sched_4bsd.c revision 1.1.2.16 1 1.1.2.16 yamt /* $NetBSD: sched_4bsd.c,v 1.1.2.16 2007/03/23 16:29:51 yamt Exp $ */
2 1.1.2.1 rmind
3 1.1.2.1 rmind /*-
4 1.1.2.1 rmind * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 1.1.2.1 rmind * All rights reserved.
6 1.1.2.1 rmind *
7 1.1.2.1 rmind * This code is derived from software contributed to The NetBSD Foundation
8 1.1.2.1 rmind * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.1.2.1 rmind * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
10 1.1.2.1 rmind * Daniel Sieger.
11 1.1.2.1 rmind *
12 1.1.2.1 rmind * Redistribution and use in source and binary forms, with or without
13 1.1.2.1 rmind * modification, are permitted provided that the following conditions
14 1.1.2.1 rmind * are met:
15 1.1.2.1 rmind * 1. Redistributions of source code must retain the above copyright
16 1.1.2.1 rmind * notice, this list of conditions and the following disclaimer.
17 1.1.2.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
18 1.1.2.1 rmind * notice, this list of conditions and the following disclaimer in the
19 1.1.2.1 rmind * documentation and/or other materials provided with the distribution.
20 1.1.2.1 rmind * 3. All advertising materials mentioning features or use of this software
21 1.1.2.1 rmind * must display the following acknowledgement:
22 1.1.2.1 rmind * This product includes software developed by the NetBSD
23 1.1.2.1 rmind * Foundation, Inc. and its contributors.
24 1.1.2.1 rmind * 4. Neither the name of The NetBSD Foundation nor the names of its
25 1.1.2.1 rmind * contributors may be used to endorse or promote products derived
26 1.1.2.1 rmind * from this software without specific prior written permission.
27 1.1.2.1 rmind *
28 1.1.2.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 1.1.2.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 1.1.2.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 1.1.2.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 1.1.2.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 1.1.2.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 1.1.2.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 1.1.2.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 1.1.2.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 1.1.2.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 1.1.2.1 rmind * POSSIBILITY OF SUCH DAMAGE.
39 1.1.2.1 rmind */
40 1.1.2.1 rmind
41 1.1.2.1 rmind /*-
42 1.1.2.1 rmind * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 1.1.2.1 rmind * The Regents of the University of California. All rights reserved.
44 1.1.2.1 rmind * (c) UNIX System Laboratories, Inc.
45 1.1.2.1 rmind * All or some portions of this file are derived from material licensed
46 1.1.2.1 rmind * to the University of California by American Telephone and Telegraph
47 1.1.2.1 rmind * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 1.1.2.1 rmind * the permission of UNIX System Laboratories, Inc.
49 1.1.2.1 rmind *
50 1.1.2.1 rmind * Redistribution and use in source and binary forms, with or without
51 1.1.2.1 rmind * modification, are permitted provided that the following conditions
52 1.1.2.1 rmind * are met:
53 1.1.2.1 rmind * 1. Redistributions of source code must retain the above copyright
54 1.1.2.1 rmind * notice, this list of conditions and the following disclaimer.
55 1.1.2.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
56 1.1.2.1 rmind * notice, this list of conditions and the following disclaimer in the
57 1.1.2.1 rmind * documentation and/or other materials provided with the distribution.
58 1.1.2.1 rmind * 3. Neither the name of the University nor the names of its contributors
59 1.1.2.1 rmind * may be used to endorse or promote products derived from this software
60 1.1.2.1 rmind * without specific prior written permission.
61 1.1.2.1 rmind *
62 1.1.2.1 rmind * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 1.1.2.1 rmind * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 1.1.2.1 rmind * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 1.1.2.1 rmind * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 1.1.2.1 rmind * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 1.1.2.1 rmind * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 1.1.2.1 rmind * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 1.1.2.1 rmind * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 1.1.2.1 rmind * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 1.1.2.1 rmind * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 1.1.2.1 rmind * SUCH DAMAGE.
73 1.1.2.1 rmind *
74 1.1.2.1 rmind * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 1.1.2.1 rmind */
76 1.1.2.1 rmind
77 1.1.2.1 rmind #include <sys/cdefs.h>
78 1.1.2.16 yamt __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.1.2.16 2007/03/23 16:29:51 yamt Exp $");
79 1.1.2.1 rmind
80 1.1.2.1 rmind #include "opt_ddb.h"
81 1.1.2.1 rmind #include "opt_lockdebug.h"
82 1.1.2.1 rmind #include "opt_perfctrs.h"
83 1.1.2.1 rmind
84 1.1.2.1 rmind #define __MUTEX_PRIVATE
85 1.1.2.1 rmind
86 1.1.2.1 rmind #include <sys/param.h>
87 1.1.2.1 rmind #include <sys/systm.h>
88 1.1.2.1 rmind #include <sys/callout.h>
89 1.1.2.6 yamt #include <sys/cpu.h>
90 1.1.2.1 rmind #include <sys/proc.h>
91 1.1.2.1 rmind #include <sys/kernel.h>
92 1.1.2.1 rmind #include <sys/signalvar.h>
93 1.1.2.1 rmind #include <sys/resourcevar.h>
94 1.1.2.1 rmind #include <sys/sched.h>
95 1.1.2.9 rmind #include <sys/sysctl.h>
96 1.1.2.1 rmind #include <sys/kauth.h>
97 1.1.2.1 rmind #include <sys/lockdebug.h>
98 1.1.2.1 rmind
99 1.1.2.1 rmind #include <uvm/uvm_extern.h>
100 1.1.2.1 rmind
101 1.1.2.1 rmind /*
102 1.1.2.1 rmind * Run queues.
103 1.1.2.1 rmind *
104 1.1.2.1 rmind * We have 32 run queues in descending priority of 0..31. We maintain
105 1.1.2.1 rmind * a bitmask of non-empty queues in order speed up finding the first
106 1.1.2.1 rmind * runnable process. The bitmask is maintained only by machine-dependent
107 1.1.2.1 rmind * code, allowing the most efficient instructions to be used to find the
108 1.1.2.1 rmind * first non-empty queue.
109 1.1.2.1 rmind */
110 1.1.2.1 rmind
111 1.1.2.1 rmind #define RUNQUE_NQS 32 /* number of runqueues */
112 1.1.2.1 rmind #define PPQ (128 / RUNQUE_NQS) /* priorities per queue */
113 1.1.2.1 rmind
114 1.1.2.16 yamt typedef struct subqueue {
115 1.1.2.16 yamt TAILQ_HEAD(, lwp) sq_queue;
116 1.1.2.16 yamt } subqueue_t;
117 1.1.2.16 yamt typedef struct runqueue {
118 1.1.2.16 yamt subqueue_t rq_subqueues[RUNQUE_NQS]; /* run queues */
119 1.1.2.16 yamt uint32_t rq_bitmap; /* bitmap of non-empty queues */
120 1.1.2.16 yamt } runqueue_t;
121 1.1.2.16 yamt static runqueue_t global_queue;
122 1.1.2.1 rmind
123 1.1.2.15 yamt static void schedcpu(void *);
124 1.1.2.15 yamt static void updatepri(struct lwp *);
125 1.1.2.15 yamt static void resetpriority(struct lwp *);
126 1.1.2.15 yamt static void resetprocpriority(struct proc *);
127 1.1.2.1 rmind
128 1.1.2.1 rmind struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
129 1.1.2.1 rmind static unsigned int schedcpu_ticks;
130 1.1.2.15 yamt static int rrticks; /* number of hardclock ticks per sched_tick() */
131 1.1.2.1 rmind
132 1.1.2.1 rmind /*
133 1.1.2.1 rmind * Force switch among equal priority processes every 100ms.
134 1.1.2.1 rmind * Called from hardclock every hz/10 == rrticks hardclock ticks.
135 1.1.2.1 rmind */
136 1.1.2.1 rmind /* ARGSUSED */
137 1.1.2.1 rmind void
138 1.1.2.1 rmind sched_tick(struct cpu_info *ci)
139 1.1.2.1 rmind {
140 1.1.2.1 rmind struct schedstate_percpu *spc = &ci->ci_schedstate;
141 1.1.2.1 rmind
142 1.1.2.1 rmind spc->spc_ticks = rrticks;
143 1.1.2.1 rmind
144 1.1.2.1 rmind if (!CURCPU_IDLE_P()) {
145 1.1.2.1 rmind if (spc->spc_flags & SPCF_SEENRR) {
146 1.1.2.1 rmind /*
147 1.1.2.1 rmind * The process has already been through a roundrobin
148 1.1.2.1 rmind * without switching and may be hogging the CPU.
149 1.1.2.1 rmind * Indicate that the process should yield.
150 1.1.2.1 rmind */
151 1.1.2.1 rmind spc->spc_flags |= SPCF_SHOULDYIELD;
152 1.1.2.1 rmind } else
153 1.1.2.1 rmind spc->spc_flags |= SPCF_SEENRR;
154 1.1.2.1 rmind }
155 1.1.2.7 yamt cpu_need_resched(curcpu(), 0);
156 1.1.2.1 rmind }
157 1.1.2.1 rmind
158 1.1.2.1 rmind #define NICE_WEIGHT 2 /* priorities per nice level */
159 1.1.2.1 rmind
160 1.1.2.1 rmind #define ESTCPU_SHIFT 11
161 1.1.2.1 rmind #define ESTCPU_MAX ((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
162 1.1.2.1 rmind #define ESTCPULIM(e) min((e), ESTCPU_MAX)
163 1.1.2.1 rmind
164 1.1.2.1 rmind /*
165 1.1.2.1 rmind * Constants for digital decay and forget:
166 1.1.2.1 rmind * 90% of (p_estcpu) usage in 5 * loadav time
167 1.1.2.1 rmind * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
168 1.1.2.1 rmind * Note that, as ps(1) mentions, this can let percentages
169 1.1.2.1 rmind * total over 100% (I've seen 137.9% for 3 processes).
170 1.1.2.1 rmind *
171 1.1.2.1 rmind * Note that hardclock updates p_estcpu and p_cpticks independently.
172 1.1.2.1 rmind *
173 1.1.2.1 rmind * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
174 1.1.2.1 rmind * That is, the system wants to compute a value of decay such
175 1.1.2.1 rmind * that the following for loop:
176 1.1.2.1 rmind * for (i = 0; i < (5 * loadavg); i++)
177 1.1.2.1 rmind * p_estcpu *= decay;
178 1.1.2.1 rmind * will compute
179 1.1.2.1 rmind * p_estcpu *= 0.1;
180 1.1.2.1 rmind * for all values of loadavg:
181 1.1.2.1 rmind *
182 1.1.2.1 rmind * Mathematically this loop can be expressed by saying:
183 1.1.2.1 rmind * decay ** (5 * loadavg) ~= .1
184 1.1.2.1 rmind *
185 1.1.2.1 rmind * The system computes decay as:
186 1.1.2.1 rmind * decay = (2 * loadavg) / (2 * loadavg + 1)
187 1.1.2.1 rmind *
188 1.1.2.1 rmind * We wish to prove that the system's computation of decay
189 1.1.2.1 rmind * will always fulfill the equation:
190 1.1.2.1 rmind * decay ** (5 * loadavg) ~= .1
191 1.1.2.1 rmind *
192 1.1.2.1 rmind * If we compute b as:
193 1.1.2.1 rmind * b = 2 * loadavg
194 1.1.2.1 rmind * then
195 1.1.2.1 rmind * decay = b / (b + 1)
196 1.1.2.1 rmind *
197 1.1.2.1 rmind * We now need to prove two things:
198 1.1.2.1 rmind * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
199 1.1.2.1 rmind * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
200 1.1.2.1 rmind *
201 1.1.2.1 rmind * Facts:
202 1.1.2.1 rmind * For x close to zero, exp(x) =~ 1 + x, since
203 1.1.2.1 rmind * exp(x) = 0! + x**1/1! + x**2/2! + ... .
204 1.1.2.1 rmind * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
205 1.1.2.1 rmind * For x close to zero, ln(1+x) =~ x, since
206 1.1.2.1 rmind * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
207 1.1.2.1 rmind * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
208 1.1.2.1 rmind * ln(.1) =~ -2.30
209 1.1.2.1 rmind *
210 1.1.2.1 rmind * Proof of (1):
211 1.1.2.1 rmind * Solve (factor)**(power) =~ .1 given power (5*loadav):
212 1.1.2.1 rmind * solving for factor,
213 1.1.2.1 rmind * ln(factor) =~ (-2.30/5*loadav), or
214 1.1.2.1 rmind * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
215 1.1.2.1 rmind * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
216 1.1.2.1 rmind *
217 1.1.2.1 rmind * Proof of (2):
218 1.1.2.1 rmind * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
219 1.1.2.1 rmind * solving for power,
220 1.1.2.1 rmind * power*ln(b/(b+1)) =~ -2.30, or
221 1.1.2.1 rmind * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
222 1.1.2.1 rmind *
223 1.1.2.1 rmind * Actual power values for the implemented algorithm are as follows:
224 1.1.2.1 rmind * loadav: 1 2 3 4
225 1.1.2.1 rmind * power: 5.68 10.32 14.94 19.55
226 1.1.2.1 rmind */
227 1.1.2.1 rmind
228 1.1.2.1 rmind /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
229 1.1.2.1 rmind #define loadfactor(loadav) (2 * (loadav))
230 1.1.2.1 rmind
231 1.1.2.1 rmind static fixpt_t
232 1.1.2.1 rmind decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
233 1.1.2.1 rmind {
234 1.1.2.1 rmind
235 1.1.2.1 rmind if (estcpu == 0) {
236 1.1.2.1 rmind return 0;
237 1.1.2.1 rmind }
238 1.1.2.1 rmind
239 1.1.2.1 rmind #if !defined(_LP64)
240 1.1.2.1 rmind /* avoid 64bit arithmetics. */
241 1.1.2.1 rmind #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
242 1.1.2.1 rmind if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
243 1.1.2.1 rmind return estcpu * loadfac / (loadfac + FSCALE);
244 1.1.2.1 rmind }
245 1.1.2.1 rmind #endif /* !defined(_LP64) */
246 1.1.2.1 rmind
247 1.1.2.1 rmind return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
248 1.1.2.1 rmind }
249 1.1.2.1 rmind
250 1.1.2.1 rmind /*
251 1.1.2.1 rmind * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
252 1.1.2.1 rmind * sleeping for at least seven times the loadfactor will decay p_estcpu to
253 1.1.2.1 rmind * less than (1 << ESTCPU_SHIFT).
254 1.1.2.1 rmind *
255 1.1.2.1 rmind * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
256 1.1.2.1 rmind */
257 1.1.2.1 rmind static fixpt_t
258 1.1.2.1 rmind decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
259 1.1.2.1 rmind {
260 1.1.2.1 rmind
261 1.1.2.1 rmind if ((n << FSHIFT) >= 7 * loadfac) {
262 1.1.2.1 rmind return 0;
263 1.1.2.1 rmind }
264 1.1.2.1 rmind
265 1.1.2.1 rmind while (estcpu != 0 && n > 1) {
266 1.1.2.1 rmind estcpu = decay_cpu(loadfac, estcpu);
267 1.1.2.1 rmind n--;
268 1.1.2.1 rmind }
269 1.1.2.1 rmind
270 1.1.2.1 rmind return estcpu;
271 1.1.2.1 rmind }
272 1.1.2.1 rmind
273 1.1.2.1 rmind /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
274 1.1.2.1 rmind fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
275 1.1.2.1 rmind
276 1.1.2.1 rmind /*
277 1.1.2.1 rmind * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
278 1.1.2.1 rmind * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
279 1.1.2.1 rmind * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
280 1.1.2.1 rmind *
281 1.1.2.1 rmind * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
282 1.1.2.1 rmind * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
283 1.1.2.1 rmind *
284 1.1.2.1 rmind * If you dont want to bother with the faster/more-accurate formula, you
285 1.1.2.1 rmind * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
286 1.1.2.1 rmind * (more general) method of calculating the %age of CPU used by a process.
287 1.1.2.1 rmind */
288 1.1.2.1 rmind #define CCPU_SHIFT 11
289 1.1.2.1 rmind
290 1.1.2.1 rmind /*
291 1.1.2.1 rmind * schedcpu:
292 1.1.2.1 rmind *
293 1.1.2.1 rmind * Recompute process priorities, every hz ticks.
294 1.1.2.1 rmind *
295 1.1.2.1 rmind * XXXSMP This needs to be reorganised in order to reduce the locking
296 1.1.2.1 rmind * burden.
297 1.1.2.1 rmind */
298 1.1.2.1 rmind /* ARGSUSED */
299 1.1.2.15 yamt static void
300 1.1.2.1 rmind schedcpu(void *arg)
301 1.1.2.1 rmind {
302 1.1.2.1 rmind fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
303 1.1.2.1 rmind struct rlimit *rlim;
304 1.1.2.1 rmind struct lwp *l;
305 1.1.2.1 rmind struct proc *p;
306 1.1.2.1 rmind int minslp, clkhz, sig;
307 1.1.2.1 rmind long runtm;
308 1.1.2.1 rmind
309 1.1.2.1 rmind schedcpu_ticks++;
310 1.1.2.1 rmind
311 1.1.2.1 rmind mutex_enter(&proclist_mutex);
312 1.1.2.1 rmind PROCLIST_FOREACH(p, &allproc) {
313 1.1.2.1 rmind /*
314 1.1.2.1 rmind * Increment time in/out of memory and sleep time (if
315 1.1.2.1 rmind * sleeping). We ignore overflow; with 16-bit int's
316 1.1.2.1 rmind * (remember them?) overflow takes 45 days.
317 1.1.2.1 rmind */
318 1.1.2.1 rmind minslp = 2;
319 1.1.2.1 rmind mutex_enter(&p->p_smutex);
320 1.1.2.1 rmind runtm = p->p_rtime.tv_sec;
321 1.1.2.1 rmind LIST_FOREACH(l, &p->p_lwps, l_sibling) {
322 1.1.2.8 yamt if ((l->l_flag & LW_IDLE) != 0)
323 1.1.2.1 rmind continue;
324 1.1.2.1 rmind lwp_lock(l);
325 1.1.2.1 rmind runtm += l->l_rtime.tv_sec;
326 1.1.2.1 rmind l->l_swtime++;
327 1.1.2.1 rmind if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
328 1.1.2.1 rmind l->l_stat == LSSUSPENDED) {
329 1.1.2.1 rmind l->l_slptime++;
330 1.1.2.1 rmind minslp = min(minslp, l->l_slptime);
331 1.1.2.1 rmind } else
332 1.1.2.1 rmind minslp = 0;
333 1.1.2.1 rmind lwp_unlock(l);
334 1.1.2.1 rmind }
335 1.1.2.1 rmind p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
336 1.1.2.1 rmind
337 1.1.2.1 rmind /*
338 1.1.2.1 rmind * Check if the process exceeds its CPU resource allocation.
339 1.1.2.1 rmind * If over max, kill it.
340 1.1.2.1 rmind */
341 1.1.2.1 rmind rlim = &p->p_rlimit[RLIMIT_CPU];
342 1.1.2.1 rmind sig = 0;
343 1.1.2.1 rmind if (runtm >= rlim->rlim_cur) {
344 1.1.2.1 rmind if (runtm >= rlim->rlim_max)
345 1.1.2.1 rmind sig = SIGKILL;
346 1.1.2.1 rmind else {
347 1.1.2.1 rmind sig = SIGXCPU;
348 1.1.2.1 rmind if (rlim->rlim_cur < rlim->rlim_max)
349 1.1.2.1 rmind rlim->rlim_cur += 5;
350 1.1.2.1 rmind }
351 1.1.2.1 rmind }
352 1.1.2.1 rmind
353 1.1.2.1 rmind /*
354 1.1.2.1 rmind * If the process has run for more than autonicetime, reduce
355 1.1.2.1 rmind * priority to give others a chance.
356 1.1.2.1 rmind */
357 1.1.2.1 rmind if (autonicetime && runtm > autonicetime && p->p_nice == NZERO
358 1.1.2.1 rmind && kauth_cred_geteuid(p->p_cred)) {
359 1.1.2.1 rmind mutex_spin_enter(&p->p_stmutex);
360 1.1.2.1 rmind p->p_nice = autoniceval + NZERO;
361 1.1.2.1 rmind resetprocpriority(p);
362 1.1.2.1 rmind mutex_spin_exit(&p->p_stmutex);
363 1.1.2.1 rmind }
364 1.1.2.1 rmind
365 1.1.2.1 rmind /*
366 1.1.2.1 rmind * If the process has slept the entire second,
367 1.1.2.1 rmind * stop recalculating its priority until it wakes up.
368 1.1.2.1 rmind */
369 1.1.2.1 rmind if (minslp <= 1) {
370 1.1.2.1 rmind /*
371 1.1.2.1 rmind * p_pctcpu is only for ps.
372 1.1.2.1 rmind */
373 1.1.2.1 rmind mutex_spin_enter(&p->p_stmutex);
374 1.1.2.1 rmind clkhz = stathz != 0 ? stathz : hz;
375 1.1.2.1 rmind #if (FSHIFT >= CCPU_SHIFT)
376 1.1.2.1 rmind p->p_pctcpu += (clkhz == 100)?
377 1.1.2.1 rmind ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
378 1.1.2.1 rmind 100 * (((fixpt_t) p->p_cpticks)
379 1.1.2.1 rmind << (FSHIFT - CCPU_SHIFT)) / clkhz;
380 1.1.2.1 rmind #else
381 1.1.2.1 rmind p->p_pctcpu += ((FSCALE - ccpu) *
382 1.1.2.1 rmind (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
383 1.1.2.1 rmind #endif
384 1.1.2.1 rmind p->p_cpticks = 0;
385 1.1.2.1 rmind p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
386 1.1.2.1 rmind
387 1.1.2.1 rmind LIST_FOREACH(l, &p->p_lwps, l_sibling) {
388 1.1.2.8 yamt if ((l->l_flag & LW_IDLE) != 0)
389 1.1.2.1 rmind continue;
390 1.1.2.1 rmind lwp_lock(l);
391 1.1.2.1 rmind if (l->l_slptime <= 1 &&
392 1.1.2.1 rmind l->l_priority >= PUSER)
393 1.1.2.1 rmind resetpriority(l);
394 1.1.2.1 rmind lwp_unlock(l);
395 1.1.2.1 rmind }
396 1.1.2.1 rmind mutex_spin_exit(&p->p_stmutex);
397 1.1.2.1 rmind }
398 1.1.2.1 rmind
399 1.1.2.1 rmind mutex_exit(&p->p_smutex);
400 1.1.2.1 rmind if (sig) {
401 1.1.2.1 rmind psignal(p, sig);
402 1.1.2.1 rmind }
403 1.1.2.1 rmind }
404 1.1.2.1 rmind mutex_exit(&proclist_mutex);
405 1.1.2.1 rmind uvm_meter();
406 1.1.2.1 rmind wakeup((caddr_t)&lbolt);
407 1.1.2.1 rmind callout_schedule(&schedcpu_ch, hz);
408 1.1.2.1 rmind }
409 1.1.2.1 rmind
410 1.1.2.1 rmind /*
411 1.1.2.1 rmind * Recalculate the priority of a process after it has slept for a while.
412 1.1.2.1 rmind */
413 1.1.2.15 yamt static void
414 1.1.2.1 rmind updatepri(struct lwp *l)
415 1.1.2.1 rmind {
416 1.1.2.1 rmind struct proc *p = l->l_proc;
417 1.1.2.1 rmind fixpt_t loadfac;
418 1.1.2.1 rmind
419 1.1.2.1 rmind LOCK_ASSERT(lwp_locked(l, NULL));
420 1.1.2.1 rmind KASSERT(l->l_slptime > 1);
421 1.1.2.1 rmind
422 1.1.2.1 rmind loadfac = loadfactor(averunnable.ldavg[0]);
423 1.1.2.1 rmind
424 1.1.2.1 rmind l->l_slptime--; /* the first time was done in schedcpu */
425 1.1.2.1 rmind /* XXX NJWLWP */
426 1.1.2.1 rmind /* XXXSMP occasionally unlocked, should be per-LWP */
427 1.1.2.1 rmind p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
428 1.1.2.1 rmind resetpriority(l);
429 1.1.2.1 rmind }
430 1.1.2.1 rmind
431 1.1.2.1 rmind /*
432 1.1.2.16 yamt * On some architectures, it's faster to use a MSB ordering for the priorites
433 1.1.2.16 yamt * than the traditional LSB ordering.
434 1.1.2.16 yamt */
435 1.1.2.16 yamt #ifdef __HAVE_BIGENDIAN_BITOPS
436 1.1.2.16 yamt #define RQMASK(n) (0x80000000 >> (n))
437 1.1.2.16 yamt #else
438 1.1.2.16 yamt #define RQMASK(n) (0x00000001 << (n))
439 1.1.2.16 yamt #endif
440 1.1.2.16 yamt
441 1.1.2.16 yamt /*
442 1.1.2.16 yamt * The primitives that manipulate the run queues. whichqs tells which
443 1.1.2.16 yamt * of the 32 queues qs have processes in them. sched_enqueue() puts processes
444 1.1.2.16 yamt * into queues, sched_dequeue removes them from queues. The running process is
445 1.1.2.16 yamt * on no queue, other processes are on a queue related to p->p_priority,
446 1.1.2.16 yamt * divided by 4 actually to shrink the 0-127 range of priorities into the 32
447 1.1.2.16 yamt * available queues.
448 1.1.2.16 yamt */
449 1.1.2.16 yamt #ifdef RQDEBUG
450 1.1.2.16 yamt static void
451 1.1.2.16 yamt runqueue_check(const runqueue_t *rq, int whichq, struct lwp *l)
452 1.1.2.16 yamt {
453 1.1.2.16 yamt const subqueue_t * const sq = &rq->rq_subqueues[whichq];
454 1.1.2.16 yamt const uint32_t bitmap = rq->rq_bitmap;
455 1.1.2.16 yamt struct lwp *l2;
456 1.1.2.16 yamt int found = 0;
457 1.1.2.16 yamt int die = 0;
458 1.1.2.16 yamt int empty = 1;
459 1.1.2.16 yamt
460 1.1.2.16 yamt TAILQ_FOREACH(l2, &sq->sq_queue, l_runq) {
461 1.1.2.16 yamt if (l2->l_stat != LSRUN) {
462 1.1.2.16 yamt printf("runqueue_check[%d]: lwp %p state (%d) "
463 1.1.2.16 yamt " != LSRUN\n", whichq, l2, l2->l_stat);
464 1.1.2.16 yamt }
465 1.1.2.16 yamt if (l2 == l)
466 1.1.2.16 yamt found = 1;
467 1.1.2.16 yamt empty = 0;
468 1.1.2.16 yamt }
469 1.1.2.16 yamt if (empty && (bitmap & RQMASK(whichq)) != 0) {
470 1.1.2.16 yamt printf("runqueue_check[%d]: bit set for empty run-queue %p\n",
471 1.1.2.16 yamt whichq, rq);
472 1.1.2.16 yamt die = 1;
473 1.1.2.16 yamt } else if (!empty && (bitmap & RQMASK(whichq)) == 0) {
474 1.1.2.16 yamt printf("runqueue_check[%d]: bit clear for non-empty "
475 1.1.2.16 yamt "run-queue %p\n", whichq, rq);
476 1.1.2.16 yamt die = 1;
477 1.1.2.16 yamt }
478 1.1.2.16 yamt if (l != NULL && (bitmap & RQMASK(whichq)) == 0) {
479 1.1.2.16 yamt printf("runqueue_check[%d]: bit clear for active lwp %p\n",
480 1.1.2.16 yamt whichq, l);
481 1.1.2.16 yamt die = 1;
482 1.1.2.16 yamt }
483 1.1.2.16 yamt if (l != NULL && empty) {
484 1.1.2.16 yamt printf("runqueue_check[%d]: empty run-queue %p with "
485 1.1.2.16 yamt "active lwp %p\n", whichq, rq, l);
486 1.1.2.16 yamt die = 1;
487 1.1.2.16 yamt }
488 1.1.2.16 yamt if (l != NULL && !found) {
489 1.1.2.16 yamt printf("runqueue_check[%d]: lwp %p not in runqueue %p!",
490 1.1.2.16 yamt whichq, l, rq);
491 1.1.2.16 yamt die = 1;
492 1.1.2.16 yamt }
493 1.1.2.16 yamt if (die)
494 1.1.2.16 yamt panic("runqueue_check: inconsistency found");
495 1.1.2.16 yamt }
496 1.1.2.16 yamt #endif /* RQDEBUG */
497 1.1.2.16 yamt
498 1.1.2.16 yamt static void
499 1.1.2.16 yamt runqueue_init(runqueue_t *rq)
500 1.1.2.16 yamt {
501 1.1.2.16 yamt
502 1.1.2.16 yamt int i;
503 1.1.2.16 yamt
504 1.1.2.16 yamt for (i = 0; i < RUNQUE_NQS; i++)
505 1.1.2.16 yamt TAILQ_INIT(&rq->rq_subqueues[i].sq_queue);
506 1.1.2.16 yamt }
507 1.1.2.16 yamt
508 1.1.2.16 yamt static void
509 1.1.2.16 yamt runqueue_enqueue(runqueue_t *rq, struct lwp *l)
510 1.1.2.16 yamt {
511 1.1.2.16 yamt subqueue_t *sq;
512 1.1.2.16 yamt const int whichq = lwp_eprio(l) / PPQ;
513 1.1.2.16 yamt
514 1.1.2.16 yamt LOCK_ASSERT(lwp_locked(l, &sched_mutex));
515 1.1.2.16 yamt
516 1.1.2.16 yamt #ifdef RQDEBUG
517 1.1.2.16 yamt runqueue_check(rq, whichq, NULL);
518 1.1.2.16 yamt #endif
519 1.1.2.16 yamt rq->rq_bitmap |= RQMASK(whichq);
520 1.1.2.16 yamt sq = &rq->rq_subqueues[whichq];
521 1.1.2.16 yamt TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_runq);
522 1.1.2.16 yamt #ifdef RQDEBUG
523 1.1.2.16 yamt runqueue_check(rq, whichq, l);
524 1.1.2.16 yamt #endif
525 1.1.2.16 yamt }
526 1.1.2.16 yamt
527 1.1.2.16 yamt static void
528 1.1.2.16 yamt runqueue_dequeue(runqueue_t *rq, struct lwp *l)
529 1.1.2.16 yamt {
530 1.1.2.16 yamt subqueue_t *sq;
531 1.1.2.16 yamt const int whichq = lwp_eprio(l) / PPQ;
532 1.1.2.16 yamt
533 1.1.2.16 yamt LOCK_ASSERT(lwp_locked(l, &sched_mutex));
534 1.1.2.16 yamt
535 1.1.2.16 yamt #ifdef RQDEBUG
536 1.1.2.16 yamt runqueue_check(rq, whichq, l);
537 1.1.2.16 yamt #endif
538 1.1.2.16 yamt KASSERT((rq->rq_bitmap & RQMASK(whichq)) != 0);
539 1.1.2.16 yamt sq = &rq->rq_subqueues[whichq];
540 1.1.2.16 yamt TAILQ_REMOVE(&sq->sq_queue, l, l_runq);
541 1.1.2.16 yamt if (TAILQ_EMPTY(&sq->sq_queue))
542 1.1.2.16 yamt rq->rq_bitmap &= ~RQMASK(whichq);
543 1.1.2.16 yamt #ifdef RQDEBUG
544 1.1.2.16 yamt runqueue_check(rq, whichq, NULL);
545 1.1.2.16 yamt #endif
546 1.1.2.16 yamt }
547 1.1.2.16 yamt
548 1.1.2.16 yamt static struct lwp *
549 1.1.2.16 yamt runqueue_nextlwp(runqueue_t *rq)
550 1.1.2.16 yamt {
551 1.1.2.16 yamt const uint32_t bitmap = rq->rq_bitmap;
552 1.1.2.16 yamt int whichq;
553 1.1.2.16 yamt
554 1.1.2.16 yamt LOCK_ASSERT(lwp_locked(l, &sched_mutex));
555 1.1.2.16 yamt
556 1.1.2.16 yamt if (bitmap == 0) {
557 1.1.2.16 yamt return NULL;
558 1.1.2.16 yamt }
559 1.1.2.16 yamt #ifdef __HAVE_BIGENDIAN_BITOPS
560 1.1.2.16 yamt /* XXX should introduce a fast "fls" function. */
561 1.1.2.16 yamt for (whichq = 0; ; whichq++) {
562 1.1.2.16 yamt if ((bitmap & RQMASK(whichq)) != 0) {
563 1.1.2.16 yamt break;
564 1.1.2.16 yamt }
565 1.1.2.16 yamt }
566 1.1.2.16 yamt #else
567 1.1.2.16 yamt whichq = ffs(bitmap) - 1;
568 1.1.2.16 yamt #endif
569 1.1.2.16 yamt return TAILQ_FIRST(&rq->rq_subqueues[whichq].sq_queue);
570 1.1.2.16 yamt }
571 1.1.2.16 yamt
572 1.1.2.16 yamt #if defined(DDB)
573 1.1.2.16 yamt static void
574 1.1.2.16 yamt runqueue_print(const runqueue_t *rq, void (*pr)(const char *, ...))
575 1.1.2.16 yamt {
576 1.1.2.16 yamt const uint32_t bitmap = rq->rq_bitmap;
577 1.1.2.16 yamt struct lwp *l;
578 1.1.2.16 yamt int i, first;
579 1.1.2.16 yamt
580 1.1.2.16 yamt for (i = 0; i < RUNQUE_NQS; i++) {
581 1.1.2.16 yamt const subqueue_t *sq;
582 1.1.2.16 yamt first = 1;
583 1.1.2.16 yamt sq = &rq->rq_subqueues[i];
584 1.1.2.16 yamt TAILQ_FOREACH(l, &sq->sq_queue, l_runq) {
585 1.1.2.16 yamt if (first) {
586 1.1.2.16 yamt (*pr)("%c%d",
587 1.1.2.16 yamt (bitmap & RQMASK(i)) ? ' ' : '!', i);
588 1.1.2.16 yamt first = 0;
589 1.1.2.16 yamt }
590 1.1.2.16 yamt (*pr)("\t%d.%d (%s) pri=%d usrpri=%d\n",
591 1.1.2.16 yamt l->l_proc->p_pid,
592 1.1.2.16 yamt l->l_lid, l->l_proc->p_comm,
593 1.1.2.16 yamt (int)l->l_priority, (int)l->l_usrpri);
594 1.1.2.16 yamt }
595 1.1.2.16 yamt }
596 1.1.2.16 yamt }
597 1.1.2.16 yamt #endif /* defined(DDB) */
598 1.1.2.16 yamt #undef RQMASK
599 1.1.2.16 yamt
600 1.1.2.16 yamt /*
601 1.1.2.1 rmind * Initialize the (doubly-linked) run queues
602 1.1.2.1 rmind * to be empty.
603 1.1.2.1 rmind */
604 1.1.2.1 rmind void
605 1.1.2.1 rmind sched_rqinit()
606 1.1.2.1 rmind {
607 1.1.2.1 rmind
608 1.1.2.16 yamt runqueue_init(&global_queue);
609 1.1.2.1 rmind mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
610 1.1.2.1 rmind }
611 1.1.2.1 rmind
612 1.1.2.1 rmind void
613 1.1.2.1 rmind sched_setup()
614 1.1.2.1 rmind {
615 1.1.2.1 rmind rrticks = hz / 10;
616 1.1.2.1 rmind
617 1.1.2.1 rmind schedcpu(NULL);
618 1.1.2.1 rmind }
619 1.1.2.1 rmind
620 1.1.2.1 rmind void
621 1.1.2.1 rmind sched_setrunnable(struct lwp *l)
622 1.1.2.1 rmind {
623 1.1.2.16 yamt
624 1.1.2.1 rmind if (l->l_slptime > 1)
625 1.1.2.1 rmind updatepri(l);
626 1.1.2.1 rmind }
627 1.1.2.1 rmind
628 1.1.2.9 rmind bool
629 1.1.2.1 rmind sched_curcpu_runnable_p(void)
630 1.1.2.1 rmind {
631 1.1.2.1 rmind
632 1.1.2.16 yamt return global_queue.rq_bitmap != 0;
633 1.1.2.1 rmind }
634 1.1.2.1 rmind
635 1.1.2.1 rmind void
636 1.1.2.1 rmind sched_nice(struct proc *chgp, int n)
637 1.1.2.1 rmind {
638 1.1.2.16 yamt
639 1.1.2.1 rmind chgp->p_nice = n;
640 1.1.2.1 rmind (void)resetprocpriority(chgp);
641 1.1.2.1 rmind }
642 1.1.2.1 rmind
643 1.1.2.1 rmind /*
644 1.1.2.1 rmind * Compute the priority of a process when running in user mode.
645 1.1.2.1 rmind * Arrange to reschedule if the resulting priority is better
646 1.1.2.1 rmind * than that of the current process.
647 1.1.2.1 rmind */
648 1.1.2.15 yamt static void
649 1.1.2.1 rmind resetpriority(struct lwp *l)
650 1.1.2.1 rmind {
651 1.1.2.1 rmind unsigned int newpriority;
652 1.1.2.1 rmind struct proc *p = l->l_proc;
653 1.1.2.1 rmind
654 1.1.2.1 rmind /* XXXSMP LOCK_ASSERT(mutex_owned(&p->p_stmutex)); */
655 1.1.2.1 rmind LOCK_ASSERT(lwp_locked(l, NULL));
656 1.1.2.1 rmind
657 1.1.2.8 yamt if ((l->l_flag & LW_SYSTEM) != 0)
658 1.1.2.1 rmind return;
659 1.1.2.1 rmind
660 1.1.2.1 rmind newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
661 1.1.2.1 rmind NICE_WEIGHT * (p->p_nice - NZERO);
662 1.1.2.1 rmind newpriority = min(newpriority, MAXPRI);
663 1.1.2.1 rmind lwp_changepri(l, newpriority);
664 1.1.2.1 rmind }
665 1.1.2.1 rmind
666 1.1.2.1 rmind /*
667 1.1.2.1 rmind * Recompute priority for all LWPs in a process.
668 1.1.2.1 rmind */
669 1.1.2.15 yamt static void
670 1.1.2.1 rmind resetprocpriority(struct proc *p)
671 1.1.2.1 rmind {
672 1.1.2.1 rmind struct lwp *l;
673 1.1.2.1 rmind
674 1.1.2.1 rmind LOCK_ASSERT(mutex_owned(&p->p_stmutex));
675 1.1.2.1 rmind
676 1.1.2.1 rmind LIST_FOREACH(l, &p->p_lwps, l_sibling) {
677 1.1.2.1 rmind lwp_lock(l);
678 1.1.2.1 rmind resetpriority(l);
679 1.1.2.1 rmind lwp_unlock(l);
680 1.1.2.1 rmind }
681 1.1.2.1 rmind }
682 1.1.2.1 rmind
683 1.1.2.1 rmind /*
684 1.1.2.1 rmind * We adjust the priority of the current process. The priority of a process
685 1.1.2.1 rmind * gets worse as it accumulates CPU time. The CPU usage estimator (p_estcpu)
686 1.1.2.1 rmind * is increased here. The formula for computing priorities (in kern_synch.c)
687 1.1.2.1 rmind * will compute a different value each time p_estcpu increases. This can
688 1.1.2.1 rmind * cause a switch, but unless the priority crosses a PPQ boundary the actual
689 1.1.2.1 rmind * queue will not change. The CPU usage estimator ramps up quite quickly
690 1.1.2.1 rmind * when the process is running (linearly), and decays away exponentially, at
691 1.1.2.1 rmind * a rate which is proportionally slower when the system is busy. The basic
692 1.1.2.1 rmind * principle is that the system will 90% forget that the process used a lot
693 1.1.2.1 rmind * of CPU time in 5 * loadav seconds. This causes the system to favor
694 1.1.2.1 rmind * processes which haven't run much recently, and to round-robin among other
695 1.1.2.1 rmind * processes.
696 1.1.2.1 rmind */
697 1.1.2.1 rmind
698 1.1.2.1 rmind void
699 1.1.2.13 yamt sched_schedclock(struct lwp *l)
700 1.1.2.1 rmind {
701 1.1.2.1 rmind struct proc *p = l->l_proc;
702 1.1.2.1 rmind
703 1.1.2.1 rmind KASSERT(!CURCPU_IDLE_P());
704 1.1.2.1 rmind mutex_spin_enter(&p->p_stmutex);
705 1.1.2.1 rmind p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
706 1.1.2.1 rmind lwp_lock(l);
707 1.1.2.1 rmind resetpriority(l);
708 1.1.2.1 rmind mutex_spin_exit(&p->p_stmutex);
709 1.1.2.8 yamt if ((l->l_flag & LW_SYSTEM) == 0 && l->l_priority >= PUSER)
710 1.1.2.1 rmind l->l_priority = l->l_usrpri;
711 1.1.2.1 rmind lwp_unlock(l);
712 1.1.2.1 rmind }
713 1.1.2.1 rmind
714 1.1.2.1 rmind /*
715 1.1.2.1 rmind * scheduler_fork_hook:
716 1.1.2.1 rmind *
717 1.1.2.1 rmind * Inherit the parent's scheduler history.
718 1.1.2.1 rmind */
719 1.1.2.1 rmind void
720 1.1.2.1 rmind sched_proc_fork(struct proc *parent, struct proc *child)
721 1.1.2.1 rmind {
722 1.1.2.1 rmind
723 1.1.2.1 rmind LOCK_ASSERT(mutex_owned(&parent->p_smutex));
724 1.1.2.1 rmind
725 1.1.2.1 rmind child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
726 1.1.2.1 rmind child->p_forktime = schedcpu_ticks;
727 1.1.2.1 rmind }
728 1.1.2.1 rmind
729 1.1.2.1 rmind /*
730 1.1.2.1 rmind * scheduler_wait_hook:
731 1.1.2.1 rmind *
732 1.1.2.1 rmind * Chargeback parents for the sins of their children.
733 1.1.2.1 rmind */
734 1.1.2.1 rmind void
735 1.1.2.1 rmind sched_proc_exit(struct proc *parent, struct proc *child)
736 1.1.2.1 rmind {
737 1.1.2.1 rmind fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
738 1.1.2.1 rmind fixpt_t estcpu;
739 1.1.2.1 rmind
740 1.1.2.1 rmind /* XXX Only if parent != init?? */
741 1.1.2.1 rmind
742 1.1.2.1 rmind mutex_spin_enter(&parent->p_stmutex);
743 1.1.2.1 rmind estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
744 1.1.2.1 rmind schedcpu_ticks - child->p_forktime);
745 1.1.2.1 rmind if (child->p_estcpu > estcpu)
746 1.1.2.1 rmind parent->p_estcpu =
747 1.1.2.1 rmind ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
748 1.1.2.1 rmind mutex_spin_exit(&parent->p_stmutex);
749 1.1.2.1 rmind }
750 1.1.2.1 rmind
751 1.1.2.1 rmind void
752 1.1.2.11 rmind sched_enqueue(struct lwp *l, bool ctxswitch)
753 1.1.2.1 rmind {
754 1.1.2.1 rmind
755 1.1.2.16 yamt runqueue_enqueue(&global_queue, l);
756 1.1.2.1 rmind }
757 1.1.2.1 rmind
758 1.1.2.1 rmind /*
759 1.1.2.4 yamt * XXXSMP When LWP dispatch (cpu_switch()) is changed to use sched_dequeue(),
760 1.1.2.1 rmind * drop of the effective priority level from kernel to user needs to be
761 1.1.2.1 rmind * moved here from userret(). The assignment in userret() is currently
762 1.1.2.1 rmind * done unlocked.
763 1.1.2.1 rmind */
764 1.1.2.1 rmind void
765 1.1.2.1 rmind sched_dequeue(struct lwp *l)
766 1.1.2.1 rmind {
767 1.1.2.1 rmind
768 1.1.2.16 yamt runqueue_dequeue(&global_queue, l);
769 1.1.2.1 rmind }
770 1.1.2.1 rmind
771 1.1.2.1 rmind struct lwp *
772 1.1.2.12 rmind sched_nextlwp(struct lwp *l)
773 1.1.2.1 rmind {
774 1.1.2.16 yamt
775 1.1.2.16 yamt return runqueue_nextlwp(&global_queue);
776 1.1.2.1 rmind }
777 1.1.2.1 rmind
778 1.1.2.9 rmind /* Dummy */
779 1.1.2.14 yamt void
780 1.1.2.14 yamt sched_lwp_fork(struct lwp *l)
781 1.1.2.9 rmind {
782 1.1.2.9 rmind
783 1.1.2.9 rmind }
784 1.1.2.9 rmind
785 1.1.2.14 yamt void
786 1.1.2.14 yamt sched_lwp_exit(struct lwp *l)
787 1.1.2.9 rmind {
788 1.1.2.9 rmind
789 1.1.2.9 rmind }
790 1.1.2.9 rmind
791 1.1.2.14 yamt void
792 1.1.2.14 yamt sched_slept(struct lwp *l)
793 1.1.2.9 rmind {
794 1.1.2.9 rmind
795 1.1.2.9 rmind }
796 1.1.2.9 rmind
797 1.1.2.9 rmind /* SysCtl */
798 1.1.2.9 rmind
799 1.1.2.14 yamt SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
800 1.1.2.14 yamt {
801 1.1.2.14 yamt
802 1.1.2.9 rmind sysctl_createv(clog, 0, NULL, NULL,
803 1.1.2.9 rmind CTLFLAG_PERMANENT,
804 1.1.2.9 rmind CTLTYPE_NODE, "kern", NULL,
805 1.1.2.9 rmind NULL, 0, NULL, 0,
806 1.1.2.9 rmind CTL_KERN, CTL_EOL);
807 1.1.2.9 rmind sysctl_createv(clog, 0, NULL, NULL,
808 1.1.2.9 rmind CTLFLAG_PERMANENT,
809 1.1.2.9 rmind CTLTYPE_NODE, "sched",
810 1.1.2.9 rmind SYSCTL_DESCR("Scheduler options"),
811 1.1.2.9 rmind NULL, 0, NULL, 0,
812 1.1.2.9 rmind CTL_KERN, KERN_SCHED, CTL_EOL);
813 1.1.2.9 rmind sysctl_createv(clog, 0, NULL, NULL,
814 1.1.2.9 rmind CTLFLAG_PERMANENT,
815 1.1.2.9 rmind CTLTYPE_STRING, "name", NULL,
816 1.1.2.9 rmind NULL, 0, __UNCONST("4.4BSD"), 0,
817 1.1.2.10 rmind CTL_KERN, KERN_SCHED, CTL_CREATE, CTL_EOL);
818 1.1.2.9 rmind sysctl_createv(clog, 0, NULL, NULL,
819 1.1.2.9 rmind CTLFLAG_PERMANENT,
820 1.1.2.9 rmind CTLTYPE_INT, "ccpu",
821 1.1.2.9 rmind SYSCTL_DESCR("Scheduler exponential decay value"),
822 1.1.2.9 rmind NULL, 0, &ccpu, 0,
823 1.1.2.9 rmind CTL_KERN, KERN_SCHED, CTL_CREATE, CTL_EOL);
824 1.1.2.9 rmind }
825 1.1.2.9 rmind
826 1.1.2.1 rmind #if defined(DDB)
827 1.1.2.1 rmind void
828 1.1.2.1 rmind sched_print_runqueue(void (*pr)(const char *, ...))
829 1.1.2.1 rmind {
830 1.1.2.1 rmind
831 1.1.2.16 yamt runqueue_print(&global_queue, pr);
832 1.1.2.1 rmind }
833 1.1.2.1 rmind #endif /* defined(DDB) */
834