1 1.47 mrg /* $NetBSD: sched_4bsd.c,v 1.47 2025/01/17 04:11:33 mrg Exp $ */ 2 1.2 yamt 3 1.31 maxv /* 4 1.42 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2019, 2020 5 1.36 ad * The NetBSD Foundation, Inc. 6 1.2 yamt * All rights reserved. 7 1.2 yamt * 8 1.2 yamt * This code is derived from software contributed to The NetBSD Foundation 9 1.2 yamt * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 10 1.2 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and 11 1.2 yamt * Daniel Sieger. 12 1.2 yamt * 13 1.2 yamt * Redistribution and use in source and binary forms, with or without 14 1.2 yamt * modification, are permitted provided that the following conditions 15 1.2 yamt * are met: 16 1.2 yamt * 1. Redistributions of source code must retain the above copyright 17 1.2 yamt * notice, this list of conditions and the following disclaimer. 18 1.2 yamt * 2. Redistributions in binary form must reproduce the above copyright 19 1.2 yamt * notice, this list of conditions and the following disclaimer in the 20 1.2 yamt * documentation and/or other materials provided with the distribution. 21 1.2 yamt * 22 1.2 yamt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 23 1.2 yamt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 24 1.2 yamt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 25 1.2 yamt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 26 1.2 yamt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 1.2 yamt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 1.2 yamt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 1.2 yamt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 1.2 yamt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 1.2 yamt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 32 1.2 yamt * POSSIBILITY OF SUCH DAMAGE. 33 1.2 yamt */ 34 1.2 yamt 35 1.31 maxv /* 36 1.2 yamt * Copyright (c) 1982, 1986, 1990, 1991, 1993 37 1.2 yamt * The Regents of the University of California. All rights reserved. 38 1.2 yamt * (c) UNIX System Laboratories, Inc. 39 1.2 yamt * All or some portions of this file are derived from material licensed 40 1.2 yamt * to the University of California by American Telephone and Telegraph 41 1.2 yamt * Co. or Unix System Laboratories, Inc. and are reproduced herein with 42 1.2 yamt * the permission of UNIX System Laboratories, Inc. 43 1.2 yamt * 44 1.2 yamt * Redistribution and use in source and binary forms, with or without 45 1.2 yamt * modification, are permitted provided that the following conditions 46 1.2 yamt * are met: 47 1.2 yamt * 1. Redistributions of source code must retain the above copyright 48 1.2 yamt * notice, this list of conditions and the following disclaimer. 49 1.2 yamt * 2. Redistributions in binary form must reproduce the above copyright 50 1.2 yamt * notice, this list of conditions and the following disclaimer in the 51 1.2 yamt * documentation and/or other materials provided with the distribution. 52 1.2 yamt * 3. Neither the name of the University nor the names of its contributors 53 1.2 yamt * may be used to endorse or promote products derived from this software 54 1.2 yamt * without specific prior written permission. 55 1.2 yamt * 56 1.2 yamt * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 57 1.2 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 58 1.2 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 59 1.2 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 60 1.2 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 61 1.2 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 62 1.2 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 63 1.2 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 64 1.2 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 65 1.2 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 66 1.2 yamt * SUCH DAMAGE. 67 1.2 yamt * 68 1.2 yamt * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95 69 1.2 yamt */ 70 1.2 yamt 71 1.2 yamt #include <sys/cdefs.h> 72 1.47 mrg __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.47 2025/01/17 04:11:33 mrg Exp $"); 73 1.2 yamt 74 1.2 yamt #include "opt_ddb.h" 75 1.2 yamt #include "opt_lockdebug.h" 76 1.2 yamt 77 1.2 yamt #include <sys/param.h> 78 1.2 yamt #include <sys/systm.h> 79 1.2 yamt #include <sys/callout.h> 80 1.2 yamt #include <sys/cpu.h> 81 1.2 yamt #include <sys/proc.h> 82 1.2 yamt #include <sys/kernel.h> 83 1.2 yamt #include <sys/resourcevar.h> 84 1.2 yamt #include <sys/sched.h> 85 1.2 yamt #include <sys/sysctl.h> 86 1.2 yamt #include <sys/lockdebug.h> 87 1.5 ad #include <sys/intr.h> 88 1.37 ad #include <sys/atomic.h> 89 1.2 yamt 90 1.2 yamt static void updatepri(struct lwp *); 91 1.2 yamt static void resetpriority(struct lwp *); 92 1.2 yamt 93 1.2 yamt /* Number of hardclock ticks per sched_tick() */ 94 1.44 ad u_int sched_rrticks __read_mostly; 95 1.2 yamt 96 1.2 yamt /* 97 1.2 yamt * Force switch among equal priority processes every 100ms. 98 1.44 ad * Called from hardclock every hz/10 == sched_rrticks hardclock ticks. 99 1.2 yamt */ 100 1.2 yamt /* ARGSUSED */ 101 1.2 yamt void 102 1.2 yamt sched_tick(struct cpu_info *ci) 103 1.2 yamt { 104 1.2 yamt struct schedstate_percpu *spc = &ci->ci_schedstate; 105 1.41 ad pri_t pri = PRI_NONE; 106 1.23 ad lwp_t *l; 107 1.2 yamt 108 1.44 ad spc->spc_ticks = sched_rrticks; 109 1.2 yamt 110 1.15 ad if (CURCPU_IDLE_P()) { 111 1.41 ad spc_lock(ci); 112 1.41 ad sched_resched_cpu(ci, MAXPRI_KTHREAD, true); 113 1.41 ad /* spc now unlocked */ 114 1.7 rmind return; 115 1.15 ad } 116 1.40 ad l = ci->ci_onproc; 117 1.23 ad if (l == NULL) { 118 1.19 yamt return; 119 1.19 yamt } 120 1.36 ad /* 121 1.36 ad * Can only be spc_lwplock or a turnstile lock at this point 122 1.36 ad * (if we interrupted priority inheritance trylock dance). 123 1.36 ad */ 124 1.36 ad KASSERT(l->l_mutex != spc->spc_mutex); 125 1.23 ad switch (l->l_class) { 126 1.23 ad case SCHED_FIFO: 127 1.23 ad /* No timeslicing for FIFO jobs. */ 128 1.23 ad break; 129 1.23 ad case SCHED_RR: 130 1.23 ad /* Force it into mi_switch() to look for other jobs to run. */ 131 1.41 ad pri = MAXPRI_KERNEL_RT; 132 1.23 ad break; 133 1.23 ad default: 134 1.23 ad if (spc->spc_flags & SPCF_SHOULDYIELD) { 135 1.23 ad /* 136 1.23 ad * Process is stuck in kernel somewhere, probably 137 1.31 maxv * due to buggy or inefficient code. Force a 138 1.23 ad * kernel preemption. 139 1.23 ad */ 140 1.41 ad pri = MAXPRI_KERNEL_RT; 141 1.23 ad } else if (spc->spc_flags & SPCF_SEENRR) { 142 1.23 ad /* 143 1.23 ad * The process has already been through a roundrobin 144 1.23 ad * without switching and may be hogging the CPU. 145 1.23 ad * Indicate that the process should yield. 146 1.23 ad */ 147 1.41 ad pri = MAXPRI_KTHREAD; 148 1.43 ad spc->spc_flags |= SPCF_SHOULDYIELD; 149 1.47 mrg } else if (!cpu_is_1stclass(ci)) { 150 1.42 ad /* 151 1.45 andvar * For SMT or asymmetric systems push a little 152 1.42 ad * harder: if this is not a 1st class CPU, try to 153 1.42 ad * find a better one to run this LWP. 154 1.42 ad */ 155 1.42 ad pri = MAXPRI_KTHREAD; 156 1.43 ad spc->spc_flags |= SPCF_SHOULDYIELD; 157 1.23 ad } else { 158 1.23 ad spc->spc_flags |= SPCF_SEENRR; 159 1.23 ad } 160 1.23 ad break; 161 1.23 ad } 162 1.41 ad 163 1.41 ad if (pri != PRI_NONE) { 164 1.41 ad spc_lock(ci); 165 1.41 ad sched_resched_cpu(ci, pri, true); 166 1.41 ad /* spc now unlocked */ 167 1.41 ad } 168 1.2 yamt } 169 1.2 yamt 170 1.8 ad /* 171 1.8 ad * Why PRIO_MAX - 2? From setpriority(2): 172 1.8 ad * 173 1.8 ad * prio is a value in the range -20 to 20. The default priority is 174 1.8 ad * 0; lower priorities cause more favorable scheduling. A value of 175 1.8 ad * 19 or 20 will schedule a process only when nothing at priority <= 176 1.8 ad * 0 is runnable. 177 1.8 ad * 178 1.8 ad * This gives estcpu influence over 18 priority levels, and leaves nice 179 1.8 ad * with 40 levels. One way to think about it is that nice has 20 levels 180 1.8 ad * either side of estcpu's 18. 181 1.8 ad */ 182 1.2 yamt #define ESTCPU_SHIFT 11 183 1.8 ad #define ESTCPU_MAX ((PRIO_MAX - 2) << ESTCPU_SHIFT) 184 1.8 ad #define ESTCPU_ACCUM (1 << (ESTCPU_SHIFT - 1)) 185 1.35 riastrad #define ESTCPULIM(e) uimin((e), ESTCPU_MAX) 186 1.2 yamt 187 1.2 yamt /* 188 1.31 maxv * The main parameter used by this algorithm is 'l_estcpu'. It is an estimate 189 1.31 maxv * of the recent CPU utilization of the thread. 190 1.31 maxv * 191 1.31 maxv * l_estcpu is: 192 1.31 maxv * - increased each time the hardclock ticks and the thread is found to 193 1.31 maxv * be executing, in sched_schedclock() called from hardclock() 194 1.31 maxv * - decreased (filtered) on each sched tick, in sched_pstats_hook() 195 1.31 maxv * If the lwp is sleeping for more than a second, we don't touch l_estcpu: it 196 1.31 maxv * will be updated in sched_setrunnable() when the lwp wakes up, in burst mode 197 1.31 maxv * (ie, we decrease it n times). 198 1.2 yamt * 199 1.8 ad * Note that hardclock updates l_estcpu and l_cpticks independently. 200 1.2 yamt * 201 1.31 maxv * ----------------------------------------------------------------------------- 202 1.31 maxv * 203 1.31 maxv * Here we describe how l_estcpu is decreased. 204 1.31 maxv * 205 1.31 maxv * Constants for digital decay (filter): 206 1.31 maxv * 90% of l_estcpu usage in (5 * loadavg) seconds 207 1.31 maxv * 208 1.31 maxv * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds. That is, we 209 1.31 maxv * want to compute a value of decay such that the following loop: 210 1.31 maxv * for (i = 0; i < (5 * loadavg); i++) 211 1.31 maxv * l_estcpu *= decay; 212 1.31 maxv * will result in 213 1.31 maxv * l_estcpu *= 0.1; 214 1.31 maxv * for all values of loadavg. 215 1.2 yamt * 216 1.2 yamt * Mathematically this loop can be expressed by saying: 217 1.31 maxv * decay ** (5 * loadavg) ~= .1 218 1.31 maxv * 219 1.31 maxv * And finally, the corresponding value of decay we're using is: 220 1.31 maxv * decay = (2 * loadavg) / (2 * loadavg + 1) 221 1.2 yamt * 222 1.31 maxv * ----------------------------------------------------------------------------- 223 1.2 yamt * 224 1.31 maxv * Now, let's prove that the value of decay stated above will always fulfill 225 1.31 maxv * the equation: 226 1.31 maxv * decay ** (5 * loadavg) ~= .1 227 1.2 yamt * 228 1.2 yamt * If we compute b as: 229 1.31 maxv * b = 2 * loadavg 230 1.2 yamt * then 231 1.31 maxv * decay = b / (b + 1) 232 1.2 yamt * 233 1.2 yamt * We now need to prove two things: 234 1.31 maxv * 1) Given [factor ** (5 * loadavg) =~ .1], prove [factor == b/(b+1)]. 235 1.31 maxv * 2) Given [b/(b+1) ** power =~ .1], prove [power == (5 * loadavg)]. 236 1.2 yamt * 237 1.2 yamt * Facts: 238 1.31 maxv * * For x real: exp(x) = 0! + x**1/1! + x**2/2! + ... 239 1.31 maxv * Therefore, for x close to zero, exp(x) =~ 1 + x. 240 1.31 maxv * In turn, for b large enough, exp(-1/b) =~ 1 - (1/b) = (b-1)/b. 241 1.31 maxv * 242 1.31 maxv * * For b large enough, (b-1)/b =~ b/(b+1). 243 1.31 maxv * 244 1.31 maxv * * For x belonging to [-1;1[, ln(1-x) = - x - x**2/2 - x**3/3 - ... 245 1.31 maxv * Therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1). 246 1.31 maxv * 247 1.31 maxv * * ln(0.1) =~ -2.30 248 1.2 yamt * 249 1.2 yamt * Proof of (1): 250 1.31 maxv * factor ** (5 * loadavg) =~ 0.1 251 1.31 maxv * => ln(factor) =~ -2.30 / (5 * loadavg) 252 1.31 maxv * => factor =~ exp(-1 / ((5 / 2.30) * loadavg)) 253 1.31 maxv * =~ exp(-1 / (2 * loadavg)) 254 1.31 maxv * =~ exp(-1 / b) 255 1.31 maxv * =~ (b - 1) / b 256 1.31 maxv * =~ b / (b + 1) 257 1.31 maxv * =~ (2 * loadavg) / ((2 * loadavg) + 1) 258 1.2 yamt * 259 1.2 yamt * Proof of (2): 260 1.31 maxv * (b / (b + 1)) ** power =~ .1 261 1.31 maxv * => power * ln(b / (b + 1)) =~ -2.30 262 1.31 maxv * => power * (-1 / (b + 1)) =~ -2.30 263 1.31 maxv * => power =~ 2.30 * (b + 1) 264 1.31 maxv * => power =~ 4.60 * loadavg + 2.30 265 1.31 maxv * => power =~ 5 * loadavg 266 1.31 maxv * 267 1.31 maxv * Conclusion: decay = (2 * loadavg) / (2 * loadavg + 1) 268 1.2 yamt */ 269 1.2 yamt 270 1.31 maxv /* See calculations above */ 271 1.32 maxv #define loadfactor(loadavg) (2 * (loadavg)) 272 1.2 yamt 273 1.17 yamt static fixpt_t 274 1.2 yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu) 275 1.2 yamt { 276 1.2 yamt 277 1.2 yamt if (estcpu == 0) { 278 1.2 yamt return 0; 279 1.2 yamt } 280 1.2 yamt 281 1.2 yamt #if !defined(_LP64) 282 1.2 yamt /* avoid 64bit arithmetics. */ 283 1.2 yamt #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1)) 284 1.2 yamt if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) { 285 1.2 yamt return estcpu * loadfac / (loadfac + FSCALE); 286 1.2 yamt } 287 1.31 maxv #endif 288 1.2 yamt 289 1.2 yamt return (uint64_t)estcpu * loadfac / (loadfac + FSCALE); 290 1.2 yamt } 291 1.2 yamt 292 1.2 yamt static fixpt_t 293 1.2 yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n) 294 1.2 yamt { 295 1.2 yamt 296 1.31 maxv /* 297 1.31 maxv * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT), 298 1.31 maxv * if we slept for at least seven times the loadfactor, we will decay 299 1.31 maxv * l_estcpu to less than (1 << ESTCPU_SHIFT), and therefore we can 300 1.31 maxv * return zero directly. 301 1.31 maxv * 302 1.31 maxv * Note that our ESTCPU_MAX is actually much smaller than 303 1.31 maxv * (255 << ESTCPU_SHIFT). 304 1.31 maxv */ 305 1.2 yamt if ((n << FSHIFT) >= 7 * loadfac) { 306 1.2 yamt return 0; 307 1.2 yamt } 308 1.2 yamt 309 1.2 yamt while (estcpu != 0 && n > 1) { 310 1.2 yamt estcpu = decay_cpu(loadfac, estcpu); 311 1.2 yamt n--; 312 1.2 yamt } 313 1.2 yamt 314 1.2 yamt return estcpu; 315 1.2 yamt } 316 1.2 yamt 317 1.2 yamt /* 318 1.2 yamt * sched_pstats_hook: 319 1.2 yamt * 320 1.2 yamt * Periodically called from sched_pstats(); used to recalculate priorities. 321 1.2 yamt */ 322 1.2 yamt void 323 1.22 rmind sched_pstats_hook(struct lwp *l, int batch) 324 1.2 yamt { 325 1.25 yamt fixpt_t loadfac; 326 1.2 yamt 327 1.8 ad /* 328 1.8 ad * If the LWP has slept an entire second, stop recalculating 329 1.8 ad * its priority until it wakes up. 330 1.8 ad */ 331 1.24 rmind KASSERT(lwp_locked(l, NULL)); 332 1.25 yamt if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP || 333 1.25 yamt l->l_stat == LSSUSPENDED) { 334 1.25 yamt if (l->l_slptime > 1) { 335 1.25 yamt return; 336 1.25 yamt } 337 1.8 ad } 338 1.33 maxv 339 1.33 maxv loadfac = loadfactor(averunnable.ldavg[0]); 340 1.25 yamt l->l_estcpu = decay_cpu(loadfac, l->l_estcpu); 341 1.25 yamt resetpriority(l); 342 1.2 yamt } 343 1.2 yamt 344 1.2 yamt /* 345 1.31 maxv * Recalculate the priority of an LWP after it has slept for a while. 346 1.2 yamt */ 347 1.2 yamt static void 348 1.2 yamt updatepri(struct lwp *l) 349 1.2 yamt { 350 1.2 yamt fixpt_t loadfac; 351 1.2 yamt 352 1.3 ad KASSERT(lwp_locked(l, NULL)); 353 1.2 yamt KASSERT(l->l_slptime > 1); 354 1.2 yamt 355 1.2 yamt loadfac = loadfactor(averunnable.ldavg[0]); 356 1.2 yamt 357 1.2 yamt l->l_slptime--; /* the first time was done in sched_pstats */ 358 1.8 ad l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime); 359 1.2 yamt resetpriority(l); 360 1.2 yamt } 361 1.2 yamt 362 1.2 yamt void 363 1.14 matt sched_rqinit(void) 364 1.2 yamt { 365 1.2 yamt 366 1.2 yamt } 367 1.2 yamt 368 1.2 yamt void 369 1.2 yamt sched_setrunnable(struct lwp *l) 370 1.2 yamt { 371 1.2 yamt 372 1.2 yamt if (l->l_slptime > 1) 373 1.2 yamt updatepri(l); 374 1.2 yamt } 375 1.2 yamt 376 1.2 yamt void 377 1.8 ad sched_nice(struct proc *p, int n) 378 1.2 yamt { 379 1.8 ad struct lwp *l; 380 1.8 ad 381 1.20 ad KASSERT(mutex_owned(p->p_lock)); 382 1.2 yamt 383 1.8 ad p->p_nice = n; 384 1.8 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) { 385 1.8 ad lwp_lock(l); 386 1.8 ad resetpriority(l); 387 1.8 ad lwp_unlock(l); 388 1.8 ad } 389 1.2 yamt } 390 1.2 yamt 391 1.2 yamt /* 392 1.8 ad * Recompute the priority of an LWP. Arrange to reschedule if 393 1.8 ad * the resulting priority is better than that of the current LWP. 394 1.2 yamt */ 395 1.2 yamt static void 396 1.2 yamt resetpriority(struct lwp *l) 397 1.2 yamt { 398 1.8 ad pri_t pri; 399 1.2 yamt struct proc *p = l->l_proc; 400 1.2 yamt 401 1.8 ad KASSERT(lwp_locked(l, NULL)); 402 1.2 yamt 403 1.8 ad if (l->l_class != SCHED_OTHER) 404 1.2 yamt return; 405 1.2 yamt 406 1.8 ad /* See comments above ESTCPU_SHIFT definition. */ 407 1.8 ad pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice; 408 1.8 ad pri = imax(pri, 0); 409 1.8 ad if (pri != l->l_priority) 410 1.8 ad lwp_changepri(l, pri); 411 1.2 yamt } 412 1.2 yamt 413 1.2 yamt /* 414 1.28 yamt * We adjust the priority of the current LWP. The priority of a LWP 415 1.8 ad * gets worse as it accumulates CPU time. The CPU usage estimator (l_estcpu) 416 1.28 yamt * is increased here. The formula for computing priorities will compute a 417 1.28 yamt * different value each time l_estcpu increases. This can cause a switch, 418 1.28 yamt * but unless the priority crosses a PPQ boundary the actual queue will not 419 1.28 yamt * change. The CPU usage estimator ramps up quite quickly when the process 420 1.28 yamt * is running (linearly), and decays away exponentially, at a rate which is 421 1.28 yamt * proportionally slower when the system is busy. The basic principle is 422 1.28 yamt * that the system will 90% forget that the process used a lot of CPU time 423 1.31 maxv * in (5 * loadavg) seconds. This causes the system to favor processes which 424 1.28 yamt * haven't run much recently, and to round-robin among other processes. 425 1.2 yamt */ 426 1.2 yamt void 427 1.2 yamt sched_schedclock(struct lwp *l) 428 1.2 yamt { 429 1.8 ad 430 1.8 ad if (l->l_class != SCHED_OTHER) 431 1.8 ad return; 432 1.2 yamt 433 1.2 yamt KASSERT(!CURCPU_IDLE_P()); 434 1.8 ad l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM); 435 1.2 yamt lwp_lock(l); 436 1.2 yamt resetpriority(l); 437 1.2 yamt lwp_unlock(l); 438 1.2 yamt } 439 1.2 yamt 440 1.2 yamt /* 441 1.2 yamt * sched_proc_fork: 442 1.2 yamt * 443 1.2 yamt * Inherit the parent's scheduler history. 444 1.2 yamt */ 445 1.2 yamt void 446 1.2 yamt sched_proc_fork(struct proc *parent, struct proc *child) 447 1.2 yamt { 448 1.8 ad lwp_t *pl; 449 1.2 yamt 450 1.20 ad KASSERT(mutex_owned(parent->p_lock)); 451 1.2 yamt 452 1.8 ad pl = LIST_FIRST(&parent->p_lwps); 453 1.8 ad child->p_estcpu_inherited = pl->l_estcpu; 454 1.2 yamt child->p_forktime = sched_pstats_ticks; 455 1.2 yamt } 456 1.2 yamt 457 1.2 yamt /* 458 1.2 yamt * sched_proc_exit: 459 1.2 yamt * 460 1.2 yamt * Chargeback parents for the sins of their children. 461 1.2 yamt */ 462 1.2 yamt void 463 1.2 yamt sched_proc_exit(struct proc *parent, struct proc *child) 464 1.2 yamt { 465 1.2 yamt fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 466 1.2 yamt fixpt_t estcpu; 467 1.8 ad lwp_t *pl, *cl; 468 1.2 yamt 469 1.2 yamt /* XXX Only if parent != init?? */ 470 1.2 yamt 471 1.20 ad mutex_enter(parent->p_lock); 472 1.8 ad pl = LIST_FIRST(&parent->p_lwps); 473 1.8 ad cl = LIST_FIRST(&child->p_lwps); 474 1.2 yamt estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited, 475 1.2 yamt sched_pstats_ticks - child->p_forktime); 476 1.8 ad if (cl->l_estcpu > estcpu) { 477 1.8 ad lwp_lock(pl); 478 1.8 ad pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu); 479 1.8 ad lwp_unlock(pl); 480 1.8 ad } 481 1.20 ad mutex_exit(parent->p_lock); 482 1.2 yamt } 483 1.2 yamt 484 1.2 yamt void 485 1.6 rmind sched_wakeup(struct lwp *l) 486 1.6 rmind { 487 1.6 rmind 488 1.6 rmind } 489 1.6 rmind 490 1.6 rmind void 491 1.6 rmind sched_slept(struct lwp *l) 492 1.6 rmind { 493 1.6 rmind 494 1.6 rmind } 495 1.6 rmind 496 1.2 yamt void 497 1.8 ad sched_lwp_fork(struct lwp *l1, struct lwp *l2) 498 1.2 yamt { 499 1.2 yamt 500 1.8 ad l2->l_estcpu = l1->l_estcpu; 501 1.2 yamt } 502 1.2 yamt 503 1.2 yamt void 504 1.8 ad sched_lwp_collect(struct lwp *t) 505 1.8 ad { 506 1.8 ad lwp_t *l; 507 1.8 ad 508 1.8 ad /* Absorb estcpu value of collected LWP. */ 509 1.8 ad l = curlwp; 510 1.8 ad lwp_lock(l); 511 1.8 ad l->l_estcpu += t->l_estcpu; 512 1.8 ad lwp_unlock(l); 513 1.8 ad } 514 1.8 ad 515 1.16 ad void 516 1.16 ad sched_oncpu(lwp_t *l) 517 1.16 ad { 518 1.16 ad 519 1.16 ad } 520 1.16 ad 521 1.16 ad void 522 1.16 ad sched_newts(lwp_t *l) 523 1.16 ad { 524 1.16 ad 525 1.16 ad } 526 1.16 ad 527 1.5 ad /* 528 1.12 rmind * Sysctl nodes and initialization. 529 1.5 ad */ 530 1.12 rmind 531 1.12 rmind static int 532 1.12 rmind sysctl_sched_rtts(SYSCTLFN_ARGS) 533 1.12 rmind { 534 1.12 rmind struct sysctlnode node; 535 1.44 ad int rttsms = hztoms(sched_rrticks); 536 1.12 rmind 537 1.12 rmind node = *rnode; 538 1.12 rmind node.sysctl_data = &rttsms; 539 1.12 rmind return sysctl_lookup(SYSCTLFN_CALL(&node)); 540 1.12 rmind } 541 1.12 rmind 542 1.16 ad SYSCTL_SETUP(sysctl_sched_4bsd_setup, "sysctl sched setup") 543 1.2 yamt { 544 1.2 yamt const struct sysctlnode *node = NULL; 545 1.2 yamt 546 1.2 yamt sysctl_createv(clog, 0, NULL, &node, 547 1.2 yamt CTLFLAG_PERMANENT, 548 1.2 yamt CTLTYPE_NODE, "sched", 549 1.2 yamt SYSCTL_DESCR("Scheduler options"), 550 1.2 yamt NULL, 0, NULL, 0, 551 1.2 yamt CTL_KERN, CTL_CREATE, CTL_EOL); 552 1.2 yamt 553 1.16 ad if (node == NULL) 554 1.16 ad return; 555 1.5 ad 556 1.44 ad sched_rrticks = hz / 10; 557 1.16 ad 558 1.16 ad sysctl_createv(NULL, 0, &node, NULL, 559 1.5 ad CTLFLAG_PERMANENT, 560 1.5 ad CTLTYPE_STRING, "name", NULL, 561 1.5 ad NULL, 0, __UNCONST("4.4BSD"), 0, 562 1.5 ad CTL_CREATE, CTL_EOL); 563 1.16 ad sysctl_createv(NULL, 0, &node, NULL, 564 1.12 rmind CTLFLAG_PERMANENT, 565 1.12 rmind CTLTYPE_INT, "rtts", 566 1.30 maxv SYSCTL_DESCR("Round-robin time quantum (in milliseconds)"), 567 1.12 rmind sysctl_sched_rtts, 0, NULL, 0, 568 1.12 rmind CTL_CREATE, CTL_EOL); 569 1.2 yamt } 570