Home | History | Annotate | Line # | Download | only in kern
sched_4bsd.c revision 1.1.2.19
      1  1.1.2.19  rmind /*	$NetBSD: sched_4bsd.c,v 1.1.2.19 2007/03/24 00:43:08 rmind Exp $	*/
      2   1.1.2.1  rmind 
      3   1.1.2.1  rmind /*-
      4   1.1.2.1  rmind  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5   1.1.2.1  rmind  * All rights reserved.
      6   1.1.2.1  rmind  *
      7   1.1.2.1  rmind  * This code is derived from software contributed to The NetBSD Foundation
      8   1.1.2.1  rmind  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9   1.1.2.1  rmind  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
     10   1.1.2.1  rmind  * Daniel Sieger.
     11   1.1.2.1  rmind  *
     12   1.1.2.1  rmind  * Redistribution and use in source and binary forms, with or without
     13   1.1.2.1  rmind  * modification, are permitted provided that the following conditions
     14   1.1.2.1  rmind  * are met:
     15   1.1.2.1  rmind  * 1. Redistributions of source code must retain the above copyright
     16   1.1.2.1  rmind  *    notice, this list of conditions and the following disclaimer.
     17   1.1.2.1  rmind  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.1.2.1  rmind  *    notice, this list of conditions and the following disclaimer in the
     19   1.1.2.1  rmind  *    documentation and/or other materials provided with the distribution.
     20   1.1.2.1  rmind  * 3. All advertising materials mentioning features or use of this software
     21   1.1.2.1  rmind  *    must display the following acknowledgement:
     22   1.1.2.1  rmind  *	This product includes software developed by the NetBSD
     23   1.1.2.1  rmind  *	Foundation, Inc. and its contributors.
     24   1.1.2.1  rmind  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25   1.1.2.1  rmind  *    contributors may be used to endorse or promote products derived
     26   1.1.2.1  rmind  *    from this software without specific prior written permission.
     27   1.1.2.1  rmind  *
     28   1.1.2.1  rmind  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29   1.1.2.1  rmind  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30   1.1.2.1  rmind  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31   1.1.2.1  rmind  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32   1.1.2.1  rmind  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33   1.1.2.1  rmind  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34   1.1.2.1  rmind  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35   1.1.2.1  rmind  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36   1.1.2.1  rmind  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37   1.1.2.1  rmind  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38   1.1.2.1  rmind  * POSSIBILITY OF SUCH DAMAGE.
     39   1.1.2.1  rmind  */
     40   1.1.2.1  rmind 
     41   1.1.2.1  rmind /*-
     42   1.1.2.1  rmind  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43   1.1.2.1  rmind  *	The Regents of the University of California.  All rights reserved.
     44   1.1.2.1  rmind  * (c) UNIX System Laboratories, Inc.
     45   1.1.2.1  rmind  * All or some portions of this file are derived from material licensed
     46   1.1.2.1  rmind  * to the University of California by American Telephone and Telegraph
     47   1.1.2.1  rmind  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48   1.1.2.1  rmind  * the permission of UNIX System Laboratories, Inc.
     49   1.1.2.1  rmind  *
     50   1.1.2.1  rmind  * Redistribution and use in source and binary forms, with or without
     51   1.1.2.1  rmind  * modification, are permitted provided that the following conditions
     52   1.1.2.1  rmind  * are met:
     53   1.1.2.1  rmind  * 1. Redistributions of source code must retain the above copyright
     54   1.1.2.1  rmind  *    notice, this list of conditions and the following disclaimer.
     55   1.1.2.1  rmind  * 2. Redistributions in binary form must reproduce the above copyright
     56   1.1.2.1  rmind  *    notice, this list of conditions and the following disclaimer in the
     57   1.1.2.1  rmind  *    documentation and/or other materials provided with the distribution.
     58   1.1.2.1  rmind  * 3. Neither the name of the University nor the names of its contributors
     59   1.1.2.1  rmind  *    may be used to endorse or promote products derived from this software
     60   1.1.2.1  rmind  *    without specific prior written permission.
     61   1.1.2.1  rmind  *
     62   1.1.2.1  rmind  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63   1.1.2.1  rmind  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64   1.1.2.1  rmind  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65   1.1.2.1  rmind  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66   1.1.2.1  rmind  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67   1.1.2.1  rmind  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68   1.1.2.1  rmind  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69   1.1.2.1  rmind  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70   1.1.2.1  rmind  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71   1.1.2.1  rmind  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72   1.1.2.1  rmind  * SUCH DAMAGE.
     73   1.1.2.1  rmind  *
     74   1.1.2.1  rmind  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75   1.1.2.1  rmind  */
     76   1.1.2.1  rmind 
     77   1.1.2.1  rmind #include <sys/cdefs.h>
     78  1.1.2.19  rmind __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.1.2.19 2007/03/24 00:43:08 rmind Exp $");
     79   1.1.2.1  rmind 
     80   1.1.2.1  rmind #include "opt_ddb.h"
     81   1.1.2.1  rmind #include "opt_lockdebug.h"
     82   1.1.2.1  rmind #include "opt_perfctrs.h"
     83   1.1.2.1  rmind 
     84   1.1.2.1  rmind #define	__MUTEX_PRIVATE
     85   1.1.2.1  rmind 
     86   1.1.2.1  rmind #include <sys/param.h>
     87   1.1.2.1  rmind #include <sys/systm.h>
     88   1.1.2.1  rmind #include <sys/callout.h>
     89   1.1.2.6   yamt #include <sys/cpu.h>
     90   1.1.2.1  rmind #include <sys/proc.h>
     91   1.1.2.1  rmind #include <sys/kernel.h>
     92   1.1.2.1  rmind #include <sys/signalvar.h>
     93   1.1.2.1  rmind #include <sys/resourcevar.h>
     94   1.1.2.1  rmind #include <sys/sched.h>
     95   1.1.2.9  rmind #include <sys/sysctl.h>
     96   1.1.2.1  rmind #include <sys/kauth.h>
     97   1.1.2.1  rmind #include <sys/lockdebug.h>
     98   1.1.2.1  rmind 
     99   1.1.2.1  rmind #include <uvm/uvm_extern.h>
    100   1.1.2.1  rmind 
    101   1.1.2.1  rmind /*
    102   1.1.2.1  rmind  * Run queues.
    103   1.1.2.1  rmind  *
    104   1.1.2.1  rmind  * We have 32 run queues in descending priority of 0..31.  We maintain
    105   1.1.2.1  rmind  * a bitmask of non-empty queues in order speed up finding the first
    106   1.1.2.1  rmind  * runnable process.  The bitmask is maintained only by machine-dependent
    107   1.1.2.1  rmind  * code, allowing the most efficient instructions to be used to find the
    108   1.1.2.1  rmind  * first non-empty queue.
    109   1.1.2.1  rmind  */
    110   1.1.2.1  rmind 
    111   1.1.2.1  rmind #define	RUNQUE_NQS		32      /* number of runqueues */
    112   1.1.2.1  rmind #define	PPQ	(128 / RUNQUE_NQS)	/* priorities per queue */
    113   1.1.2.1  rmind 
    114  1.1.2.16   yamt typedef struct subqueue {
    115  1.1.2.16   yamt 	TAILQ_HEAD(, lwp) sq_queue;
    116  1.1.2.16   yamt } subqueue_t;
    117  1.1.2.16   yamt typedef struct runqueue {
    118  1.1.2.16   yamt 	subqueue_t rq_subqueues[RUNQUE_NQS];	/* run queues */
    119  1.1.2.16   yamt 	uint32_t rq_bitmap;	/* bitmap of non-empty queues */
    120  1.1.2.16   yamt } runqueue_t;
    121  1.1.2.16   yamt static runqueue_t global_queue;
    122   1.1.2.1  rmind 
    123  1.1.2.15   yamt static void schedcpu(void *);
    124  1.1.2.15   yamt static void updatepri(struct lwp *);
    125  1.1.2.15   yamt static void resetpriority(struct lwp *);
    126  1.1.2.15   yamt static void resetprocpriority(struct proc *);
    127   1.1.2.1  rmind 
    128   1.1.2.1  rmind struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
    129   1.1.2.1  rmind static unsigned int schedcpu_ticks;
    130  1.1.2.19  rmind 
    131  1.1.2.19  rmind /* The global scheduler state */
    132  1.1.2.19  rmind kmutex_t sched_mutex;
    133  1.1.2.19  rmind 
    134  1.1.2.19  rmind /* Number of hardclock ticks per sched_tick() */
    135  1.1.2.19  rmind int rrticks;
    136   1.1.2.1  rmind 
    137   1.1.2.1  rmind /*
    138   1.1.2.1  rmind  * Force switch among equal priority processes every 100ms.
    139   1.1.2.1  rmind  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    140   1.1.2.1  rmind  */
    141   1.1.2.1  rmind /* ARGSUSED */
    142   1.1.2.1  rmind void
    143   1.1.2.1  rmind sched_tick(struct cpu_info *ci)
    144   1.1.2.1  rmind {
    145   1.1.2.1  rmind 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    146   1.1.2.1  rmind 
    147   1.1.2.1  rmind 	spc->spc_ticks = rrticks;
    148   1.1.2.1  rmind 
    149   1.1.2.1  rmind 	if (!CURCPU_IDLE_P()) {
    150   1.1.2.1  rmind 		if (spc->spc_flags & SPCF_SEENRR) {
    151   1.1.2.1  rmind 			/*
    152   1.1.2.1  rmind 			 * The process has already been through a roundrobin
    153   1.1.2.1  rmind 			 * without switching and may be hogging the CPU.
    154   1.1.2.1  rmind 			 * Indicate that the process should yield.
    155   1.1.2.1  rmind 			 */
    156   1.1.2.1  rmind 			spc->spc_flags |= SPCF_SHOULDYIELD;
    157   1.1.2.1  rmind 		} else
    158   1.1.2.1  rmind 			spc->spc_flags |= SPCF_SEENRR;
    159   1.1.2.1  rmind 	}
    160   1.1.2.7   yamt 	cpu_need_resched(curcpu(), 0);
    161   1.1.2.1  rmind }
    162   1.1.2.1  rmind 
    163   1.1.2.1  rmind #define	NICE_WEIGHT 2			/* priorities per nice level */
    164   1.1.2.1  rmind 
    165   1.1.2.1  rmind #define	ESTCPU_SHIFT	11
    166   1.1.2.1  rmind #define	ESTCPU_MAX	((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
    167   1.1.2.1  rmind #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    168   1.1.2.1  rmind 
    169   1.1.2.1  rmind /*
    170   1.1.2.1  rmind  * Constants for digital decay and forget:
    171   1.1.2.1  rmind  *	90% of (p_estcpu) usage in 5 * loadav time
    172   1.1.2.1  rmind  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    173   1.1.2.1  rmind  *          Note that, as ps(1) mentions, this can let percentages
    174   1.1.2.1  rmind  *          total over 100% (I've seen 137.9% for 3 processes).
    175   1.1.2.1  rmind  *
    176   1.1.2.1  rmind  * Note that hardclock updates p_estcpu and p_cpticks independently.
    177   1.1.2.1  rmind  *
    178   1.1.2.1  rmind  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    179   1.1.2.1  rmind  * That is, the system wants to compute a value of decay such
    180   1.1.2.1  rmind  * that the following for loop:
    181   1.1.2.1  rmind  * 	for (i = 0; i < (5 * loadavg); i++)
    182   1.1.2.1  rmind  * 		p_estcpu *= decay;
    183   1.1.2.1  rmind  * will compute
    184   1.1.2.1  rmind  * 	p_estcpu *= 0.1;
    185   1.1.2.1  rmind  * for all values of loadavg:
    186   1.1.2.1  rmind  *
    187   1.1.2.1  rmind  * Mathematically this loop can be expressed by saying:
    188   1.1.2.1  rmind  * 	decay ** (5 * loadavg) ~= .1
    189   1.1.2.1  rmind  *
    190   1.1.2.1  rmind  * The system computes decay as:
    191   1.1.2.1  rmind  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    192   1.1.2.1  rmind  *
    193   1.1.2.1  rmind  * We wish to prove that the system's computation of decay
    194   1.1.2.1  rmind  * will always fulfill the equation:
    195   1.1.2.1  rmind  * 	decay ** (5 * loadavg) ~= .1
    196   1.1.2.1  rmind  *
    197   1.1.2.1  rmind  * If we compute b as:
    198   1.1.2.1  rmind  * 	b = 2 * loadavg
    199   1.1.2.1  rmind  * then
    200   1.1.2.1  rmind  * 	decay = b / (b + 1)
    201   1.1.2.1  rmind  *
    202   1.1.2.1  rmind  * We now need to prove two things:
    203   1.1.2.1  rmind  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    204   1.1.2.1  rmind  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    205   1.1.2.1  rmind  *
    206   1.1.2.1  rmind  * Facts:
    207   1.1.2.1  rmind  *         For x close to zero, exp(x) =~ 1 + x, since
    208   1.1.2.1  rmind  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    209   1.1.2.1  rmind  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    210   1.1.2.1  rmind  *         For x close to zero, ln(1+x) =~ x, since
    211   1.1.2.1  rmind  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    212   1.1.2.1  rmind  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    213   1.1.2.1  rmind  *         ln(.1) =~ -2.30
    214   1.1.2.1  rmind  *
    215   1.1.2.1  rmind  * Proof of (1):
    216   1.1.2.1  rmind  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    217   1.1.2.1  rmind  *	solving for factor,
    218   1.1.2.1  rmind  *      ln(factor) =~ (-2.30/5*loadav), or
    219   1.1.2.1  rmind  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    220   1.1.2.1  rmind  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    221   1.1.2.1  rmind  *
    222   1.1.2.1  rmind  * Proof of (2):
    223   1.1.2.1  rmind  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    224   1.1.2.1  rmind  *	solving for power,
    225   1.1.2.1  rmind  *      power*ln(b/(b+1)) =~ -2.30, or
    226   1.1.2.1  rmind  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    227   1.1.2.1  rmind  *
    228   1.1.2.1  rmind  * Actual power values for the implemented algorithm are as follows:
    229   1.1.2.1  rmind  *      loadav: 1       2       3       4
    230   1.1.2.1  rmind  *      power:  5.68    10.32   14.94   19.55
    231   1.1.2.1  rmind  */
    232   1.1.2.1  rmind 
    233   1.1.2.1  rmind /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    234   1.1.2.1  rmind #define	loadfactor(loadav)	(2 * (loadav))
    235   1.1.2.1  rmind 
    236   1.1.2.1  rmind static fixpt_t
    237   1.1.2.1  rmind decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    238   1.1.2.1  rmind {
    239   1.1.2.1  rmind 
    240   1.1.2.1  rmind 	if (estcpu == 0) {
    241   1.1.2.1  rmind 		return 0;
    242   1.1.2.1  rmind 	}
    243   1.1.2.1  rmind 
    244   1.1.2.1  rmind #if !defined(_LP64)
    245   1.1.2.1  rmind 	/* avoid 64bit arithmetics. */
    246   1.1.2.1  rmind #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    247   1.1.2.1  rmind 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    248   1.1.2.1  rmind 		return estcpu * loadfac / (loadfac + FSCALE);
    249   1.1.2.1  rmind 	}
    250   1.1.2.1  rmind #endif /* !defined(_LP64) */
    251   1.1.2.1  rmind 
    252   1.1.2.1  rmind 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    253   1.1.2.1  rmind }
    254   1.1.2.1  rmind 
    255   1.1.2.1  rmind /*
    256   1.1.2.1  rmind  * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
    257   1.1.2.1  rmind  * sleeping for at least seven times the loadfactor will decay p_estcpu to
    258   1.1.2.1  rmind  * less than (1 << ESTCPU_SHIFT).
    259   1.1.2.1  rmind  *
    260   1.1.2.1  rmind  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    261   1.1.2.1  rmind  */
    262   1.1.2.1  rmind static fixpt_t
    263   1.1.2.1  rmind decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    264   1.1.2.1  rmind {
    265   1.1.2.1  rmind 
    266   1.1.2.1  rmind 	if ((n << FSHIFT) >= 7 * loadfac) {
    267   1.1.2.1  rmind 		return 0;
    268   1.1.2.1  rmind 	}
    269   1.1.2.1  rmind 
    270   1.1.2.1  rmind 	while (estcpu != 0 && n > 1) {
    271   1.1.2.1  rmind 		estcpu = decay_cpu(loadfac, estcpu);
    272   1.1.2.1  rmind 		n--;
    273   1.1.2.1  rmind 	}
    274   1.1.2.1  rmind 
    275   1.1.2.1  rmind 	return estcpu;
    276   1.1.2.1  rmind }
    277   1.1.2.1  rmind 
    278   1.1.2.1  rmind /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
    279   1.1.2.1  rmind fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
    280   1.1.2.1  rmind 
    281   1.1.2.1  rmind /*
    282   1.1.2.1  rmind  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
    283   1.1.2.1  rmind  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
    284   1.1.2.1  rmind  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
    285   1.1.2.1  rmind  *
    286   1.1.2.1  rmind  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
    287   1.1.2.1  rmind  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
    288   1.1.2.1  rmind  *
    289   1.1.2.1  rmind  * If you dont want to bother with the faster/more-accurate formula, you
    290   1.1.2.1  rmind  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
    291   1.1.2.1  rmind  * (more general) method of calculating the %age of CPU used by a process.
    292   1.1.2.1  rmind  */
    293   1.1.2.1  rmind #define	CCPU_SHIFT	11
    294   1.1.2.1  rmind 
    295   1.1.2.1  rmind /*
    296   1.1.2.1  rmind  * schedcpu:
    297   1.1.2.1  rmind  *
    298   1.1.2.1  rmind  *	Recompute process priorities, every hz ticks.
    299   1.1.2.1  rmind  *
    300   1.1.2.1  rmind  *	XXXSMP This needs to be reorganised in order to reduce the locking
    301   1.1.2.1  rmind  *	burden.
    302   1.1.2.1  rmind  */
    303   1.1.2.1  rmind /* ARGSUSED */
    304  1.1.2.15   yamt static void
    305   1.1.2.1  rmind schedcpu(void *arg)
    306   1.1.2.1  rmind {
    307   1.1.2.1  rmind 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    308   1.1.2.1  rmind 	struct rlimit *rlim;
    309   1.1.2.1  rmind 	struct lwp *l;
    310   1.1.2.1  rmind 	struct proc *p;
    311   1.1.2.1  rmind 	int minslp, clkhz, sig;
    312   1.1.2.1  rmind 	long runtm;
    313   1.1.2.1  rmind 
    314   1.1.2.1  rmind 	schedcpu_ticks++;
    315   1.1.2.1  rmind 
    316   1.1.2.1  rmind 	mutex_enter(&proclist_mutex);
    317   1.1.2.1  rmind 	PROCLIST_FOREACH(p, &allproc) {
    318   1.1.2.1  rmind 		/*
    319   1.1.2.1  rmind 		 * Increment time in/out of memory and sleep time (if
    320   1.1.2.1  rmind 		 * sleeping).  We ignore overflow; with 16-bit int's
    321   1.1.2.1  rmind 		 * (remember them?) overflow takes 45 days.
    322   1.1.2.1  rmind 		 */
    323   1.1.2.1  rmind 		minslp = 2;
    324   1.1.2.1  rmind 		mutex_enter(&p->p_smutex);
    325   1.1.2.1  rmind 		runtm = p->p_rtime.tv_sec;
    326   1.1.2.1  rmind 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    327   1.1.2.8   yamt 			if ((l->l_flag & LW_IDLE) != 0)
    328   1.1.2.1  rmind 				continue;
    329   1.1.2.1  rmind 			lwp_lock(l);
    330   1.1.2.1  rmind 			runtm += l->l_rtime.tv_sec;
    331   1.1.2.1  rmind 			l->l_swtime++;
    332   1.1.2.1  rmind 			if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    333   1.1.2.1  rmind 			    l->l_stat == LSSUSPENDED) {
    334   1.1.2.1  rmind 				l->l_slptime++;
    335   1.1.2.1  rmind 				minslp = min(minslp, l->l_slptime);
    336   1.1.2.1  rmind 			} else
    337   1.1.2.1  rmind 				minslp = 0;
    338   1.1.2.1  rmind 			lwp_unlock(l);
    339   1.1.2.1  rmind 		}
    340   1.1.2.1  rmind 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
    341   1.1.2.1  rmind 
    342   1.1.2.1  rmind 		/*
    343   1.1.2.1  rmind 		 * Check if the process exceeds its CPU resource allocation.
    344   1.1.2.1  rmind 		 * If over max, kill it.
    345   1.1.2.1  rmind 		 */
    346   1.1.2.1  rmind 		rlim = &p->p_rlimit[RLIMIT_CPU];
    347   1.1.2.1  rmind 		sig = 0;
    348   1.1.2.1  rmind 		if (runtm >= rlim->rlim_cur) {
    349   1.1.2.1  rmind 			if (runtm >= rlim->rlim_max)
    350   1.1.2.1  rmind 				sig = SIGKILL;
    351   1.1.2.1  rmind 			else {
    352   1.1.2.1  rmind 				sig = SIGXCPU;
    353   1.1.2.1  rmind 				if (rlim->rlim_cur < rlim->rlim_max)
    354   1.1.2.1  rmind 					rlim->rlim_cur += 5;
    355   1.1.2.1  rmind 			}
    356   1.1.2.1  rmind 		}
    357   1.1.2.1  rmind 
    358   1.1.2.1  rmind 		/*
    359   1.1.2.1  rmind 		 * If the process has run for more than autonicetime, reduce
    360   1.1.2.1  rmind 		 * priority to give others a chance.
    361   1.1.2.1  rmind 		 */
    362   1.1.2.1  rmind 		if (autonicetime && runtm > autonicetime && p->p_nice == NZERO
    363   1.1.2.1  rmind 		    && kauth_cred_geteuid(p->p_cred)) {
    364   1.1.2.1  rmind 			mutex_spin_enter(&p->p_stmutex);
    365   1.1.2.1  rmind 			p->p_nice = autoniceval + NZERO;
    366   1.1.2.1  rmind 			resetprocpriority(p);
    367   1.1.2.1  rmind 			mutex_spin_exit(&p->p_stmutex);
    368   1.1.2.1  rmind 		}
    369   1.1.2.1  rmind 
    370   1.1.2.1  rmind 		/*
    371   1.1.2.1  rmind 		 * If the process has slept the entire second,
    372   1.1.2.1  rmind 		 * stop recalculating its priority until it wakes up.
    373   1.1.2.1  rmind 		 */
    374   1.1.2.1  rmind 		if (minslp <= 1) {
    375   1.1.2.1  rmind 			/*
    376   1.1.2.1  rmind 			 * p_pctcpu is only for ps.
    377   1.1.2.1  rmind 			 */
    378   1.1.2.1  rmind 			mutex_spin_enter(&p->p_stmutex);
    379   1.1.2.1  rmind 			clkhz = stathz != 0 ? stathz : hz;
    380   1.1.2.1  rmind #if	(FSHIFT >= CCPU_SHIFT)
    381   1.1.2.1  rmind 			p->p_pctcpu += (clkhz == 100)?
    382   1.1.2.1  rmind 			    ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
    383   1.1.2.1  rmind 			    100 * (((fixpt_t) p->p_cpticks)
    384   1.1.2.1  rmind 			    << (FSHIFT - CCPU_SHIFT)) / clkhz;
    385   1.1.2.1  rmind #else
    386   1.1.2.1  rmind 			p->p_pctcpu += ((FSCALE - ccpu) *
    387   1.1.2.1  rmind 			    (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
    388   1.1.2.1  rmind #endif
    389   1.1.2.1  rmind 			p->p_cpticks = 0;
    390   1.1.2.1  rmind 			p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
    391   1.1.2.1  rmind 
    392   1.1.2.1  rmind 			LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    393   1.1.2.8   yamt 				if ((l->l_flag & LW_IDLE) != 0)
    394   1.1.2.1  rmind 					continue;
    395   1.1.2.1  rmind 				lwp_lock(l);
    396   1.1.2.1  rmind 				if (l->l_slptime <= 1 &&
    397   1.1.2.1  rmind 				    l->l_priority >= PUSER)
    398   1.1.2.1  rmind 					resetpriority(l);
    399   1.1.2.1  rmind 				lwp_unlock(l);
    400   1.1.2.1  rmind 			}
    401   1.1.2.1  rmind 			mutex_spin_exit(&p->p_stmutex);
    402   1.1.2.1  rmind 		}
    403   1.1.2.1  rmind 
    404   1.1.2.1  rmind 		mutex_exit(&p->p_smutex);
    405   1.1.2.1  rmind 		if (sig) {
    406   1.1.2.1  rmind 			psignal(p, sig);
    407   1.1.2.1  rmind 		}
    408   1.1.2.1  rmind 	}
    409   1.1.2.1  rmind 	mutex_exit(&proclist_mutex);
    410   1.1.2.1  rmind 	uvm_meter();
    411   1.1.2.1  rmind 	wakeup((caddr_t)&lbolt);
    412   1.1.2.1  rmind 	callout_schedule(&schedcpu_ch, hz);
    413   1.1.2.1  rmind }
    414   1.1.2.1  rmind 
    415   1.1.2.1  rmind /*
    416   1.1.2.1  rmind  * Recalculate the priority of a process after it has slept for a while.
    417   1.1.2.1  rmind  */
    418  1.1.2.15   yamt static void
    419   1.1.2.1  rmind updatepri(struct lwp *l)
    420   1.1.2.1  rmind {
    421   1.1.2.1  rmind 	struct proc *p = l->l_proc;
    422   1.1.2.1  rmind 	fixpt_t loadfac;
    423   1.1.2.1  rmind 
    424   1.1.2.1  rmind 	LOCK_ASSERT(lwp_locked(l, NULL));
    425   1.1.2.1  rmind 	KASSERT(l->l_slptime > 1);
    426   1.1.2.1  rmind 
    427   1.1.2.1  rmind 	loadfac = loadfactor(averunnable.ldavg[0]);
    428   1.1.2.1  rmind 
    429   1.1.2.1  rmind 	l->l_slptime--; /* the first time was done in schedcpu */
    430   1.1.2.1  rmind 	/* XXX NJWLWP */
    431   1.1.2.1  rmind 	/* XXXSMP occasionally unlocked, should be per-LWP */
    432   1.1.2.1  rmind 	p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
    433   1.1.2.1  rmind 	resetpriority(l);
    434   1.1.2.1  rmind }
    435   1.1.2.1  rmind 
    436   1.1.2.1  rmind /*
    437  1.1.2.16   yamt  * On some architectures, it's faster to use a MSB ordering for the priorites
    438  1.1.2.16   yamt  * than the traditional LSB ordering.
    439  1.1.2.16   yamt  */
    440  1.1.2.16   yamt #ifdef __HAVE_BIGENDIAN_BITOPS
    441  1.1.2.16   yamt #define	RQMASK(n) (0x80000000 >> (n))
    442  1.1.2.16   yamt #else
    443  1.1.2.16   yamt #define	RQMASK(n) (0x00000001 << (n))
    444  1.1.2.16   yamt #endif
    445  1.1.2.16   yamt 
    446  1.1.2.16   yamt /*
    447  1.1.2.16   yamt  * The primitives that manipulate the run queues.  whichqs tells which
    448  1.1.2.16   yamt  * of the 32 queues qs have processes in them.  sched_enqueue() puts processes
    449  1.1.2.16   yamt  * into queues, sched_dequeue removes them from queues.  The running process is
    450  1.1.2.16   yamt  * on no queue, other processes are on a queue related to p->p_priority,
    451  1.1.2.16   yamt  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
    452  1.1.2.16   yamt  * available queues.
    453  1.1.2.16   yamt  */
    454  1.1.2.16   yamt #ifdef RQDEBUG
    455  1.1.2.16   yamt static void
    456  1.1.2.16   yamt runqueue_check(const runqueue_t *rq, int whichq, struct lwp *l)
    457  1.1.2.16   yamt {
    458  1.1.2.16   yamt 	const subqueue_t * const sq = &rq->rq_subqueues[whichq];
    459  1.1.2.16   yamt 	const uint32_t bitmap = rq->rq_bitmap;
    460  1.1.2.16   yamt 	struct lwp *l2;
    461  1.1.2.16   yamt 	int found = 0;
    462  1.1.2.16   yamt 	int die = 0;
    463  1.1.2.16   yamt 	int empty = 1;
    464  1.1.2.16   yamt 
    465  1.1.2.16   yamt 	TAILQ_FOREACH(l2, &sq->sq_queue, l_runq) {
    466  1.1.2.16   yamt 		if (l2->l_stat != LSRUN) {
    467  1.1.2.16   yamt 			printf("runqueue_check[%d]: lwp %p state (%d) "
    468  1.1.2.16   yamt 			    " != LSRUN\n", whichq, l2, l2->l_stat);
    469  1.1.2.16   yamt 		}
    470  1.1.2.16   yamt 		if (l2 == l)
    471  1.1.2.16   yamt 			found = 1;
    472  1.1.2.16   yamt 		empty = 0;
    473  1.1.2.16   yamt 	}
    474  1.1.2.16   yamt 	if (empty && (bitmap & RQMASK(whichq)) != 0) {
    475  1.1.2.16   yamt 		printf("runqueue_check[%d]: bit set for empty run-queue %p\n",
    476  1.1.2.16   yamt 		    whichq, rq);
    477  1.1.2.16   yamt 		die = 1;
    478  1.1.2.16   yamt 	} else if (!empty && (bitmap & RQMASK(whichq)) == 0) {
    479  1.1.2.16   yamt 		printf("runqueue_check[%d]: bit clear for non-empty "
    480  1.1.2.16   yamt 		    "run-queue %p\n", whichq, rq);
    481  1.1.2.16   yamt 		die = 1;
    482  1.1.2.16   yamt 	}
    483  1.1.2.16   yamt 	if (l != NULL && (bitmap & RQMASK(whichq)) == 0) {
    484  1.1.2.16   yamt 		printf("runqueue_check[%d]: bit clear for active lwp %p\n",
    485  1.1.2.16   yamt 		    whichq, l);
    486  1.1.2.16   yamt 		die = 1;
    487  1.1.2.16   yamt 	}
    488  1.1.2.16   yamt 	if (l != NULL && empty) {
    489  1.1.2.16   yamt 		printf("runqueue_check[%d]: empty run-queue %p with "
    490  1.1.2.16   yamt 		    "active lwp %p\n", whichq, rq, l);
    491  1.1.2.16   yamt 		die = 1;
    492  1.1.2.16   yamt 	}
    493  1.1.2.16   yamt 	if (l != NULL && !found) {
    494  1.1.2.16   yamt 		printf("runqueue_check[%d]: lwp %p not in runqueue %p!",
    495  1.1.2.16   yamt 		    whichq, l, rq);
    496  1.1.2.16   yamt 		die = 1;
    497  1.1.2.16   yamt 	}
    498  1.1.2.16   yamt 	if (die)
    499  1.1.2.16   yamt 		panic("runqueue_check: inconsistency found");
    500  1.1.2.16   yamt }
    501  1.1.2.17   yamt #else /* RQDEBUG */
    502  1.1.2.17   yamt #define	runqueue_check(a, b, c)	/* nothing */
    503  1.1.2.16   yamt #endif /* RQDEBUG */
    504  1.1.2.16   yamt 
    505  1.1.2.16   yamt static void
    506  1.1.2.16   yamt runqueue_init(runqueue_t *rq)
    507  1.1.2.16   yamt {
    508  1.1.2.16   yamt 	int i;
    509  1.1.2.16   yamt 
    510  1.1.2.16   yamt 	for (i = 0; i < RUNQUE_NQS; i++)
    511  1.1.2.16   yamt 		TAILQ_INIT(&rq->rq_subqueues[i].sq_queue);
    512  1.1.2.16   yamt }
    513  1.1.2.16   yamt 
    514  1.1.2.16   yamt static void
    515  1.1.2.16   yamt runqueue_enqueue(runqueue_t *rq, struct lwp *l)
    516  1.1.2.16   yamt {
    517  1.1.2.16   yamt 	subqueue_t *sq;
    518  1.1.2.16   yamt 	const int whichq = lwp_eprio(l) / PPQ;
    519  1.1.2.16   yamt 
    520  1.1.2.19  rmind 	LOCK_ASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    521  1.1.2.16   yamt 
    522  1.1.2.16   yamt 	runqueue_check(rq, whichq, NULL);
    523  1.1.2.16   yamt 	rq->rq_bitmap |= RQMASK(whichq);
    524  1.1.2.16   yamt 	sq = &rq->rq_subqueues[whichq];
    525  1.1.2.16   yamt 	TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_runq);
    526  1.1.2.16   yamt 	runqueue_check(rq, whichq, l);
    527  1.1.2.16   yamt }
    528  1.1.2.16   yamt 
    529  1.1.2.16   yamt static void
    530  1.1.2.16   yamt runqueue_dequeue(runqueue_t *rq, struct lwp *l)
    531  1.1.2.16   yamt {
    532  1.1.2.16   yamt 	subqueue_t *sq;
    533  1.1.2.16   yamt 	const int whichq = lwp_eprio(l) / PPQ;
    534  1.1.2.16   yamt 
    535  1.1.2.19  rmind 	LOCK_ASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    536  1.1.2.16   yamt 
    537  1.1.2.16   yamt 	runqueue_check(rq, whichq, l);
    538  1.1.2.16   yamt 	KASSERT((rq->rq_bitmap & RQMASK(whichq)) != 0);
    539  1.1.2.16   yamt 	sq = &rq->rq_subqueues[whichq];
    540  1.1.2.16   yamt 	TAILQ_REMOVE(&sq->sq_queue, l, l_runq);
    541  1.1.2.16   yamt 	if (TAILQ_EMPTY(&sq->sq_queue))
    542  1.1.2.16   yamt 		rq->rq_bitmap &= ~RQMASK(whichq);
    543  1.1.2.16   yamt 	runqueue_check(rq, whichq, NULL);
    544  1.1.2.16   yamt }
    545  1.1.2.16   yamt 
    546  1.1.2.16   yamt static struct lwp *
    547  1.1.2.16   yamt runqueue_nextlwp(runqueue_t *rq)
    548  1.1.2.16   yamt {
    549  1.1.2.16   yamt 	const uint32_t bitmap = rq->rq_bitmap;
    550  1.1.2.16   yamt 	int whichq;
    551  1.1.2.16   yamt 
    552  1.1.2.16   yamt 	if (bitmap == 0) {
    553  1.1.2.16   yamt 		return NULL;
    554  1.1.2.16   yamt 	}
    555  1.1.2.16   yamt #ifdef __HAVE_BIGENDIAN_BITOPS
    556  1.1.2.16   yamt 	/* XXX should introduce a fast "fls" function. */
    557  1.1.2.16   yamt 	for (whichq = 0; ; whichq++) {
    558  1.1.2.16   yamt 		if ((bitmap & RQMASK(whichq)) != 0) {
    559  1.1.2.16   yamt 			break;
    560  1.1.2.16   yamt 		}
    561  1.1.2.16   yamt 	}
    562  1.1.2.16   yamt #else
    563  1.1.2.16   yamt 	whichq = ffs(bitmap) - 1;
    564  1.1.2.16   yamt #endif
    565  1.1.2.16   yamt 	return TAILQ_FIRST(&rq->rq_subqueues[whichq].sq_queue);
    566  1.1.2.16   yamt }
    567  1.1.2.16   yamt 
    568  1.1.2.16   yamt #if defined(DDB)
    569  1.1.2.16   yamt static void
    570  1.1.2.16   yamt runqueue_print(const runqueue_t *rq, void (*pr)(const char *, ...))
    571  1.1.2.16   yamt {
    572  1.1.2.16   yamt 	const uint32_t bitmap = rq->rq_bitmap;
    573  1.1.2.16   yamt 	struct lwp *l;
    574  1.1.2.16   yamt 	int i, first;
    575  1.1.2.16   yamt 
    576  1.1.2.16   yamt 	for (i = 0; i < RUNQUE_NQS; i++) {
    577  1.1.2.16   yamt 		const subqueue_t *sq;
    578  1.1.2.16   yamt 		first = 1;
    579  1.1.2.16   yamt 		sq = &rq->rq_subqueues[i];
    580  1.1.2.16   yamt 		TAILQ_FOREACH(l, &sq->sq_queue, l_runq) {
    581  1.1.2.16   yamt 			if (first) {
    582  1.1.2.16   yamt 				(*pr)("%c%d",
    583  1.1.2.16   yamt 				    (bitmap & RQMASK(i)) ? ' ' : '!', i);
    584  1.1.2.16   yamt 				first = 0;
    585  1.1.2.16   yamt 			}
    586  1.1.2.16   yamt 			(*pr)("\t%d.%d (%s) pri=%d usrpri=%d\n",
    587  1.1.2.16   yamt 			    l->l_proc->p_pid,
    588  1.1.2.16   yamt 			    l->l_lid, l->l_proc->p_comm,
    589  1.1.2.16   yamt 			    (int)l->l_priority, (int)l->l_usrpri);
    590  1.1.2.16   yamt 		}
    591  1.1.2.16   yamt 	}
    592  1.1.2.16   yamt }
    593  1.1.2.16   yamt #endif /* defined(DDB) */
    594  1.1.2.16   yamt #undef RQMASK
    595  1.1.2.16   yamt 
    596  1.1.2.16   yamt /*
    597   1.1.2.1  rmind  * Initialize the (doubly-linked) run queues
    598   1.1.2.1  rmind  * to be empty.
    599   1.1.2.1  rmind  */
    600   1.1.2.1  rmind void
    601   1.1.2.1  rmind sched_rqinit()
    602   1.1.2.1  rmind {
    603  1.1.2.19  rmind #ifdef MULTIPROCESSOR
    604  1.1.2.19  rmind 	struct cpu_info *ci;
    605  1.1.2.19  rmind 	CPU_INFO_ITERATOR cii;
    606  1.1.2.19  rmind #endif
    607   1.1.2.1  rmind 
    608  1.1.2.16   yamt 	runqueue_init(&global_queue);
    609   1.1.2.1  rmind 	mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
    610  1.1.2.19  rmind #ifdef MULTIPROCESSOR
    611  1.1.2.19  rmind 	for (CPU_INFO_FOREACH(cii, ci))
    612  1.1.2.19  rmind 		ci->ci_schedstate.spc_mutex = &sched_mutex;
    613  1.1.2.19  rmind #else
    614  1.1.2.19  rmind 	curcpu()->ci_schedstate.spc_mutex = &sched_mutex;
    615  1.1.2.19  rmind #endif
    616  1.1.2.19  rmind 	/* Initialize the lock pointer for lwp0 */
    617  1.1.2.19  rmind 	lwp0.l_mutex = &sched_mutex;
    618   1.1.2.1  rmind }
    619   1.1.2.1  rmind 
    620   1.1.2.1  rmind void
    621   1.1.2.1  rmind sched_setup()
    622   1.1.2.1  rmind {
    623  1.1.2.18   yamt 
    624   1.1.2.1  rmind 	rrticks = hz / 10;
    625   1.1.2.1  rmind 	schedcpu(NULL);
    626   1.1.2.1  rmind }
    627   1.1.2.1  rmind 
    628   1.1.2.1  rmind void
    629   1.1.2.1  rmind sched_setrunnable(struct lwp *l)
    630   1.1.2.1  rmind {
    631  1.1.2.16   yamt 
    632   1.1.2.1  rmind  	if (l->l_slptime > 1)
    633   1.1.2.1  rmind  		updatepri(l);
    634   1.1.2.1  rmind }
    635   1.1.2.1  rmind 
    636   1.1.2.9  rmind bool
    637   1.1.2.1  rmind sched_curcpu_runnable_p(void)
    638   1.1.2.1  rmind {
    639   1.1.2.1  rmind 
    640  1.1.2.16   yamt 	return global_queue.rq_bitmap != 0;
    641   1.1.2.1  rmind }
    642   1.1.2.1  rmind 
    643   1.1.2.1  rmind void
    644   1.1.2.1  rmind sched_nice(struct proc *chgp, int n)
    645   1.1.2.1  rmind {
    646  1.1.2.16   yamt 
    647   1.1.2.1  rmind 	chgp->p_nice = n;
    648   1.1.2.1  rmind 	(void)resetprocpriority(chgp);
    649   1.1.2.1  rmind }
    650   1.1.2.1  rmind 
    651   1.1.2.1  rmind /*
    652   1.1.2.1  rmind  * Compute the priority of a process when running in user mode.
    653   1.1.2.1  rmind  * Arrange to reschedule if the resulting priority is better
    654   1.1.2.1  rmind  * than that of the current process.
    655   1.1.2.1  rmind  */
    656  1.1.2.15   yamt static void
    657   1.1.2.1  rmind resetpriority(struct lwp *l)
    658   1.1.2.1  rmind {
    659   1.1.2.1  rmind 	unsigned int newpriority;
    660   1.1.2.1  rmind 	struct proc *p = l->l_proc;
    661   1.1.2.1  rmind 
    662   1.1.2.1  rmind 	/* XXXSMP LOCK_ASSERT(mutex_owned(&p->p_stmutex)); */
    663   1.1.2.1  rmind 	LOCK_ASSERT(lwp_locked(l, NULL));
    664   1.1.2.1  rmind 
    665   1.1.2.8   yamt 	if ((l->l_flag & LW_SYSTEM) != 0)
    666   1.1.2.1  rmind 		return;
    667   1.1.2.1  rmind 
    668   1.1.2.1  rmind 	newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
    669   1.1.2.1  rmind 	    NICE_WEIGHT * (p->p_nice - NZERO);
    670   1.1.2.1  rmind 	newpriority = min(newpriority, MAXPRI);
    671   1.1.2.1  rmind 	lwp_changepri(l, newpriority);
    672   1.1.2.1  rmind }
    673   1.1.2.1  rmind 
    674   1.1.2.1  rmind /*
    675   1.1.2.1  rmind  * Recompute priority for all LWPs in a process.
    676   1.1.2.1  rmind  */
    677  1.1.2.15   yamt static void
    678   1.1.2.1  rmind resetprocpriority(struct proc *p)
    679   1.1.2.1  rmind {
    680   1.1.2.1  rmind 	struct lwp *l;
    681   1.1.2.1  rmind 
    682   1.1.2.1  rmind 	LOCK_ASSERT(mutex_owned(&p->p_stmutex));
    683   1.1.2.1  rmind 
    684   1.1.2.1  rmind 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    685   1.1.2.1  rmind 		lwp_lock(l);
    686   1.1.2.1  rmind 		resetpriority(l);
    687   1.1.2.1  rmind 		lwp_unlock(l);
    688   1.1.2.1  rmind 	}
    689   1.1.2.1  rmind }
    690   1.1.2.1  rmind 
    691   1.1.2.1  rmind /*
    692   1.1.2.1  rmind  * We adjust the priority of the current process.  The priority of a process
    693   1.1.2.1  rmind  * gets worse as it accumulates CPU time.  The CPU usage estimator (p_estcpu)
    694   1.1.2.1  rmind  * is increased here.  The formula for computing priorities (in kern_synch.c)
    695   1.1.2.1  rmind  * will compute a different value each time p_estcpu increases. This can
    696   1.1.2.1  rmind  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    697   1.1.2.1  rmind  * queue will not change.  The CPU usage estimator ramps up quite quickly
    698   1.1.2.1  rmind  * when the process is running (linearly), and decays away exponentially, at
    699   1.1.2.1  rmind  * a rate which is proportionally slower when the system is busy.  The basic
    700   1.1.2.1  rmind  * principle is that the system will 90% forget that the process used a lot
    701   1.1.2.1  rmind  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    702   1.1.2.1  rmind  * processes which haven't run much recently, and to round-robin among other
    703   1.1.2.1  rmind  * processes.
    704   1.1.2.1  rmind  */
    705   1.1.2.1  rmind 
    706   1.1.2.1  rmind void
    707  1.1.2.13   yamt sched_schedclock(struct lwp *l)
    708   1.1.2.1  rmind {
    709   1.1.2.1  rmind 	struct proc *p = l->l_proc;
    710   1.1.2.1  rmind 
    711   1.1.2.1  rmind 	KASSERT(!CURCPU_IDLE_P());
    712   1.1.2.1  rmind 	mutex_spin_enter(&p->p_stmutex);
    713   1.1.2.1  rmind 	p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
    714   1.1.2.1  rmind 	lwp_lock(l);
    715   1.1.2.1  rmind 	resetpriority(l);
    716   1.1.2.1  rmind 	mutex_spin_exit(&p->p_stmutex);
    717   1.1.2.8   yamt 	if ((l->l_flag & LW_SYSTEM) == 0 && l->l_priority >= PUSER)
    718   1.1.2.1  rmind 		l->l_priority = l->l_usrpri;
    719   1.1.2.1  rmind 	lwp_unlock(l);
    720   1.1.2.1  rmind }
    721   1.1.2.1  rmind 
    722   1.1.2.1  rmind /*
    723   1.1.2.1  rmind  * scheduler_fork_hook:
    724   1.1.2.1  rmind  *
    725   1.1.2.1  rmind  *	Inherit the parent's scheduler history.
    726   1.1.2.1  rmind  */
    727   1.1.2.1  rmind void
    728   1.1.2.1  rmind sched_proc_fork(struct proc *parent, struct proc *child)
    729   1.1.2.1  rmind {
    730   1.1.2.1  rmind 
    731   1.1.2.1  rmind 	LOCK_ASSERT(mutex_owned(&parent->p_smutex));
    732   1.1.2.1  rmind 
    733   1.1.2.1  rmind 	child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
    734   1.1.2.1  rmind 	child->p_forktime = schedcpu_ticks;
    735   1.1.2.1  rmind }
    736   1.1.2.1  rmind 
    737   1.1.2.1  rmind /*
    738   1.1.2.1  rmind  * scheduler_wait_hook:
    739   1.1.2.1  rmind  *
    740   1.1.2.1  rmind  *	Chargeback parents for the sins of their children.
    741   1.1.2.1  rmind  */
    742   1.1.2.1  rmind void
    743   1.1.2.1  rmind sched_proc_exit(struct proc *parent, struct proc *child)
    744   1.1.2.1  rmind {
    745   1.1.2.1  rmind 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    746   1.1.2.1  rmind 	fixpt_t estcpu;
    747   1.1.2.1  rmind 
    748   1.1.2.1  rmind 	/* XXX Only if parent != init?? */
    749   1.1.2.1  rmind 
    750   1.1.2.1  rmind 	mutex_spin_enter(&parent->p_stmutex);
    751   1.1.2.1  rmind 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
    752   1.1.2.1  rmind 	    schedcpu_ticks - child->p_forktime);
    753   1.1.2.1  rmind 	if (child->p_estcpu > estcpu)
    754   1.1.2.1  rmind 		parent->p_estcpu =
    755   1.1.2.1  rmind 		    ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
    756   1.1.2.1  rmind 	mutex_spin_exit(&parent->p_stmutex);
    757   1.1.2.1  rmind }
    758   1.1.2.1  rmind 
    759   1.1.2.1  rmind void
    760  1.1.2.11  rmind sched_enqueue(struct lwp *l, bool ctxswitch)
    761   1.1.2.1  rmind {
    762   1.1.2.1  rmind 
    763  1.1.2.16   yamt 	runqueue_enqueue(&global_queue, l);
    764   1.1.2.1  rmind }
    765   1.1.2.1  rmind 
    766   1.1.2.1  rmind /*
    767   1.1.2.4   yamt  * XXXSMP When LWP dispatch (cpu_switch()) is changed to use sched_dequeue(),
    768   1.1.2.1  rmind  * drop of the effective priority level from kernel to user needs to be
    769   1.1.2.1  rmind  * moved here from userret().  The assignment in userret() is currently
    770   1.1.2.1  rmind  * done unlocked.
    771   1.1.2.1  rmind  */
    772   1.1.2.1  rmind void
    773   1.1.2.1  rmind sched_dequeue(struct lwp *l)
    774   1.1.2.1  rmind {
    775   1.1.2.1  rmind 
    776  1.1.2.16   yamt 	runqueue_dequeue(&global_queue, l);
    777   1.1.2.1  rmind }
    778   1.1.2.1  rmind 
    779   1.1.2.1  rmind struct lwp *
    780  1.1.2.12  rmind sched_nextlwp(struct lwp *l)
    781   1.1.2.1  rmind {
    782  1.1.2.16   yamt 
    783  1.1.2.16   yamt 	return runqueue_nextlwp(&global_queue);
    784   1.1.2.1  rmind }
    785   1.1.2.1  rmind 
    786   1.1.2.9  rmind /* Dummy */
    787  1.1.2.14   yamt void
    788  1.1.2.14   yamt sched_lwp_fork(struct lwp *l)
    789   1.1.2.9  rmind {
    790   1.1.2.9  rmind 
    791   1.1.2.9  rmind }
    792   1.1.2.9  rmind 
    793  1.1.2.14   yamt void
    794  1.1.2.14   yamt sched_lwp_exit(struct lwp *l)
    795   1.1.2.9  rmind {
    796   1.1.2.9  rmind 
    797   1.1.2.9  rmind }
    798   1.1.2.9  rmind 
    799  1.1.2.14   yamt void
    800  1.1.2.14   yamt sched_slept(struct lwp *l)
    801   1.1.2.9  rmind {
    802   1.1.2.9  rmind 
    803   1.1.2.9  rmind }
    804   1.1.2.9  rmind 
    805   1.1.2.9  rmind /* SysCtl */
    806   1.1.2.9  rmind 
    807  1.1.2.14   yamt SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
    808  1.1.2.14   yamt {
    809  1.1.2.14   yamt 
    810   1.1.2.9  rmind 	sysctl_createv(clog, 0, NULL, NULL,
    811   1.1.2.9  rmind 		CTLFLAG_PERMANENT,
    812   1.1.2.9  rmind 		CTLTYPE_NODE, "kern", NULL,
    813   1.1.2.9  rmind 		NULL, 0, NULL, 0,
    814   1.1.2.9  rmind 		CTL_KERN, CTL_EOL);
    815   1.1.2.9  rmind 	sysctl_createv(clog, 0, NULL, NULL,
    816   1.1.2.9  rmind 		CTLFLAG_PERMANENT,
    817   1.1.2.9  rmind 		CTLTYPE_NODE, "sched",
    818   1.1.2.9  rmind 		SYSCTL_DESCR("Scheduler options"),
    819   1.1.2.9  rmind 		NULL, 0, NULL, 0,
    820   1.1.2.9  rmind 		CTL_KERN, KERN_SCHED, CTL_EOL);
    821   1.1.2.9  rmind 	sysctl_createv(clog, 0, NULL, NULL,
    822   1.1.2.9  rmind 		CTLFLAG_PERMANENT,
    823   1.1.2.9  rmind 		CTLTYPE_STRING, "name", NULL,
    824   1.1.2.9  rmind 		NULL, 0, __UNCONST("4.4BSD"), 0,
    825  1.1.2.10  rmind 		CTL_KERN, KERN_SCHED, CTL_CREATE, CTL_EOL);
    826   1.1.2.9  rmind 	sysctl_createv(clog, 0, NULL, NULL,
    827   1.1.2.9  rmind 		CTLFLAG_PERMANENT,
    828   1.1.2.9  rmind 		CTLTYPE_INT, "ccpu",
    829   1.1.2.9  rmind 		SYSCTL_DESCR("Scheduler exponential decay value"),
    830   1.1.2.9  rmind 		NULL, 0, &ccpu, 0,
    831   1.1.2.9  rmind 		CTL_KERN, KERN_SCHED, CTL_CREATE, CTL_EOL);
    832   1.1.2.9  rmind }
    833   1.1.2.9  rmind 
    834   1.1.2.1  rmind #if defined(DDB)
    835   1.1.2.1  rmind void
    836   1.1.2.1  rmind sched_print_runqueue(void (*pr)(const char *, ...))
    837   1.1.2.1  rmind {
    838   1.1.2.1  rmind 
    839  1.1.2.16   yamt 	runqueue_print(&global_queue, pr);
    840   1.1.2.1  rmind }
    841   1.1.2.1  rmind #endif /* defined(DDB) */
    842