
    257  * Encode/Decode UUID into octet-stream.
    258  *   http://www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt
    259  *
    260  * 0                   1                   2                   3
    261  *   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    262  *  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    263  *  |                          time_low                             |
    264  *  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    265  *  |       time_mid                |         time_hi_and_version   |
    266  *  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    267  *  |clk_seq_hi_res |  clk_seq_low  |         node (0-1)            |
    268  *  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    269  *  |                         node (2-5)                            |
    270  *  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    271  */
    272 
    273 void
    274 uuid_enc_le(void *buf, const struct uuid *uuid)
    275 {
    276 	uint8_t *p = buf;
    277 	int i;
    278 
    279 	le32enc(p, uuid->time_low);
    280 	le16enc(p + 4, uuid->time_mid);
    281 	le16enc(p + 6, uuid->time_hi_and_version);
    282 	p[8] = uuid->clock_seq_hi_and_reserved;
    283 	p[9] = uuid->clock_seq_low;
    284 	for (i = 0; i < _UUID_NODE_LEN; i++)
    285 		p[10 + i] = uuid->node[i];
    286 }
    287 
    288 void
    289 uuid_dec_le(void const *buf, struct uuid *uuid)
    290 {
    291 	const uint8_t *p = buf;
    292 	int i;
    293 
    294 	uuid->time_low = le32dec(p);
    295 	uuid->time_mid = le16dec(p + 4);
    296 	uuid->time_hi_and_version = le16dec(p + 6);
    297 	uuid->clock_seq_hi_and_reserved = p[8];
    298 	uuid->clock_seq_low = p[9];
    299 	for (i = 0; i < _UUID_NODE_LEN; i++)
    300 		uuid->node[i] = p[10 + i];
    301 }
    302 
    303 void
    304 uuid_enc_be(void *buf, const struct uuid *uuid)
    305 {
    306 	uint8_t *p = buf;
    307 	int i;
    308 
    309 	be32enc(p, uuid->time_low);
    310 	be16enc(p + 4, uuid->time_mid);
    311 	be16enc(p + 6, uuid->time_hi_and_version);
    312 	p[8] = uuid->clock_seq_hi_and_reserved;
    313 	p[9] = uuid->clock_seq_low;
    314 	for (i = 0; i < _UUID_NODE_LEN; i++)
    315 		p[10 + i] = uuid->node[i];
    316 }
    317 
    318 void
    319 uuid_dec_be(void const *buf, struct uuid *uuid)
    320 {
    321 	const uint8_t *p = buf;
    322 	int i;
    323 
    324 	uuid->time_low = be32dec(p);
    325 	uuid->time_mid = be16dec(p + 4);
    326 	uuid->time_hi_and_version = be16dec(p + 6);
    327 	uuid->clock_seq_hi_and_reserved = p[8];
    328 	uuid->clock_seq_low = p[9];
    329 	for (i = 0; i < _UUID_NODE_LEN; i++)
    330 		uuid->node[i] = p[10 + i];
    331 }
    332