Home | History | Annotate | Line # | Download | only in kern
sched_4bsd.c revision 1.1.2.1
      1  1.1.2.1  rmind /*	$NetBSD: sched_4bsd.c,v 1.1.2.1 2007/02/20 21:48:46 rmind Exp $	*/
      2  1.1.2.1  rmind 
      3  1.1.2.1  rmind /*-
      4  1.1.2.1  rmind  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5  1.1.2.1  rmind  * All rights reserved.
      6  1.1.2.1  rmind  *
      7  1.1.2.1  rmind  * This code is derived from software contributed to The NetBSD Foundation
      8  1.1.2.1  rmind  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.1.2.1  rmind  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
     10  1.1.2.1  rmind  * Daniel Sieger.
     11  1.1.2.1  rmind  *
     12  1.1.2.1  rmind  * Redistribution and use in source and binary forms, with or without
     13  1.1.2.1  rmind  * modification, are permitted provided that the following conditions
     14  1.1.2.1  rmind  * are met:
     15  1.1.2.1  rmind  * 1. Redistributions of source code must retain the above copyright
     16  1.1.2.1  rmind  *    notice, this list of conditions and the following disclaimer.
     17  1.1.2.1  rmind  * 2. Redistributions in binary form must reproduce the above copyright
     18  1.1.2.1  rmind  *    notice, this list of conditions and the following disclaimer in the
     19  1.1.2.1  rmind  *    documentation and/or other materials provided with the distribution.
     20  1.1.2.1  rmind  * 3. All advertising materials mentioning features or use of this software
     21  1.1.2.1  rmind  *    must display the following acknowledgement:
     22  1.1.2.1  rmind  *	This product includes software developed by the NetBSD
     23  1.1.2.1  rmind  *	Foundation, Inc. and its contributors.
     24  1.1.2.1  rmind  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25  1.1.2.1  rmind  *    contributors may be used to endorse or promote products derived
     26  1.1.2.1  rmind  *    from this software without specific prior written permission.
     27  1.1.2.1  rmind  *
     28  1.1.2.1  rmind  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29  1.1.2.1  rmind  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30  1.1.2.1  rmind  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31  1.1.2.1  rmind  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32  1.1.2.1  rmind  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33  1.1.2.1  rmind  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34  1.1.2.1  rmind  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35  1.1.2.1  rmind  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36  1.1.2.1  rmind  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37  1.1.2.1  rmind  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  1.1.2.1  rmind  * POSSIBILITY OF SUCH DAMAGE.
     39  1.1.2.1  rmind  */
     40  1.1.2.1  rmind 
     41  1.1.2.1  rmind /*-
     42  1.1.2.1  rmind  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43  1.1.2.1  rmind  *	The Regents of the University of California.  All rights reserved.
     44  1.1.2.1  rmind  * (c) UNIX System Laboratories, Inc.
     45  1.1.2.1  rmind  * All or some portions of this file are derived from material licensed
     46  1.1.2.1  rmind  * to the University of California by American Telephone and Telegraph
     47  1.1.2.1  rmind  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48  1.1.2.1  rmind  * the permission of UNIX System Laboratories, Inc.
     49  1.1.2.1  rmind  *
     50  1.1.2.1  rmind  * Redistribution and use in source and binary forms, with or without
     51  1.1.2.1  rmind  * modification, are permitted provided that the following conditions
     52  1.1.2.1  rmind  * are met:
     53  1.1.2.1  rmind  * 1. Redistributions of source code must retain the above copyright
     54  1.1.2.1  rmind  *    notice, this list of conditions and the following disclaimer.
     55  1.1.2.1  rmind  * 2. Redistributions in binary form must reproduce the above copyright
     56  1.1.2.1  rmind  *    notice, this list of conditions and the following disclaimer in the
     57  1.1.2.1  rmind  *    documentation and/or other materials provided with the distribution.
     58  1.1.2.1  rmind  * 3. Neither the name of the University nor the names of its contributors
     59  1.1.2.1  rmind  *    may be used to endorse or promote products derived from this software
     60  1.1.2.1  rmind  *    without specific prior written permission.
     61  1.1.2.1  rmind  *
     62  1.1.2.1  rmind  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  1.1.2.1  rmind  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  1.1.2.1  rmind  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  1.1.2.1  rmind  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  1.1.2.1  rmind  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  1.1.2.1  rmind  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  1.1.2.1  rmind  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  1.1.2.1  rmind  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  1.1.2.1  rmind  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  1.1.2.1  rmind  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  1.1.2.1  rmind  * SUCH DAMAGE.
     73  1.1.2.1  rmind  *
     74  1.1.2.1  rmind  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75  1.1.2.1  rmind  */
     76  1.1.2.1  rmind 
     77  1.1.2.1  rmind #include <sys/cdefs.h>
     78  1.1.2.1  rmind __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.1.2.1 2007/02/20 21:48:46 rmind Exp $");
     79  1.1.2.1  rmind 
     80  1.1.2.1  rmind #include "opt_ddb.h"
     81  1.1.2.1  rmind #include "opt_kstack.h"
     82  1.1.2.1  rmind #include "opt_lockdebug.h"
     83  1.1.2.1  rmind #include "opt_multiprocessor.h"
     84  1.1.2.1  rmind #include "opt_perfctrs.h"
     85  1.1.2.1  rmind 
     86  1.1.2.1  rmind #define	__MUTEX_PRIVATE
     87  1.1.2.1  rmind 
     88  1.1.2.1  rmind #include <sys/param.h>
     89  1.1.2.1  rmind #include <sys/systm.h>
     90  1.1.2.1  rmind #include <sys/callout.h>
     91  1.1.2.1  rmind #include <sys/proc.h>
     92  1.1.2.1  rmind #include <sys/kernel.h>
     93  1.1.2.1  rmind #include <sys/buf.h>
     94  1.1.2.1  rmind #if defined(PERFCTRS)
     95  1.1.2.1  rmind #include <sys/pmc.h>
     96  1.1.2.1  rmind #endif
     97  1.1.2.1  rmind #include <sys/signalvar.h>
     98  1.1.2.1  rmind #include <sys/resourcevar.h>
     99  1.1.2.1  rmind #include <sys/sched.h>
    100  1.1.2.1  rmind #include <sys/kauth.h>
    101  1.1.2.1  rmind #include <sys/sleepq.h>
    102  1.1.2.1  rmind #include <sys/lockdebug.h>
    103  1.1.2.1  rmind 
    104  1.1.2.1  rmind #include <uvm/uvm_extern.h>
    105  1.1.2.1  rmind 
    106  1.1.2.1  rmind #include <machine/cpu.h>
    107  1.1.2.1  rmind 
    108  1.1.2.1  rmind /*
    109  1.1.2.1  rmind  * Run queues.
    110  1.1.2.1  rmind  *
    111  1.1.2.1  rmind  * We have 32 run queues in descending priority of 0..31.  We maintain
    112  1.1.2.1  rmind  * a bitmask of non-empty queues in order speed up finding the first
    113  1.1.2.1  rmind  * runnable process.  The bitmask is maintained only by machine-dependent
    114  1.1.2.1  rmind  * code, allowing the most efficient instructions to be used to find the
    115  1.1.2.1  rmind  * first non-empty queue.
    116  1.1.2.1  rmind  */
    117  1.1.2.1  rmind 
    118  1.1.2.1  rmind 
    119  1.1.2.1  rmind #define	RUNQUE_NQS		32      /* number of runqueues */
    120  1.1.2.1  rmind #define	PPQ	(128 / RUNQUE_NQS)	/* priorities per queue */
    121  1.1.2.1  rmind 
    122  1.1.2.1  rmind struct prochd {
    123  1.1.2.1  rmind 	struct lwp *ph_link;
    124  1.1.2.1  rmind 	struct lwp *ph_rlink;
    125  1.1.2.1  rmind };
    126  1.1.2.1  rmind 
    127  1.1.2.1  rmind struct prochd sched_qs[RUNQUE_NQS];	/* run queues */
    128  1.1.2.1  rmind volatile uint32_t sched_whichqs;	/* bitmap of non-empty queues */
    129  1.1.2.1  rmind 
    130  1.1.2.1  rmind void schedcpu(void *);
    131  1.1.2.1  rmind void updatepri(struct lwp *);
    132  1.1.2.1  rmind void resetpriority (struct lwp *);
    133  1.1.2.1  rmind void resetprocpriority(struct proc *);
    134  1.1.2.1  rmind 
    135  1.1.2.1  rmind struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
    136  1.1.2.1  rmind static unsigned int schedcpu_ticks;
    137  1.1.2.1  rmind 
    138  1.1.2.1  rmind int rrticks; /* number of hardclock ticks per sched_tick() */
    139  1.1.2.1  rmind 
    140  1.1.2.1  rmind /*
    141  1.1.2.1  rmind  * Force switch among equal priority processes every 100ms.
    142  1.1.2.1  rmind  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    143  1.1.2.1  rmind  */
    144  1.1.2.1  rmind /* ARGSUSED */
    145  1.1.2.1  rmind void
    146  1.1.2.1  rmind sched_tick(struct cpu_info *ci)
    147  1.1.2.1  rmind {
    148  1.1.2.1  rmind 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    149  1.1.2.1  rmind 
    150  1.1.2.1  rmind 	spc->spc_ticks = rrticks;
    151  1.1.2.1  rmind 
    152  1.1.2.1  rmind 	if (!CURCPU_IDLE_P()) {
    153  1.1.2.1  rmind 		if (spc->spc_flags & SPCF_SEENRR) {
    154  1.1.2.1  rmind 			/*
    155  1.1.2.1  rmind 			 * The process has already been through a roundrobin
    156  1.1.2.1  rmind 			 * without switching and may be hogging the CPU.
    157  1.1.2.1  rmind 			 * Indicate that the process should yield.
    158  1.1.2.1  rmind 			 */
    159  1.1.2.1  rmind 			spc->spc_flags |= SPCF_SHOULDYIELD;
    160  1.1.2.1  rmind 		} else
    161  1.1.2.1  rmind 			spc->spc_flags |= SPCF_SEENRR;
    162  1.1.2.1  rmind 	}
    163  1.1.2.1  rmind 	cpu_need_resched(curcpu());
    164  1.1.2.1  rmind }
    165  1.1.2.1  rmind 
    166  1.1.2.1  rmind #define	NICE_WEIGHT 2			/* priorities per nice level */
    167  1.1.2.1  rmind 
    168  1.1.2.1  rmind #define	ESTCPU_SHIFT	11
    169  1.1.2.1  rmind #define	ESTCPU_MAX	((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
    170  1.1.2.1  rmind #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    171  1.1.2.1  rmind 
    172  1.1.2.1  rmind /*
    173  1.1.2.1  rmind  * Constants for digital decay and forget:
    174  1.1.2.1  rmind  *	90% of (p_estcpu) usage in 5 * loadav time
    175  1.1.2.1  rmind  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    176  1.1.2.1  rmind  *          Note that, as ps(1) mentions, this can let percentages
    177  1.1.2.1  rmind  *          total over 100% (I've seen 137.9% for 3 processes).
    178  1.1.2.1  rmind  *
    179  1.1.2.1  rmind  * Note that hardclock updates p_estcpu and p_cpticks independently.
    180  1.1.2.1  rmind  *
    181  1.1.2.1  rmind  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    182  1.1.2.1  rmind  * That is, the system wants to compute a value of decay such
    183  1.1.2.1  rmind  * that the following for loop:
    184  1.1.2.1  rmind  * 	for (i = 0; i < (5 * loadavg); i++)
    185  1.1.2.1  rmind  * 		p_estcpu *= decay;
    186  1.1.2.1  rmind  * will compute
    187  1.1.2.1  rmind  * 	p_estcpu *= 0.1;
    188  1.1.2.1  rmind  * for all values of loadavg:
    189  1.1.2.1  rmind  *
    190  1.1.2.1  rmind  * Mathematically this loop can be expressed by saying:
    191  1.1.2.1  rmind  * 	decay ** (5 * loadavg) ~= .1
    192  1.1.2.1  rmind  *
    193  1.1.2.1  rmind  * The system computes decay as:
    194  1.1.2.1  rmind  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    195  1.1.2.1  rmind  *
    196  1.1.2.1  rmind  * We wish to prove that the system's computation of decay
    197  1.1.2.1  rmind  * will always fulfill the equation:
    198  1.1.2.1  rmind  * 	decay ** (5 * loadavg) ~= .1
    199  1.1.2.1  rmind  *
    200  1.1.2.1  rmind  * If we compute b as:
    201  1.1.2.1  rmind  * 	b = 2 * loadavg
    202  1.1.2.1  rmind  * then
    203  1.1.2.1  rmind  * 	decay = b / (b + 1)
    204  1.1.2.1  rmind  *
    205  1.1.2.1  rmind  * We now need to prove two things:
    206  1.1.2.1  rmind  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    207  1.1.2.1  rmind  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    208  1.1.2.1  rmind  *
    209  1.1.2.1  rmind  * Facts:
    210  1.1.2.1  rmind  *         For x close to zero, exp(x) =~ 1 + x, since
    211  1.1.2.1  rmind  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    212  1.1.2.1  rmind  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    213  1.1.2.1  rmind  *         For x close to zero, ln(1+x) =~ x, since
    214  1.1.2.1  rmind  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    215  1.1.2.1  rmind  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    216  1.1.2.1  rmind  *         ln(.1) =~ -2.30
    217  1.1.2.1  rmind  *
    218  1.1.2.1  rmind  * Proof of (1):
    219  1.1.2.1  rmind  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    220  1.1.2.1  rmind  *	solving for factor,
    221  1.1.2.1  rmind  *      ln(factor) =~ (-2.30/5*loadav), or
    222  1.1.2.1  rmind  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    223  1.1.2.1  rmind  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    224  1.1.2.1  rmind  *
    225  1.1.2.1  rmind  * Proof of (2):
    226  1.1.2.1  rmind  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    227  1.1.2.1  rmind  *	solving for power,
    228  1.1.2.1  rmind  *      power*ln(b/(b+1)) =~ -2.30, or
    229  1.1.2.1  rmind  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    230  1.1.2.1  rmind  *
    231  1.1.2.1  rmind  * Actual power values for the implemented algorithm are as follows:
    232  1.1.2.1  rmind  *      loadav: 1       2       3       4
    233  1.1.2.1  rmind  *      power:  5.68    10.32   14.94   19.55
    234  1.1.2.1  rmind  */
    235  1.1.2.1  rmind 
    236  1.1.2.1  rmind /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    237  1.1.2.1  rmind #define	loadfactor(loadav)	(2 * (loadav))
    238  1.1.2.1  rmind 
    239  1.1.2.1  rmind static fixpt_t
    240  1.1.2.1  rmind decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    241  1.1.2.1  rmind {
    242  1.1.2.1  rmind 
    243  1.1.2.1  rmind 	if (estcpu == 0) {
    244  1.1.2.1  rmind 		return 0;
    245  1.1.2.1  rmind 	}
    246  1.1.2.1  rmind 
    247  1.1.2.1  rmind #if !defined(_LP64)
    248  1.1.2.1  rmind 	/* avoid 64bit arithmetics. */
    249  1.1.2.1  rmind #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    250  1.1.2.1  rmind 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    251  1.1.2.1  rmind 		return estcpu * loadfac / (loadfac + FSCALE);
    252  1.1.2.1  rmind 	}
    253  1.1.2.1  rmind #endif /* !defined(_LP64) */
    254  1.1.2.1  rmind 
    255  1.1.2.1  rmind 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    256  1.1.2.1  rmind }
    257  1.1.2.1  rmind 
    258  1.1.2.1  rmind /*
    259  1.1.2.1  rmind  * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
    260  1.1.2.1  rmind  * sleeping for at least seven times the loadfactor will decay p_estcpu to
    261  1.1.2.1  rmind  * less than (1 << ESTCPU_SHIFT).
    262  1.1.2.1  rmind  *
    263  1.1.2.1  rmind  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    264  1.1.2.1  rmind  */
    265  1.1.2.1  rmind static fixpt_t
    266  1.1.2.1  rmind decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    267  1.1.2.1  rmind {
    268  1.1.2.1  rmind 
    269  1.1.2.1  rmind 	if ((n << FSHIFT) >= 7 * loadfac) {
    270  1.1.2.1  rmind 		return 0;
    271  1.1.2.1  rmind 	}
    272  1.1.2.1  rmind 
    273  1.1.2.1  rmind 	while (estcpu != 0 && n > 1) {
    274  1.1.2.1  rmind 		estcpu = decay_cpu(loadfac, estcpu);
    275  1.1.2.1  rmind 		n--;
    276  1.1.2.1  rmind 	}
    277  1.1.2.1  rmind 
    278  1.1.2.1  rmind 	return estcpu;
    279  1.1.2.1  rmind }
    280  1.1.2.1  rmind 
    281  1.1.2.1  rmind /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    282  1.1.2.1  rmind fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    283  1.1.2.1  rmind 
    284  1.1.2.1  rmind /*
    285  1.1.2.1  rmind  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    286  1.1.2.1  rmind  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    287  1.1.2.1  rmind  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    288  1.1.2.1  rmind  *
    289  1.1.2.1  rmind  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    290  1.1.2.1  rmind  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    291  1.1.2.1  rmind  *
    292  1.1.2.1  rmind  * If you dont want to bother with the faster/more-accurate formula, you
    293  1.1.2.1  rmind  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    294  1.1.2.1  rmind  * (more general) method of calculating the %age of CPU used by a process.
    295  1.1.2.1  rmind  */
    296  1.1.2.1  rmind #define	CCPU_SHIFT	11
    297  1.1.2.1  rmind 
    298  1.1.2.1  rmind /*
    299  1.1.2.1  rmind  * schedcpu:
    300  1.1.2.1  rmind  *
    301  1.1.2.1  rmind  *	Recompute process priorities, every hz ticks.
    302  1.1.2.1  rmind  *
    303  1.1.2.1  rmind  *	XXXSMP This needs to be reorganised in order to reduce the locking
    304  1.1.2.1  rmind  *	burden.
    305  1.1.2.1  rmind  */
    306  1.1.2.1  rmind /* ARGSUSED */
    307  1.1.2.1  rmind void
    308  1.1.2.1  rmind schedcpu(void *arg)
    309  1.1.2.1  rmind {
    310  1.1.2.1  rmind 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    311  1.1.2.1  rmind 	struct rlimit *rlim;
    312  1.1.2.1  rmind 	struct lwp *l;
    313  1.1.2.1  rmind 	struct proc *p;
    314  1.1.2.1  rmind 	int minslp, clkhz, sig;
    315  1.1.2.1  rmind 	long runtm;
    316  1.1.2.1  rmind 
    317  1.1.2.1  rmind 	schedcpu_ticks++;
    318  1.1.2.1  rmind 
    319  1.1.2.1  rmind 	mutex_enter(&proclist_mutex);
    320  1.1.2.1  rmind 	PROCLIST_FOREACH(p, &allproc) {
    321  1.1.2.1  rmind 		/*
    322  1.1.2.1  rmind 		 * Increment time in/out of memory and sleep time (if
    323  1.1.2.1  rmind 		 * sleeping).  We ignore overflow; with 16-bit int's
    324  1.1.2.1  rmind 		 * (remember them?) overflow takes 45 days.
    325  1.1.2.1  rmind 		 */
    326  1.1.2.1  rmind 		minslp = 2;
    327  1.1.2.1  rmind 		mutex_enter(&p->p_smutex);
    328  1.1.2.1  rmind 		runtm = p->p_rtime.tv_sec;
    329  1.1.2.1  rmind 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    330  1.1.2.1  rmind 			if ((l->l_flag & L_IDLE) != 0)
    331  1.1.2.1  rmind 				continue;
    332  1.1.2.1  rmind 			lwp_lock(l);
    333  1.1.2.1  rmind 			runtm += l->l_rtime.tv_sec;
    334  1.1.2.1  rmind 			l->l_swtime++;
    335  1.1.2.1  rmind 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    336  1.1.2.1  rmind 			    l->l_stat == LSSUSPENDED) {
    337  1.1.2.1  rmind 				l->l_slptime++;
    338  1.1.2.1  rmind 				minslp = min(minslp, l->l_slptime);
    339  1.1.2.1  rmind 			} else
    340  1.1.2.1  rmind 				minslp = 0;
    341  1.1.2.1  rmind 			lwp_unlock(l);
    342  1.1.2.1  rmind 		}
    343  1.1.2.1  rmind 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    344  1.1.2.1  rmind 
    345  1.1.2.1  rmind 		/*
    346  1.1.2.1  rmind 		 * Check if the process exceeds its CPU resource allocation.
    347  1.1.2.1  rmind 		 * If over max, kill it.
    348  1.1.2.1  rmind 		 */
    349  1.1.2.1  rmind 		rlim = &p->p_rlimit[RLIMIT_CPU];
    350  1.1.2.1  rmind 		sig = 0;
    351  1.1.2.1  rmind 		if (runtm >= rlim->rlim_cur) {
    352  1.1.2.1  rmind 			if (runtm >= rlim->rlim_max)
    353  1.1.2.1  rmind 				sig = SIGKILL;
    354  1.1.2.1  rmind 			else {
    355  1.1.2.1  rmind 				sig = SIGXCPU;
    356  1.1.2.1  rmind 				if (rlim->rlim_cur < rlim->rlim_max)
    357  1.1.2.1  rmind 					rlim->rlim_cur += 5;
    358  1.1.2.1  rmind 			}
    359  1.1.2.1  rmind 		}
    360  1.1.2.1  rmind 
    361  1.1.2.1  rmind 		/*
    362  1.1.2.1  rmind 		 * If the process has run for more than autonicetime, reduce
    363  1.1.2.1  rmind 		 * priority to give others a chance.
    364  1.1.2.1  rmind 		 */
    365  1.1.2.1  rmind 		if (autonicetime && runtm > autonicetime && p->p_nice == NZERO
    366  1.1.2.1  rmind 		    && kauth_cred_geteuid(p->p_cred)) {
    367  1.1.2.1  rmind 			mutex_spin_enter(&p->p_stmutex);
    368  1.1.2.1  rmind 			p->p_nice = autoniceval + NZERO;
    369  1.1.2.1  rmind 			resetprocpriority(p);
    370  1.1.2.1  rmind 			mutex_spin_exit(&p->p_stmutex);
    371  1.1.2.1  rmind 		}
    372  1.1.2.1  rmind 
    373  1.1.2.1  rmind 		/*
    374  1.1.2.1  rmind 		 * If the process has slept the entire second,
    375  1.1.2.1  rmind 		 * stop recalculating its priority until it wakes up.
    376  1.1.2.1  rmind 		 */
    377  1.1.2.1  rmind 		if (minslp <= 1) {
    378  1.1.2.1  rmind 			/*
    379  1.1.2.1  rmind 			 * p_pctcpu is only for ps.
    380  1.1.2.1  rmind 			 */
    381  1.1.2.1  rmind 			mutex_spin_enter(&p->p_stmutex);
    382  1.1.2.1  rmind 			clkhz = stathz != 0 ? stathz : hz;
    383  1.1.2.1  rmind #if	(FSHIFT >= CCPU_SHIFT)
    384  1.1.2.1  rmind 			p->p_pctcpu += (clkhz == 100)?
    385  1.1.2.1  rmind 			    ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    386  1.1.2.1  rmind 			    100 * (((fixpt_t) p->p_cpticks)
    387  1.1.2.1  rmind 			    << (FSHIFT - CCPU_SHIFT)) / clkhz;
    388  1.1.2.1  rmind #else
    389  1.1.2.1  rmind 			p->p_pctcpu += ((FSCALE - ccpu) *
    390  1.1.2.1  rmind 			    (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    391  1.1.2.1  rmind #endif
    392  1.1.2.1  rmind 			p->p_cpticks = 0;
    393  1.1.2.1  rmind 			p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
    394  1.1.2.1  rmind 
    395  1.1.2.1  rmind 			LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    396  1.1.2.1  rmind 				if ((l->l_flag & L_IDLE) != 0)
    397  1.1.2.1  rmind 					continue;
    398  1.1.2.1  rmind 				lwp_lock(l);
    399  1.1.2.1  rmind 				if (l->l_slptime <= 1 &&
    400  1.1.2.1  rmind 				    l->l_priority >= PUSER)
    401  1.1.2.1  rmind 					resetpriority(l);
    402  1.1.2.1  rmind 				lwp_unlock(l);
    403  1.1.2.1  rmind 			}
    404  1.1.2.1  rmind 			mutex_spin_exit(&p->p_stmutex);
    405  1.1.2.1  rmind 		}
    406  1.1.2.1  rmind 
    407  1.1.2.1  rmind 		mutex_exit(&p->p_smutex);
    408  1.1.2.1  rmind 		if (sig) {
    409  1.1.2.1  rmind 			psignal(p, sig);
    410  1.1.2.1  rmind 		}
    411  1.1.2.1  rmind 	}
    412  1.1.2.1  rmind 	mutex_exit(&proclist_mutex);
    413  1.1.2.1  rmind 	uvm_meter();
    414  1.1.2.1  rmind 	wakeup((caddr_t)&lbolt);
    415  1.1.2.1  rmind 	callout_schedule(&schedcpu_ch, hz);
    416  1.1.2.1  rmind }
    417  1.1.2.1  rmind 
    418  1.1.2.1  rmind /*
    419  1.1.2.1  rmind  * Recalculate the priority of a process after it has slept for a while.
    420  1.1.2.1  rmind  */
    421  1.1.2.1  rmind void
    422  1.1.2.1  rmind updatepri(struct lwp *l)
    423  1.1.2.1  rmind {
    424  1.1.2.1  rmind 	struct proc *p = l->l_proc;
    425  1.1.2.1  rmind 	fixpt_t loadfac;
    426  1.1.2.1  rmind 
    427  1.1.2.1  rmind 	LOCK_ASSERT(lwp_locked(l, NULL));
    428  1.1.2.1  rmind 	KASSERT(l->l_slptime > 1);
    429  1.1.2.1  rmind 
    430  1.1.2.1  rmind 	loadfac = loadfactor(averunnable.ldavg[0]);
    431  1.1.2.1  rmind 
    432  1.1.2.1  rmind 	l->l_slptime--; /* the first time was done in schedcpu */
    433  1.1.2.1  rmind 	/* XXX NJWLWP */
    434  1.1.2.1  rmind 	/* XXXSMP occasionally unlocked, should be per-LWP */
    435  1.1.2.1  rmind 	p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
    436  1.1.2.1  rmind 	resetpriority(l);
    437  1.1.2.1  rmind }
    438  1.1.2.1  rmind 
    439  1.1.2.1  rmind /*
    440  1.1.2.1  rmind  * Initialize the (doubly-linked) run queues
    441  1.1.2.1  rmind  * to be empty.
    442  1.1.2.1  rmind  */
    443  1.1.2.1  rmind void
    444  1.1.2.1  rmind sched_rqinit()
    445  1.1.2.1  rmind {
    446  1.1.2.1  rmind 	int i;
    447  1.1.2.1  rmind 
    448  1.1.2.1  rmind 	for (i = 0; i < RUNQUE_NQS; i++)
    449  1.1.2.1  rmind 		sched_qs[i].ph_link = sched_qs[i].ph_rlink =
    450  1.1.2.1  rmind 		    (struct lwp *)&sched_qs[i];
    451  1.1.2.1  rmind 
    452  1.1.2.1  rmind 	mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
    453  1.1.2.1  rmind }
    454  1.1.2.1  rmind 
    455  1.1.2.1  rmind void
    456  1.1.2.1  rmind sched_setup()
    457  1.1.2.1  rmind {
    458  1.1.2.1  rmind 	rrticks = hz / 10;
    459  1.1.2.1  rmind 
    460  1.1.2.1  rmind 	schedcpu(NULL);
    461  1.1.2.1  rmind }
    462  1.1.2.1  rmind 
    463  1.1.2.1  rmind void
    464  1.1.2.1  rmind sched_setrunnable(struct lwp *l)
    465  1.1.2.1  rmind {
    466  1.1.2.1  rmind  	if (l->l_slptime > 1)
    467  1.1.2.1  rmind  		updatepri(l);
    468  1.1.2.1  rmind }
    469  1.1.2.1  rmind 
    470  1.1.2.1  rmind boolean_t
    471  1.1.2.1  rmind sched_curcpu_runnable_p(void)
    472  1.1.2.1  rmind {
    473  1.1.2.1  rmind 
    474  1.1.2.1  rmind 	return sched_whichqs != 0;
    475  1.1.2.1  rmind }
    476  1.1.2.1  rmind 
    477  1.1.2.1  rmind void
    478  1.1.2.1  rmind sched_nice(struct proc *chgp, int n)
    479  1.1.2.1  rmind {
    480  1.1.2.1  rmind 	chgp->p_nice = n;
    481  1.1.2.1  rmind 	(void)resetprocpriority(chgp);
    482  1.1.2.1  rmind }
    483  1.1.2.1  rmind 
    484  1.1.2.1  rmind /*
    485  1.1.2.1  rmind  * Compute the priority of a process when running in user mode.
    486  1.1.2.1  rmind  * Arrange to reschedule if the resulting priority is better
    487  1.1.2.1  rmind  * than that of the current process.
    488  1.1.2.1  rmind  */
    489  1.1.2.1  rmind void
    490  1.1.2.1  rmind resetpriority(struct lwp *l)
    491  1.1.2.1  rmind {
    492  1.1.2.1  rmind 	unsigned int newpriority;
    493  1.1.2.1  rmind 	struct proc *p = l->l_proc;
    494  1.1.2.1  rmind 
    495  1.1.2.1  rmind 	/* XXXSMP LOCK_ASSERT(mutex_owned(&p->p_stmutex)); */
    496  1.1.2.1  rmind 	LOCK_ASSERT(lwp_locked(l, NULL));
    497  1.1.2.1  rmind 
    498  1.1.2.1  rmind 	if ((l->l_flag & L_SYSTEM) != 0)
    499  1.1.2.1  rmind 		return;
    500  1.1.2.1  rmind 
    501  1.1.2.1  rmind 	newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
    502  1.1.2.1  rmind 	    NICE_WEIGHT * (p->p_nice - NZERO);
    503  1.1.2.1  rmind 	newpriority = min(newpriority, MAXPRI);
    504  1.1.2.1  rmind 	lwp_changepri(l, newpriority);
    505  1.1.2.1  rmind }
    506  1.1.2.1  rmind 
    507  1.1.2.1  rmind /*
    508  1.1.2.1  rmind  * Recompute priority for all LWPs in a process.
    509  1.1.2.1  rmind  */
    510  1.1.2.1  rmind void
    511  1.1.2.1  rmind resetprocpriority(struct proc *p)
    512  1.1.2.1  rmind {
    513  1.1.2.1  rmind 	struct lwp *l;
    514  1.1.2.1  rmind 
    515  1.1.2.1  rmind 	LOCK_ASSERT(mutex_owned(&p->p_stmutex));
    516  1.1.2.1  rmind 
    517  1.1.2.1  rmind 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    518  1.1.2.1  rmind 		lwp_lock(l);
    519  1.1.2.1  rmind 		resetpriority(l);
    520  1.1.2.1  rmind 		lwp_unlock(l);
    521  1.1.2.1  rmind 	}
    522  1.1.2.1  rmind }
    523  1.1.2.1  rmind 
    524  1.1.2.1  rmind /*
    525  1.1.2.1  rmind  * We adjust the priority of the current process.  The priority of a process
    526  1.1.2.1  rmind  * gets worse as it accumulates CPU time.  The CPU usage estimator (p_estcpu)
    527  1.1.2.1  rmind  * is increased here.  The formula for computing priorities (in kern_synch.c)
    528  1.1.2.1  rmind  * will compute a different value each time p_estcpu increases. This can
    529  1.1.2.1  rmind  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    530  1.1.2.1  rmind  * queue will not change.  The CPU usage estimator ramps up quite quickly
    531  1.1.2.1  rmind  * when the process is running (linearly), and decays away exponentially, at
    532  1.1.2.1  rmind  * a rate which is proportionally slower when the system is busy.  The basic
    533  1.1.2.1  rmind  * principle is that the system will 90% forget that the process used a lot
    534  1.1.2.1  rmind  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    535  1.1.2.1  rmind  * processes which haven't run much recently, and to round-robin among other
    536  1.1.2.1  rmind  * processes.
    537  1.1.2.1  rmind  */
    538  1.1.2.1  rmind 
    539  1.1.2.1  rmind void
    540  1.1.2.1  rmind schedclock(struct lwp *l)
    541  1.1.2.1  rmind {
    542  1.1.2.1  rmind 	struct proc *p = l->l_proc;
    543  1.1.2.1  rmind 
    544  1.1.2.1  rmind 	KASSERT(!CURCPU_IDLE_P());
    545  1.1.2.1  rmind 	mutex_spin_enter(&p->p_stmutex);
    546  1.1.2.1  rmind 	p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
    547  1.1.2.1  rmind 	lwp_lock(l);
    548  1.1.2.1  rmind 	resetpriority(l);
    549  1.1.2.1  rmind 	mutex_spin_exit(&p->p_stmutex);
    550  1.1.2.1  rmind 	if ((l->l_flag & L_SYSTEM) == 0 && l->l_priority >= PUSER)
    551  1.1.2.1  rmind 		l->l_priority = l->l_usrpri;
    552  1.1.2.1  rmind 	lwp_unlock(l);
    553  1.1.2.1  rmind }
    554  1.1.2.1  rmind 
    555  1.1.2.1  rmind /*
    556  1.1.2.1  rmind  * scheduler_fork_hook:
    557  1.1.2.1  rmind  *
    558  1.1.2.1  rmind  *	Inherit the parent's scheduler history.
    559  1.1.2.1  rmind  */
    560  1.1.2.1  rmind void
    561  1.1.2.1  rmind sched_proc_fork(struct proc *parent, struct proc *child)
    562  1.1.2.1  rmind {
    563  1.1.2.1  rmind 
    564  1.1.2.1  rmind 	LOCK_ASSERT(mutex_owned(&parent->p_smutex));
    565  1.1.2.1  rmind 
    566  1.1.2.1  rmind 	child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
    567  1.1.2.1  rmind 	child->p_forktime = schedcpu_ticks;
    568  1.1.2.1  rmind }
    569  1.1.2.1  rmind 
    570  1.1.2.1  rmind /*
    571  1.1.2.1  rmind  * scheduler_wait_hook:
    572  1.1.2.1  rmind  *
    573  1.1.2.1  rmind  *	Chargeback parents for the sins of their children.
    574  1.1.2.1  rmind  */
    575  1.1.2.1  rmind void
    576  1.1.2.1  rmind sched_proc_exit(struct proc *parent, struct proc *child)
    577  1.1.2.1  rmind {
    578  1.1.2.1  rmind 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    579  1.1.2.1  rmind 	fixpt_t estcpu;
    580  1.1.2.1  rmind 
    581  1.1.2.1  rmind 	/* XXX Only if parent != init?? */
    582  1.1.2.1  rmind 
    583  1.1.2.1  rmind 	mutex_spin_enter(&parent->p_stmutex);
    584  1.1.2.1  rmind 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
    585  1.1.2.1  rmind 	    schedcpu_ticks - child->p_forktime);
    586  1.1.2.1  rmind 	if (child->p_estcpu > estcpu)
    587  1.1.2.1  rmind 		parent->p_estcpu =
    588  1.1.2.1  rmind 		    ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
    589  1.1.2.1  rmind 	mutex_spin_exit(&parent->p_stmutex);
    590  1.1.2.1  rmind }
    591  1.1.2.1  rmind 
    592  1.1.2.1  rmind /*
    593  1.1.2.1  rmind  * sched_changepri:
    594  1.1.2.1  rmind  *
    595  1.1.2.1  rmind  *	Adjust the priority of an LWP.
    596  1.1.2.1  rmind  */
    597  1.1.2.1  rmind void
    598  1.1.2.1  rmind sched_changepri(struct lwp *l, int pri)
    599  1.1.2.1  rmind {
    600  1.1.2.1  rmind 
    601  1.1.2.1  rmind 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
    602  1.1.2.1  rmind 
    603  1.1.2.1  rmind 	l->l_usrpri = pri;
    604  1.1.2.1  rmind 
    605  1.1.2.1  rmind 	if (l->l_priority < PUSER)
    606  1.1.2.1  rmind 		return;
    607  1.1.2.1  rmind 	if (l->l_stat != LSRUN || (l->l_flag & L_INMEM) == 0 ||
    608  1.1.2.1  rmind 	    (l->l_priority / PPQ) == (pri / PPQ)) {
    609  1.1.2.1  rmind 		l->l_priority = pri;
    610  1.1.2.1  rmind 		return;
    611  1.1.2.1  rmind 	}
    612  1.1.2.1  rmind 
    613  1.1.2.1  rmind 	sched_dequeue(l);
    614  1.1.2.1  rmind 	l->l_priority = pri;
    615  1.1.2.1  rmind 	sched_enqueue(l);
    616  1.1.2.1  rmind 	resched_cpu(l, pri);
    617  1.1.2.1  rmind }
    618  1.1.2.1  rmind 
    619  1.1.2.1  rmind /*
    620  1.1.2.1  rmind  * On some architectures, it's faster to use a MSB ordering for the priorites
    621  1.1.2.1  rmind  * than the traditional LSB ordering.
    622  1.1.2.1  rmind  */
    623  1.1.2.1  rmind #ifdef __HAVE_BIGENDIAN_BITOPS
    624  1.1.2.1  rmind #define	RQMASK(n) (0x80000000 >> (n))
    625  1.1.2.1  rmind #else
    626  1.1.2.1  rmind #define	RQMASK(n) (0x00000001 << (n))
    627  1.1.2.1  rmind #endif
    628  1.1.2.1  rmind 
    629  1.1.2.1  rmind /*
    630  1.1.2.1  rmind  * Low-level routines to access the run queue.  Optimised assembler
    631  1.1.2.1  rmind  * routines can override these.
    632  1.1.2.1  rmind  */
    633  1.1.2.1  rmind 
    634  1.1.2.1  rmind #ifndef __HAVE_MD_RUNQUEUE
    635  1.1.2.1  rmind 
    636  1.1.2.1  rmind /*
    637  1.1.2.1  rmind  * The primitives that manipulate the run queues.  whichqs tells which
    638  1.1.2.1  rmind  * of the 32 queues qs have processes in them.  Setrunqueue puts processes
    639  1.1.2.1  rmind  * into queues, remrunqueue removes them from queues.  The running process is
    640  1.1.2.1  rmind  * on no queue, other processes are on a queue related to p->p_priority,
    641  1.1.2.1  rmind  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
    642  1.1.2.1  rmind  * available queues.
    643  1.1.2.1  rmind  */
    644  1.1.2.1  rmind #ifdef RQDEBUG
    645  1.1.2.1  rmind static void
    646  1.1.2.1  rmind checkrunqueue(int whichq, struct lwp *l)
    647  1.1.2.1  rmind {
    648  1.1.2.1  rmind 	const struct prochd * const rq = &sched_qs[whichq];
    649  1.1.2.1  rmind 	struct lwp *l2;
    650  1.1.2.1  rmind 	int found = 0;
    651  1.1.2.1  rmind 	int die = 0;
    652  1.1.2.1  rmind 	int empty = 1;
    653  1.1.2.1  rmind 	for (l2 = rq->ph_link; l2 != (const void*) rq; l2 = l2->l_forw) {
    654  1.1.2.1  rmind 		if (l2->l_stat != LSRUN) {
    655  1.1.2.1  rmind 			printf("checkrunqueue[%d]: lwp %p state (%d) "
    656  1.1.2.1  rmind 			    " != LSRUN\n", whichq, l2, l2->l_stat);
    657  1.1.2.1  rmind 		}
    658  1.1.2.1  rmind 		if (l2->l_back->l_forw != l2) {
    659  1.1.2.1  rmind 			printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
    660  1.1.2.1  rmind 			    "corrupt %p\n", whichq, l2, l2->l_back,
    661  1.1.2.1  rmind 			    l2->l_back->l_forw);
    662  1.1.2.1  rmind 			die = 1;
    663  1.1.2.1  rmind 		}
    664  1.1.2.1  rmind 		if (l2->l_forw->l_back != l2) {
    665  1.1.2.1  rmind 			printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
    666  1.1.2.1  rmind 			    "corrupt %p\n", whichq, l2, l2->l_forw,
    667  1.1.2.1  rmind 			    l2->l_forw->l_back);
    668  1.1.2.1  rmind 			die = 1;
    669  1.1.2.1  rmind 		}
    670  1.1.2.1  rmind 		if (l2 == l)
    671  1.1.2.1  rmind 			found = 1;
    672  1.1.2.1  rmind 		empty = 0;
    673  1.1.2.1  rmind 	}
    674  1.1.2.1  rmind 	if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
    675  1.1.2.1  rmind 		printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
    676  1.1.2.1  rmind 		    whichq, rq);
    677  1.1.2.1  rmind 		die = 1;
    678  1.1.2.1  rmind 	} else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
    679  1.1.2.1  rmind 		printf("checkrunqueue[%d]: bit clear for non-empty "
    680  1.1.2.1  rmind 		    "run-queue %p\n", whichq, rq);
    681  1.1.2.1  rmind 		die = 1;
    682  1.1.2.1  rmind 	}
    683  1.1.2.1  rmind 	if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
    684  1.1.2.1  rmind 		printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
    685  1.1.2.1  rmind 		    whichq, l);
    686  1.1.2.1  rmind 		die = 1;
    687  1.1.2.1  rmind 	}
    688  1.1.2.1  rmind 	if (l != NULL && empty) {
    689  1.1.2.1  rmind 		printf("checkrunqueue[%d]: empty run-queue %p with "
    690  1.1.2.1  rmind 		    "active lwp %p\n", whichq, rq, l);
    691  1.1.2.1  rmind 		die = 1;
    692  1.1.2.1  rmind 	}
    693  1.1.2.1  rmind 	if (l != NULL && !found) {
    694  1.1.2.1  rmind 		printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
    695  1.1.2.1  rmind 		    whichq, l, rq);
    696  1.1.2.1  rmind 		die = 1;
    697  1.1.2.1  rmind 	}
    698  1.1.2.1  rmind 	if (die)
    699  1.1.2.1  rmind 		panic("checkrunqueue: inconsistency found");
    700  1.1.2.1  rmind }
    701  1.1.2.1  rmind #endif /* RQDEBUG */
    702  1.1.2.1  rmind 
    703  1.1.2.1  rmind void
    704  1.1.2.1  rmind sched_enqueue(struct lwp *l)
    705  1.1.2.1  rmind {
    706  1.1.2.1  rmind 	struct prochd*rq;
    707  1.1.2.1  rmind 	struct lwp *prev;
    708  1.1.2.1  rmind 	const int whichq = l->l_priority / PPQ;
    709  1.1.2.1  rmind 
    710  1.1.2.1  rmind 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
    711  1.1.2.1  rmind 
    712  1.1.2.1  rmind #ifdef RQDEBUG
    713  1.1.2.1  rmind 	checkrunqueue(whichq, NULL);
    714  1.1.2.1  rmind #endif
    715  1.1.2.1  rmind #ifdef DIAGNOSTIC
    716  1.1.2.1  rmind 	if (l->l_back != NULL || l->l_stat != LSRUN)
    717  1.1.2.1  rmind 		panic("setrunqueue");
    718  1.1.2.1  rmind #endif
    719  1.1.2.1  rmind 	sched_whichqs |= RQMASK(whichq);
    720  1.1.2.1  rmind 	rq = &sched_qs[whichq];
    721  1.1.2.1  rmind 	prev = rq->ph_rlink;
    722  1.1.2.1  rmind 	l->l_forw = (struct lwp *)rq;
    723  1.1.2.1  rmind 	rq->ph_rlink = l;
    724  1.1.2.1  rmind 	prev->l_forw = l;
    725  1.1.2.1  rmind 	l->l_back = prev;
    726  1.1.2.1  rmind #ifdef RQDEBUG
    727  1.1.2.1  rmind 	checkrunqueue(whichq, l);
    728  1.1.2.1  rmind #endif
    729  1.1.2.1  rmind }
    730  1.1.2.1  rmind 
    731  1.1.2.1  rmind /*
    732  1.1.2.1  rmind  * XXXSMP When LWP dispatch (cpu_switch()) is changed to use remrunqueue(),
    733  1.1.2.1  rmind  * drop of the effective priority level from kernel to user needs to be
    734  1.1.2.1  rmind  * moved here from userret().  The assignment in userret() is currently
    735  1.1.2.1  rmind  * done unlocked.
    736  1.1.2.1  rmind  */
    737  1.1.2.1  rmind void
    738  1.1.2.1  rmind sched_dequeue(struct lwp *l)
    739  1.1.2.1  rmind {
    740  1.1.2.1  rmind 	struct lwp *prev, *next;
    741  1.1.2.1  rmind 	const int whichq = l->l_priority / PPQ;
    742  1.1.2.1  rmind 
    743  1.1.2.1  rmind 	LOCK_ASSERT(lwp_locked(l, &sched_mutex));
    744  1.1.2.1  rmind 
    745  1.1.2.1  rmind #ifdef RQDEBUG
    746  1.1.2.1  rmind 	checkrunqueue(whichq, l);
    747  1.1.2.1  rmind #endif
    748  1.1.2.1  rmind 
    749  1.1.2.1  rmind #if defined(DIAGNOSTIC)
    750  1.1.2.1  rmind 	if (((sched_whichqs & RQMASK(whichq)) == 0) || l->l_back == NULL) {
    751  1.1.2.1  rmind 		/* Shouldn't happen - interrupts disabled. */
    752  1.1.2.1  rmind 		panic("remrunqueue: bit %d not set", whichq);
    753  1.1.2.1  rmind 	}
    754  1.1.2.1  rmind #endif
    755  1.1.2.1  rmind 	prev = l->l_back;
    756  1.1.2.1  rmind 	l->l_back = NULL;
    757  1.1.2.1  rmind 	next = l->l_forw;
    758  1.1.2.1  rmind 	prev->l_forw = next;
    759  1.1.2.1  rmind 	next->l_back = prev;
    760  1.1.2.1  rmind 	if (prev == next)
    761  1.1.2.1  rmind 		sched_whichqs &= ~RQMASK(whichq);
    762  1.1.2.1  rmind #ifdef RQDEBUG
    763  1.1.2.1  rmind 	checkrunqueue(whichq, NULL);
    764  1.1.2.1  rmind #endif
    765  1.1.2.1  rmind }
    766  1.1.2.1  rmind 
    767  1.1.2.1  rmind struct lwp *
    768  1.1.2.1  rmind sched_nextlwp(void)
    769  1.1.2.1  rmind {
    770  1.1.2.1  rmind 	const struct prochd *rq;
    771  1.1.2.1  rmind 	struct lwp *l;
    772  1.1.2.1  rmind 	int whichq;
    773  1.1.2.1  rmind 
    774  1.1.2.1  rmind 	if (sched_whichqs == 0) {
    775  1.1.2.1  rmind 		return NULL;
    776  1.1.2.1  rmind 	}
    777  1.1.2.1  rmind #ifdef __HAVE_BIGENDIAN_BITOPS
    778  1.1.2.1  rmind 	for (whichq = 0; ; whichq++) {
    779  1.1.2.1  rmind 		if ((sched_whichqs & RQMASK(whichq)) != 0) {
    780  1.1.2.1  rmind 			break;
    781  1.1.2.1  rmind 		}
    782  1.1.2.1  rmind 	}
    783  1.1.2.1  rmind #else
    784  1.1.2.1  rmind 	whichq = ffs(sched_whichqs) - 1;
    785  1.1.2.1  rmind #endif
    786  1.1.2.1  rmind 	rq = &sched_qs[whichq];
    787  1.1.2.1  rmind 	l = rq->ph_link;
    788  1.1.2.1  rmind 	return l;
    789  1.1.2.1  rmind }
    790  1.1.2.1  rmind 
    791  1.1.2.1  rmind #endif /* !defined(__HAVE_MD_RUNQUEUE) */
    792  1.1.2.1  rmind 
    793  1.1.2.1  rmind #if defined(DDB)
    794  1.1.2.1  rmind void
    795  1.1.2.1  rmind sched_print_runqueue(void (*pr)(const char *, ...))
    796  1.1.2.1  rmind {
    797  1.1.2.1  rmind 	struct prochd *ph;
    798  1.1.2.1  rmind 	struct lwp *l;
    799  1.1.2.1  rmind 	int i, first;
    800  1.1.2.1  rmind 
    801  1.1.2.1  rmind 	for (i = 0; i < RUNQUE_NQS; i++)
    802  1.1.2.1  rmind 	{
    803  1.1.2.1  rmind 		first = 1;
    804  1.1.2.1  rmind 		ph = &sched_qs[i];
    805  1.1.2.1  rmind 		for (l = ph->ph_link; l != (void *)ph; l = l->l_forw) {
    806  1.1.2.1  rmind 			if (first) {
    807  1.1.2.1  rmind 				(*pr)("%c%d",
    808  1.1.2.1  rmind 				    (sched_whichqs & RQMASK(i))
    809  1.1.2.1  rmind 				    ? ' ' : '!', i);
    810  1.1.2.1  rmind 				first = 0;
    811  1.1.2.1  rmind 			}
    812  1.1.2.1  rmind 			(*pr)("\t%d.%d (%s) pri=%d usrpri=%d\n",
    813  1.1.2.1  rmind 			    l->l_proc->p_pid,
    814  1.1.2.1  rmind 			    l->l_lid, l->l_proc->p_comm,
    815  1.1.2.1  rmind 			    (int)l->l_priority, (int)l->l_usrpri);
    816  1.1.2.1  rmind 		}
    817  1.1.2.1  rmind 	}
    818  1.1.2.1  rmind }
    819  1.1.2.1  rmind #endif /* defined(DDB) */
    820  1.1.2.1  rmind #undef RQMASK
    821