Home | History | Annotate | Line # | Download | only in kern
sched_4bsd.c revision 1.1.2.28
      1  1.1.2.27   yamt /*	$NetBSD: sched_4bsd.c,v 1.1.2.28 2007/04/25 08:34:36 yamt Exp $	*/
      2   1.1.2.1  rmind 
      3   1.1.2.1  rmind /*-
      4   1.1.2.1  rmind  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5   1.1.2.1  rmind  * All rights reserved.
      6   1.1.2.1  rmind  *
      7   1.1.2.1  rmind  * This code is derived from software contributed to The NetBSD Foundation
      8   1.1.2.1  rmind  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9   1.1.2.1  rmind  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
     10   1.1.2.1  rmind  * Daniel Sieger.
     11   1.1.2.1  rmind  *
     12   1.1.2.1  rmind  * Redistribution and use in source and binary forms, with or without
     13   1.1.2.1  rmind  * modification, are permitted provided that the following conditions
     14   1.1.2.1  rmind  * are met:
     15   1.1.2.1  rmind  * 1. Redistributions of source code must retain the above copyright
     16   1.1.2.1  rmind  *    notice, this list of conditions and the following disclaimer.
     17   1.1.2.1  rmind  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.1.2.1  rmind  *    notice, this list of conditions and the following disclaimer in the
     19   1.1.2.1  rmind  *    documentation and/or other materials provided with the distribution.
     20   1.1.2.1  rmind  * 3. All advertising materials mentioning features or use of this software
     21   1.1.2.1  rmind  *    must display the following acknowledgement:
     22   1.1.2.1  rmind  *	This product includes software developed by the NetBSD
     23   1.1.2.1  rmind  *	Foundation, Inc. and its contributors.
     24   1.1.2.1  rmind  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25   1.1.2.1  rmind  *    contributors may be used to endorse or promote products derived
     26   1.1.2.1  rmind  *    from this software without specific prior written permission.
     27   1.1.2.1  rmind  *
     28   1.1.2.1  rmind  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29   1.1.2.1  rmind  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30   1.1.2.1  rmind  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31   1.1.2.1  rmind  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32   1.1.2.1  rmind  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33   1.1.2.1  rmind  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34   1.1.2.1  rmind  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35   1.1.2.1  rmind  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36   1.1.2.1  rmind  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37   1.1.2.1  rmind  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38   1.1.2.1  rmind  * POSSIBILITY OF SUCH DAMAGE.
     39   1.1.2.1  rmind  */
     40   1.1.2.1  rmind 
     41   1.1.2.1  rmind /*-
     42   1.1.2.1  rmind  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43   1.1.2.1  rmind  *	The Regents of the University of California.  All rights reserved.
     44   1.1.2.1  rmind  * (c) UNIX System Laboratories, Inc.
     45   1.1.2.1  rmind  * All or some portions of this file are derived from material licensed
     46   1.1.2.1  rmind  * to the University of California by American Telephone and Telegraph
     47   1.1.2.1  rmind  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48   1.1.2.1  rmind  * the permission of UNIX System Laboratories, Inc.
     49   1.1.2.1  rmind  *
     50   1.1.2.1  rmind  * Redistribution and use in source and binary forms, with or without
     51   1.1.2.1  rmind  * modification, are permitted provided that the following conditions
     52   1.1.2.1  rmind  * are met:
     53   1.1.2.1  rmind  * 1. Redistributions of source code must retain the above copyright
     54   1.1.2.1  rmind  *    notice, this list of conditions and the following disclaimer.
     55   1.1.2.1  rmind  * 2. Redistributions in binary form must reproduce the above copyright
     56   1.1.2.1  rmind  *    notice, this list of conditions and the following disclaimer in the
     57   1.1.2.1  rmind  *    documentation and/or other materials provided with the distribution.
     58   1.1.2.1  rmind  * 3. Neither the name of the University nor the names of its contributors
     59   1.1.2.1  rmind  *    may be used to endorse or promote products derived from this software
     60   1.1.2.1  rmind  *    without specific prior written permission.
     61   1.1.2.1  rmind  *
     62   1.1.2.1  rmind  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63   1.1.2.1  rmind  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64   1.1.2.1  rmind  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65   1.1.2.1  rmind  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66   1.1.2.1  rmind  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67   1.1.2.1  rmind  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68   1.1.2.1  rmind  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69   1.1.2.1  rmind  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70   1.1.2.1  rmind  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71   1.1.2.1  rmind  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72   1.1.2.1  rmind  * SUCH DAMAGE.
     73   1.1.2.1  rmind  *
     74   1.1.2.1  rmind  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75   1.1.2.1  rmind  */
     76   1.1.2.1  rmind 
     77   1.1.2.1  rmind #include <sys/cdefs.h>
     78  1.1.2.27   yamt __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.1.2.28 2007/04/25 08:34:36 yamt Exp $");
     79   1.1.2.1  rmind 
     80   1.1.2.1  rmind #include "opt_ddb.h"
     81   1.1.2.1  rmind #include "opt_lockdebug.h"
     82   1.1.2.1  rmind #include "opt_perfctrs.h"
     83   1.1.2.1  rmind 
     84   1.1.2.1  rmind #define	__MUTEX_PRIVATE
     85   1.1.2.1  rmind 
     86   1.1.2.1  rmind #include <sys/param.h>
     87   1.1.2.1  rmind #include <sys/systm.h>
     88   1.1.2.1  rmind #include <sys/callout.h>
     89   1.1.2.6   yamt #include <sys/cpu.h>
     90   1.1.2.1  rmind #include <sys/proc.h>
     91   1.1.2.1  rmind #include <sys/kernel.h>
     92   1.1.2.1  rmind #include <sys/signalvar.h>
     93   1.1.2.1  rmind #include <sys/resourcevar.h>
     94   1.1.2.1  rmind #include <sys/sched.h>
     95   1.1.2.9  rmind #include <sys/sysctl.h>
     96   1.1.2.1  rmind #include <sys/kauth.h>
     97   1.1.2.1  rmind #include <sys/lockdebug.h>
     98  1.1.2.25     ad #include <sys/kmem.h>
     99   1.1.2.1  rmind 
    100   1.1.2.1  rmind #include <uvm/uvm_extern.h>
    101   1.1.2.1  rmind 
    102   1.1.2.1  rmind /*
    103   1.1.2.1  rmind  * Run queues.
    104   1.1.2.1  rmind  *
    105   1.1.2.1  rmind  * We have 32 run queues in descending priority of 0..31.  We maintain
    106   1.1.2.1  rmind  * a bitmask of non-empty queues in order speed up finding the first
    107   1.1.2.1  rmind  * runnable process.  The bitmask is maintained only by machine-dependent
    108   1.1.2.1  rmind  * code, allowing the most efficient instructions to be used to find the
    109   1.1.2.1  rmind  * first non-empty queue.
    110   1.1.2.1  rmind  */
    111   1.1.2.1  rmind 
    112   1.1.2.1  rmind #define	RUNQUE_NQS		32      /* number of runqueues */
    113   1.1.2.1  rmind #define	PPQ	(128 / RUNQUE_NQS)	/* priorities per queue */
    114   1.1.2.1  rmind 
    115  1.1.2.16   yamt typedef struct subqueue {
    116  1.1.2.16   yamt 	TAILQ_HEAD(, lwp) sq_queue;
    117  1.1.2.16   yamt } subqueue_t;
    118  1.1.2.16   yamt typedef struct runqueue {
    119  1.1.2.16   yamt 	subqueue_t rq_subqueues[RUNQUE_NQS];	/* run queues */
    120  1.1.2.16   yamt 	uint32_t rq_bitmap;	/* bitmap of non-empty queues */
    121  1.1.2.16   yamt } runqueue_t;
    122  1.1.2.16   yamt static runqueue_t global_queue;
    123   1.1.2.1  rmind 
    124  1.1.2.15   yamt static void updatepri(struct lwp *);
    125  1.1.2.15   yamt static void resetpriority(struct lwp *);
    126  1.1.2.15   yamt static void resetprocpriority(struct proc *);
    127   1.1.2.1  rmind 
    128  1.1.2.23  rmind extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
    129  1.1.2.19  rmind 
    130  1.1.2.19  rmind /* The global scheduler state */
    131  1.1.2.19  rmind kmutex_t sched_mutex;
    132  1.1.2.19  rmind 
    133  1.1.2.19  rmind /* Number of hardclock ticks per sched_tick() */
    134  1.1.2.19  rmind int rrticks;
    135   1.1.2.1  rmind 
    136   1.1.2.1  rmind /*
    137   1.1.2.1  rmind  * Force switch among equal priority processes every 100ms.
    138   1.1.2.1  rmind  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    139   1.1.2.1  rmind  */
    140   1.1.2.1  rmind /* ARGSUSED */
    141   1.1.2.1  rmind void
    142   1.1.2.1  rmind sched_tick(struct cpu_info *ci)
    143   1.1.2.1  rmind {
    144   1.1.2.1  rmind 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    145   1.1.2.1  rmind 
    146   1.1.2.1  rmind 	spc->spc_ticks = rrticks;
    147   1.1.2.1  rmind 
    148   1.1.2.1  rmind 	if (!CURCPU_IDLE_P()) {
    149   1.1.2.1  rmind 		if (spc->spc_flags & SPCF_SEENRR) {
    150   1.1.2.1  rmind 			/*
    151   1.1.2.1  rmind 			 * The process has already been through a roundrobin
    152   1.1.2.1  rmind 			 * without switching and may be hogging the CPU.
    153   1.1.2.1  rmind 			 * Indicate that the process should yield.
    154   1.1.2.1  rmind 			 */
    155   1.1.2.1  rmind 			spc->spc_flags |= SPCF_SHOULDYIELD;
    156   1.1.2.1  rmind 		} else
    157   1.1.2.1  rmind 			spc->spc_flags |= SPCF_SEENRR;
    158   1.1.2.1  rmind 	}
    159   1.1.2.7   yamt 	cpu_need_resched(curcpu(), 0);
    160   1.1.2.1  rmind }
    161   1.1.2.1  rmind 
    162   1.1.2.1  rmind #define	NICE_WEIGHT 2			/* priorities per nice level */
    163   1.1.2.1  rmind 
    164   1.1.2.1  rmind #define	ESTCPU_SHIFT	11
    165   1.1.2.1  rmind #define	ESTCPU_MAX	((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
    166   1.1.2.1  rmind #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    167   1.1.2.1  rmind 
    168   1.1.2.1  rmind /*
    169   1.1.2.1  rmind  * Constants for digital decay and forget:
    170   1.1.2.1  rmind  *	90% of (p_estcpu) usage in 5 * loadav time
    171   1.1.2.1  rmind  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    172   1.1.2.1  rmind  *          Note that, as ps(1) mentions, this can let percentages
    173   1.1.2.1  rmind  *          total over 100% (I've seen 137.9% for 3 processes).
    174   1.1.2.1  rmind  *
    175   1.1.2.1  rmind  * Note that hardclock updates p_estcpu and p_cpticks independently.
    176   1.1.2.1  rmind  *
    177   1.1.2.1  rmind  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    178   1.1.2.1  rmind  * That is, the system wants to compute a value of decay such
    179   1.1.2.1  rmind  * that the following for loop:
    180   1.1.2.1  rmind  * 	for (i = 0; i < (5 * loadavg); i++)
    181   1.1.2.1  rmind  * 		p_estcpu *= decay;
    182   1.1.2.1  rmind  * will compute
    183   1.1.2.1  rmind  * 	p_estcpu *= 0.1;
    184   1.1.2.1  rmind  * for all values of loadavg:
    185   1.1.2.1  rmind  *
    186   1.1.2.1  rmind  * Mathematically this loop can be expressed by saying:
    187   1.1.2.1  rmind  * 	decay ** (5 * loadavg) ~= .1
    188   1.1.2.1  rmind  *
    189   1.1.2.1  rmind  * The system computes decay as:
    190   1.1.2.1  rmind  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    191   1.1.2.1  rmind  *
    192   1.1.2.1  rmind  * We wish to prove that the system's computation of decay
    193   1.1.2.1  rmind  * will always fulfill the equation:
    194   1.1.2.1  rmind  * 	decay ** (5 * loadavg) ~= .1
    195   1.1.2.1  rmind  *
    196   1.1.2.1  rmind  * If we compute b as:
    197   1.1.2.1  rmind  * 	b = 2 * loadavg
    198   1.1.2.1  rmind  * then
    199   1.1.2.1  rmind  * 	decay = b / (b + 1)
    200   1.1.2.1  rmind  *
    201   1.1.2.1  rmind  * We now need to prove two things:
    202   1.1.2.1  rmind  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    203   1.1.2.1  rmind  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    204   1.1.2.1  rmind  *
    205   1.1.2.1  rmind  * Facts:
    206   1.1.2.1  rmind  *         For x close to zero, exp(x) =~ 1 + x, since
    207   1.1.2.1  rmind  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    208   1.1.2.1  rmind  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    209   1.1.2.1  rmind  *         For x close to zero, ln(1+x) =~ x, since
    210   1.1.2.1  rmind  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    211   1.1.2.1  rmind  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    212   1.1.2.1  rmind  *         ln(.1) =~ -2.30
    213   1.1.2.1  rmind  *
    214   1.1.2.1  rmind  * Proof of (1):
    215   1.1.2.1  rmind  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    216   1.1.2.1  rmind  *	solving for factor,
    217   1.1.2.1  rmind  *      ln(factor) =~ (-2.30/5*loadav), or
    218   1.1.2.1  rmind  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    219   1.1.2.1  rmind  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    220   1.1.2.1  rmind  *
    221   1.1.2.1  rmind  * Proof of (2):
    222   1.1.2.1  rmind  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    223   1.1.2.1  rmind  *	solving for power,
    224   1.1.2.1  rmind  *      power*ln(b/(b+1)) =~ -2.30, or
    225   1.1.2.1  rmind  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    226   1.1.2.1  rmind  *
    227   1.1.2.1  rmind  * Actual power values for the implemented algorithm are as follows:
    228   1.1.2.1  rmind  *      loadav: 1       2       3       4
    229   1.1.2.1  rmind  *      power:  5.68    10.32   14.94   19.55
    230   1.1.2.1  rmind  */
    231   1.1.2.1  rmind 
    232   1.1.2.1  rmind /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    233   1.1.2.1  rmind #define	loadfactor(loadav)	(2 * (loadav))
    234   1.1.2.1  rmind 
    235   1.1.2.1  rmind static fixpt_t
    236   1.1.2.1  rmind decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    237   1.1.2.1  rmind {
    238   1.1.2.1  rmind 
    239   1.1.2.1  rmind 	if (estcpu == 0) {
    240   1.1.2.1  rmind 		return 0;
    241   1.1.2.1  rmind 	}
    242   1.1.2.1  rmind 
    243   1.1.2.1  rmind #if !defined(_LP64)
    244   1.1.2.1  rmind 	/* avoid 64bit arithmetics. */
    245   1.1.2.1  rmind #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    246   1.1.2.1  rmind 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    247   1.1.2.1  rmind 		return estcpu * loadfac / (loadfac + FSCALE);
    248   1.1.2.1  rmind 	}
    249   1.1.2.1  rmind #endif /* !defined(_LP64) */
    250   1.1.2.1  rmind 
    251   1.1.2.1  rmind 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    252   1.1.2.1  rmind }
    253   1.1.2.1  rmind 
    254   1.1.2.1  rmind /*
    255   1.1.2.1  rmind  * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
    256   1.1.2.1  rmind  * sleeping for at least seven times the loadfactor will decay p_estcpu to
    257   1.1.2.1  rmind  * less than (1 << ESTCPU_SHIFT).
    258   1.1.2.1  rmind  *
    259   1.1.2.1  rmind  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    260   1.1.2.1  rmind  */
    261   1.1.2.1  rmind static fixpt_t
    262   1.1.2.1  rmind decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    263   1.1.2.1  rmind {
    264   1.1.2.1  rmind 
    265   1.1.2.1  rmind 	if ((n << FSHIFT) >= 7 * loadfac) {
    266   1.1.2.1  rmind 		return 0;
    267   1.1.2.1  rmind 	}
    268   1.1.2.1  rmind 
    269   1.1.2.1  rmind 	while (estcpu != 0 && n > 1) {
    270   1.1.2.1  rmind 		estcpu = decay_cpu(loadfac, estcpu);
    271   1.1.2.1  rmind 		n--;
    272   1.1.2.1  rmind 	}
    273   1.1.2.1  rmind 
    274   1.1.2.1  rmind 	return estcpu;
    275   1.1.2.1  rmind }
    276   1.1.2.1  rmind 
    277   1.1.2.1  rmind /*
    278  1.1.2.23  rmind  * sched_pstats_hook:
    279   1.1.2.1  rmind  *
    280  1.1.2.23  rmind  * Periodically called from sched_pstats(); used to recalculate priorities.
    281   1.1.2.1  rmind  */
    282  1.1.2.27   yamt void
    283  1.1.2.23  rmind sched_pstats_hook(struct proc *p, int minslp)
    284   1.1.2.1  rmind {
    285   1.1.2.1  rmind 	struct lwp *l;
    286  1.1.2.23  rmind 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    287  1.1.2.23  rmind 
    288  1.1.2.23  rmind 	/*
    289  1.1.2.23  rmind 	 * If the process has slept the entire second,
    290  1.1.2.23  rmind 	 * stop recalculating its priority until it wakes up.
    291  1.1.2.23  rmind 	 */
    292  1.1.2.23  rmind 	if (minslp <= 1) {
    293  1.1.2.23  rmind 		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
    294  1.1.2.23  rmind 
    295   1.1.2.1  rmind 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    296   1.1.2.8   yamt 			if ((l->l_flag & LW_IDLE) != 0)
    297   1.1.2.1  rmind 				continue;
    298   1.1.2.1  rmind 			lwp_lock(l);
    299  1.1.2.28   yamt 			if (l->l_slptime <= 1 && l->l_priority >= PUSER)
    300  1.1.2.23  rmind 				resetpriority(l);
    301   1.1.2.1  rmind 			lwp_unlock(l);
    302   1.1.2.1  rmind 		}
    303   1.1.2.1  rmind 	}
    304   1.1.2.1  rmind }
    305   1.1.2.1  rmind 
    306   1.1.2.1  rmind /*
    307   1.1.2.1  rmind  * Recalculate the priority of a process after it has slept for a while.
    308   1.1.2.1  rmind  */
    309  1.1.2.15   yamt static void
    310   1.1.2.1  rmind updatepri(struct lwp *l)
    311   1.1.2.1  rmind {
    312   1.1.2.1  rmind 	struct proc *p = l->l_proc;
    313   1.1.2.1  rmind 	fixpt_t loadfac;
    314   1.1.2.1  rmind 
    315   1.1.2.1  rmind 	LOCK_ASSERT(lwp_locked(l, NULL));
    316   1.1.2.1  rmind 	KASSERT(l->l_slptime > 1);
    317   1.1.2.1  rmind 
    318   1.1.2.1  rmind 	loadfac = loadfactor(averunnable.ldavg[0]);
    319   1.1.2.1  rmind 
    320  1.1.2.23  rmind 	l->l_slptime--; /* the first time was done in sched_pstats */
    321   1.1.2.1  rmind 	/* XXX NJWLWP */
    322   1.1.2.1  rmind 	/* XXXSMP occasionally unlocked, should be per-LWP */
    323   1.1.2.1  rmind 	p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
    324   1.1.2.1  rmind 	resetpriority(l);
    325   1.1.2.1  rmind }
    326   1.1.2.1  rmind 
    327   1.1.2.1  rmind /*
    328  1.1.2.16   yamt  * On some architectures, it's faster to use a MSB ordering for the priorites
    329  1.1.2.16   yamt  * than the traditional LSB ordering.
    330  1.1.2.16   yamt  */
    331  1.1.2.16   yamt #define	RQMASK(n) (0x00000001 << (n))
    332  1.1.2.16   yamt 
    333  1.1.2.16   yamt /*
    334  1.1.2.16   yamt  * The primitives that manipulate the run queues.  whichqs tells which
    335  1.1.2.16   yamt  * of the 32 queues qs have processes in them.  sched_enqueue() puts processes
    336  1.1.2.16   yamt  * into queues, sched_dequeue removes them from queues.  The running process is
    337  1.1.2.16   yamt  * on no queue, other processes are on a queue related to p->p_priority,
    338  1.1.2.16   yamt  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
    339  1.1.2.16   yamt  * available queues.
    340  1.1.2.16   yamt  */
    341  1.1.2.16   yamt #ifdef RQDEBUG
    342  1.1.2.16   yamt static void
    343  1.1.2.16   yamt runqueue_check(const runqueue_t *rq, int whichq, struct lwp *l)
    344  1.1.2.16   yamt {
    345  1.1.2.16   yamt 	const subqueue_t * const sq = &rq->rq_subqueues[whichq];
    346  1.1.2.16   yamt 	const uint32_t bitmap = rq->rq_bitmap;
    347  1.1.2.16   yamt 	struct lwp *l2;
    348  1.1.2.16   yamt 	int found = 0;
    349  1.1.2.16   yamt 	int die = 0;
    350  1.1.2.16   yamt 	int empty = 1;
    351  1.1.2.16   yamt 
    352  1.1.2.16   yamt 	TAILQ_FOREACH(l2, &sq->sq_queue, l_runq) {
    353  1.1.2.16   yamt 		if (l2->l_stat != LSRUN) {
    354  1.1.2.16   yamt 			printf("runqueue_check[%d]: lwp %p state (%d) "
    355  1.1.2.16   yamt 			    " != LSRUN\n", whichq, l2, l2->l_stat);
    356  1.1.2.16   yamt 		}
    357  1.1.2.16   yamt 		if (l2 == l)
    358  1.1.2.16   yamt 			found = 1;
    359  1.1.2.16   yamt 		empty = 0;
    360  1.1.2.16   yamt 	}
    361  1.1.2.16   yamt 	if (empty && (bitmap & RQMASK(whichq)) != 0) {
    362  1.1.2.16   yamt 		printf("runqueue_check[%d]: bit set for empty run-queue %p\n",
    363  1.1.2.16   yamt 		    whichq, rq);
    364  1.1.2.16   yamt 		die = 1;
    365  1.1.2.16   yamt 	} else if (!empty && (bitmap & RQMASK(whichq)) == 0) {
    366  1.1.2.16   yamt 		printf("runqueue_check[%d]: bit clear for non-empty "
    367  1.1.2.16   yamt 		    "run-queue %p\n", whichq, rq);
    368  1.1.2.16   yamt 		die = 1;
    369  1.1.2.16   yamt 	}
    370  1.1.2.16   yamt 	if (l != NULL && (bitmap & RQMASK(whichq)) == 0) {
    371  1.1.2.16   yamt 		printf("runqueue_check[%d]: bit clear for active lwp %p\n",
    372  1.1.2.16   yamt 		    whichq, l);
    373  1.1.2.16   yamt 		die = 1;
    374  1.1.2.16   yamt 	}
    375  1.1.2.16   yamt 	if (l != NULL && empty) {
    376  1.1.2.16   yamt 		printf("runqueue_check[%d]: empty run-queue %p with "
    377  1.1.2.16   yamt 		    "active lwp %p\n", whichq, rq, l);
    378  1.1.2.16   yamt 		die = 1;
    379  1.1.2.16   yamt 	}
    380  1.1.2.16   yamt 	if (l != NULL && !found) {
    381  1.1.2.16   yamt 		printf("runqueue_check[%d]: lwp %p not in runqueue %p!",
    382  1.1.2.16   yamt 		    whichq, l, rq);
    383  1.1.2.16   yamt 		die = 1;
    384  1.1.2.16   yamt 	}
    385  1.1.2.16   yamt 	if (die)
    386  1.1.2.16   yamt 		panic("runqueue_check: inconsistency found");
    387  1.1.2.16   yamt }
    388  1.1.2.17   yamt #else /* RQDEBUG */
    389  1.1.2.17   yamt #define	runqueue_check(a, b, c)	/* nothing */
    390  1.1.2.16   yamt #endif /* RQDEBUG */
    391  1.1.2.16   yamt 
    392  1.1.2.16   yamt static void
    393  1.1.2.16   yamt runqueue_init(runqueue_t *rq)
    394  1.1.2.16   yamt {
    395  1.1.2.16   yamt 	int i;
    396  1.1.2.16   yamt 
    397  1.1.2.16   yamt 	for (i = 0; i < RUNQUE_NQS; i++)
    398  1.1.2.16   yamt 		TAILQ_INIT(&rq->rq_subqueues[i].sq_queue);
    399  1.1.2.16   yamt }
    400  1.1.2.16   yamt 
    401  1.1.2.16   yamt static void
    402  1.1.2.16   yamt runqueue_enqueue(runqueue_t *rq, struct lwp *l)
    403  1.1.2.16   yamt {
    404  1.1.2.16   yamt 	subqueue_t *sq;
    405  1.1.2.16   yamt 	const int whichq = lwp_eprio(l) / PPQ;
    406  1.1.2.16   yamt 
    407  1.1.2.19  rmind 	LOCK_ASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    408  1.1.2.16   yamt 
    409  1.1.2.16   yamt 	runqueue_check(rq, whichq, NULL);
    410  1.1.2.16   yamt 	rq->rq_bitmap |= RQMASK(whichq);
    411  1.1.2.16   yamt 	sq = &rq->rq_subqueues[whichq];
    412  1.1.2.16   yamt 	TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_runq);
    413  1.1.2.16   yamt 	runqueue_check(rq, whichq, l);
    414  1.1.2.16   yamt }
    415  1.1.2.16   yamt 
    416  1.1.2.16   yamt static void
    417  1.1.2.16   yamt runqueue_dequeue(runqueue_t *rq, struct lwp *l)
    418  1.1.2.16   yamt {
    419  1.1.2.16   yamt 	subqueue_t *sq;
    420  1.1.2.16   yamt 	const int whichq = lwp_eprio(l) / PPQ;
    421  1.1.2.16   yamt 
    422  1.1.2.19  rmind 	LOCK_ASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    423  1.1.2.16   yamt 
    424  1.1.2.16   yamt 	runqueue_check(rq, whichq, l);
    425  1.1.2.16   yamt 	KASSERT((rq->rq_bitmap & RQMASK(whichq)) != 0);
    426  1.1.2.16   yamt 	sq = &rq->rq_subqueues[whichq];
    427  1.1.2.16   yamt 	TAILQ_REMOVE(&sq->sq_queue, l, l_runq);
    428  1.1.2.16   yamt 	if (TAILQ_EMPTY(&sq->sq_queue))
    429  1.1.2.16   yamt 		rq->rq_bitmap &= ~RQMASK(whichq);
    430  1.1.2.16   yamt 	runqueue_check(rq, whichq, NULL);
    431  1.1.2.16   yamt }
    432  1.1.2.16   yamt 
    433  1.1.2.16   yamt static struct lwp *
    434  1.1.2.16   yamt runqueue_nextlwp(runqueue_t *rq)
    435  1.1.2.16   yamt {
    436  1.1.2.16   yamt 	const uint32_t bitmap = rq->rq_bitmap;
    437  1.1.2.16   yamt 	int whichq;
    438  1.1.2.16   yamt 
    439  1.1.2.16   yamt 	if (bitmap == 0) {
    440  1.1.2.16   yamt 		return NULL;
    441  1.1.2.16   yamt 	}
    442  1.1.2.16   yamt 	whichq = ffs(bitmap) - 1;
    443  1.1.2.16   yamt 	return TAILQ_FIRST(&rq->rq_subqueues[whichq].sq_queue);
    444  1.1.2.16   yamt }
    445  1.1.2.16   yamt 
    446  1.1.2.16   yamt #if defined(DDB)
    447  1.1.2.16   yamt static void
    448  1.1.2.16   yamt runqueue_print(const runqueue_t *rq, void (*pr)(const char *, ...))
    449  1.1.2.16   yamt {
    450  1.1.2.16   yamt 	const uint32_t bitmap = rq->rq_bitmap;
    451  1.1.2.16   yamt 	struct lwp *l;
    452  1.1.2.16   yamt 	int i, first;
    453  1.1.2.16   yamt 
    454  1.1.2.16   yamt 	for (i = 0; i < RUNQUE_NQS; i++) {
    455  1.1.2.16   yamt 		const subqueue_t *sq;
    456  1.1.2.16   yamt 		first = 1;
    457  1.1.2.16   yamt 		sq = &rq->rq_subqueues[i];
    458  1.1.2.16   yamt 		TAILQ_FOREACH(l, &sq->sq_queue, l_runq) {
    459  1.1.2.16   yamt 			if (first) {
    460  1.1.2.16   yamt 				(*pr)("%c%d",
    461  1.1.2.16   yamt 				    (bitmap & RQMASK(i)) ? ' ' : '!', i);
    462  1.1.2.16   yamt 				first = 0;
    463  1.1.2.16   yamt 			}
    464  1.1.2.16   yamt 			(*pr)("\t%d.%d (%s) pri=%d usrpri=%d\n",
    465  1.1.2.16   yamt 			    l->l_proc->p_pid,
    466  1.1.2.16   yamt 			    l->l_lid, l->l_proc->p_comm,
    467  1.1.2.16   yamt 			    (int)l->l_priority, (int)l->l_usrpri);
    468  1.1.2.16   yamt 		}
    469  1.1.2.16   yamt 	}
    470  1.1.2.16   yamt }
    471  1.1.2.16   yamt #endif /* defined(DDB) */
    472  1.1.2.16   yamt #undef RQMASK
    473  1.1.2.16   yamt 
    474  1.1.2.16   yamt /*
    475   1.1.2.1  rmind  * Initialize the (doubly-linked) run queues
    476   1.1.2.1  rmind  * to be empty.
    477   1.1.2.1  rmind  */
    478   1.1.2.1  rmind void
    479   1.1.2.1  rmind sched_rqinit()
    480   1.1.2.1  rmind {
    481   1.1.2.1  rmind 
    482  1.1.2.16   yamt 	runqueue_init(&global_queue);
    483   1.1.2.1  rmind 	mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
    484  1.1.2.19  rmind 	/* Initialize the lock pointer for lwp0 */
    485  1.1.2.19  rmind 	lwp0.l_mutex = &sched_mutex;
    486   1.1.2.1  rmind }
    487   1.1.2.1  rmind 
    488   1.1.2.1  rmind void
    489  1.1.2.20   yamt sched_cpuattach(struct cpu_info *ci)
    490  1.1.2.20   yamt {
    491  1.1.2.25     ad 	runqueue_t *rq;
    492  1.1.2.20   yamt 
    493  1.1.2.20   yamt 	ci->ci_schedstate.spc_mutex = &sched_mutex;
    494  1.1.2.25     ad 	rq = kmem_zalloc(sizeof(*rq), KM_NOSLEEP);
    495  1.1.2.25     ad 	runqueue_init(rq);
    496  1.1.2.25     ad 	ci->ci_schedstate.spc_sched_info = rq;
    497  1.1.2.20   yamt }
    498  1.1.2.20   yamt 
    499  1.1.2.20   yamt void
    500   1.1.2.1  rmind sched_setup()
    501   1.1.2.1  rmind {
    502  1.1.2.18   yamt 
    503   1.1.2.1  rmind 	rrticks = hz / 10;
    504  1.1.2.23  rmind 	sched_pstats(NULL);
    505   1.1.2.1  rmind }
    506   1.1.2.1  rmind 
    507   1.1.2.1  rmind void
    508   1.1.2.1  rmind sched_setrunnable(struct lwp *l)
    509   1.1.2.1  rmind {
    510  1.1.2.16   yamt 
    511   1.1.2.1  rmind  	if (l->l_slptime > 1)
    512   1.1.2.1  rmind  		updatepri(l);
    513   1.1.2.1  rmind }
    514   1.1.2.1  rmind 
    515   1.1.2.9  rmind bool
    516   1.1.2.1  rmind sched_curcpu_runnable_p(void)
    517   1.1.2.1  rmind {
    518  1.1.2.26     ad 	runqueue_t *rq = curcpu()->ci_schedstate.spc_sched_info;
    519   1.1.2.1  rmind 
    520  1.1.2.26     ad 	return (global_queue.rq_bitmap | rq->rq_bitmap) != 0;
    521   1.1.2.1  rmind }
    522   1.1.2.1  rmind 
    523   1.1.2.1  rmind void
    524   1.1.2.1  rmind sched_nice(struct proc *chgp, int n)
    525   1.1.2.1  rmind {
    526  1.1.2.16   yamt 
    527   1.1.2.1  rmind 	chgp->p_nice = n;
    528   1.1.2.1  rmind 	(void)resetprocpriority(chgp);
    529   1.1.2.1  rmind }
    530   1.1.2.1  rmind 
    531   1.1.2.1  rmind /*
    532   1.1.2.1  rmind  * Compute the priority of a process when running in user mode.
    533   1.1.2.1  rmind  * Arrange to reschedule if the resulting priority is better
    534   1.1.2.1  rmind  * than that of the current process.
    535   1.1.2.1  rmind  */
    536  1.1.2.15   yamt static void
    537   1.1.2.1  rmind resetpriority(struct lwp *l)
    538   1.1.2.1  rmind {
    539   1.1.2.1  rmind 	unsigned int newpriority;
    540   1.1.2.1  rmind 	struct proc *p = l->l_proc;
    541   1.1.2.1  rmind 
    542   1.1.2.1  rmind 	/* XXXSMP LOCK_ASSERT(mutex_owned(&p->p_stmutex)); */
    543   1.1.2.1  rmind 	LOCK_ASSERT(lwp_locked(l, NULL));
    544   1.1.2.1  rmind 
    545   1.1.2.8   yamt 	if ((l->l_flag & LW_SYSTEM) != 0)
    546   1.1.2.1  rmind 		return;
    547   1.1.2.1  rmind 
    548   1.1.2.1  rmind 	newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
    549   1.1.2.1  rmind 	    NICE_WEIGHT * (p->p_nice - NZERO);
    550   1.1.2.1  rmind 	newpriority = min(newpriority, MAXPRI);
    551   1.1.2.1  rmind 	lwp_changepri(l, newpriority);
    552   1.1.2.1  rmind }
    553   1.1.2.1  rmind 
    554   1.1.2.1  rmind /*
    555   1.1.2.1  rmind  * Recompute priority for all LWPs in a process.
    556   1.1.2.1  rmind  */
    557  1.1.2.15   yamt static void
    558   1.1.2.1  rmind resetprocpriority(struct proc *p)
    559   1.1.2.1  rmind {
    560   1.1.2.1  rmind 	struct lwp *l;
    561   1.1.2.1  rmind 
    562   1.1.2.1  rmind 	LOCK_ASSERT(mutex_owned(&p->p_stmutex));
    563   1.1.2.1  rmind 
    564   1.1.2.1  rmind 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    565   1.1.2.1  rmind 		lwp_lock(l);
    566   1.1.2.1  rmind 		resetpriority(l);
    567   1.1.2.1  rmind 		lwp_unlock(l);
    568   1.1.2.1  rmind 	}
    569   1.1.2.1  rmind }
    570   1.1.2.1  rmind 
    571   1.1.2.1  rmind /*
    572   1.1.2.1  rmind  * We adjust the priority of the current process.  The priority of a process
    573   1.1.2.1  rmind  * gets worse as it accumulates CPU time.  The CPU usage estimator (p_estcpu)
    574   1.1.2.1  rmind  * is increased here.  The formula for computing priorities (in kern_synch.c)
    575   1.1.2.1  rmind  * will compute a different value each time p_estcpu increases. This can
    576   1.1.2.1  rmind  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    577   1.1.2.1  rmind  * queue will not change.  The CPU usage estimator ramps up quite quickly
    578   1.1.2.1  rmind  * when the process is running (linearly), and decays away exponentially, at
    579   1.1.2.1  rmind  * a rate which is proportionally slower when the system is busy.  The basic
    580   1.1.2.1  rmind  * principle is that the system will 90% forget that the process used a lot
    581   1.1.2.1  rmind  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    582   1.1.2.1  rmind  * processes which haven't run much recently, and to round-robin among other
    583   1.1.2.1  rmind  * processes.
    584   1.1.2.1  rmind  */
    585   1.1.2.1  rmind 
    586   1.1.2.1  rmind void
    587  1.1.2.13   yamt sched_schedclock(struct lwp *l)
    588   1.1.2.1  rmind {
    589   1.1.2.1  rmind 	struct proc *p = l->l_proc;
    590   1.1.2.1  rmind 
    591   1.1.2.1  rmind 	KASSERT(!CURCPU_IDLE_P());
    592   1.1.2.1  rmind 	mutex_spin_enter(&p->p_stmutex);
    593   1.1.2.1  rmind 	p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
    594   1.1.2.1  rmind 	lwp_lock(l);
    595   1.1.2.1  rmind 	resetpriority(l);
    596   1.1.2.1  rmind 	mutex_spin_exit(&p->p_stmutex);
    597   1.1.2.8   yamt 	if ((l->l_flag & LW_SYSTEM) == 0 && l->l_priority >= PUSER)
    598   1.1.2.1  rmind 		l->l_priority = l->l_usrpri;
    599   1.1.2.1  rmind 	lwp_unlock(l);
    600   1.1.2.1  rmind }
    601   1.1.2.1  rmind 
    602   1.1.2.1  rmind /*
    603   1.1.2.1  rmind  * scheduler_fork_hook:
    604   1.1.2.1  rmind  *
    605   1.1.2.1  rmind  *	Inherit the parent's scheduler history.
    606   1.1.2.1  rmind  */
    607   1.1.2.1  rmind void
    608   1.1.2.1  rmind sched_proc_fork(struct proc *parent, struct proc *child)
    609   1.1.2.1  rmind {
    610   1.1.2.1  rmind 
    611   1.1.2.1  rmind 	LOCK_ASSERT(mutex_owned(&parent->p_smutex));
    612   1.1.2.1  rmind 
    613   1.1.2.1  rmind 	child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
    614  1.1.2.23  rmind 	child->p_forktime = sched_pstats_ticks;
    615   1.1.2.1  rmind }
    616   1.1.2.1  rmind 
    617   1.1.2.1  rmind /*
    618   1.1.2.1  rmind  * scheduler_wait_hook:
    619   1.1.2.1  rmind  *
    620   1.1.2.1  rmind  *	Chargeback parents for the sins of their children.
    621   1.1.2.1  rmind  */
    622   1.1.2.1  rmind void
    623   1.1.2.1  rmind sched_proc_exit(struct proc *parent, struct proc *child)
    624   1.1.2.1  rmind {
    625   1.1.2.1  rmind 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    626   1.1.2.1  rmind 	fixpt_t estcpu;
    627   1.1.2.1  rmind 
    628   1.1.2.1  rmind 	/* XXX Only if parent != init?? */
    629   1.1.2.1  rmind 
    630   1.1.2.1  rmind 	mutex_spin_enter(&parent->p_stmutex);
    631   1.1.2.1  rmind 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
    632  1.1.2.23  rmind 	    sched_pstats_ticks - child->p_forktime);
    633   1.1.2.1  rmind 	if (child->p_estcpu > estcpu)
    634   1.1.2.1  rmind 		parent->p_estcpu =
    635   1.1.2.1  rmind 		    ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
    636   1.1.2.1  rmind 	mutex_spin_exit(&parent->p_stmutex);
    637   1.1.2.1  rmind }
    638   1.1.2.1  rmind 
    639   1.1.2.1  rmind void
    640  1.1.2.11  rmind sched_enqueue(struct lwp *l, bool ctxswitch)
    641   1.1.2.1  rmind {
    642   1.1.2.1  rmind 
    643  1.1.2.25     ad 	if ((l->l_flag & LW_BOUND) != 0)
    644  1.1.2.25     ad 		runqueue_enqueue(l->l_cpu->ci_schedstate.spc_sched_info, l);
    645  1.1.2.25     ad 	else
    646  1.1.2.25     ad 		runqueue_enqueue(&global_queue, l);
    647   1.1.2.1  rmind }
    648   1.1.2.1  rmind 
    649   1.1.2.1  rmind /*
    650   1.1.2.4   yamt  * XXXSMP When LWP dispatch (cpu_switch()) is changed to use sched_dequeue(),
    651   1.1.2.1  rmind  * drop of the effective priority level from kernel to user needs to be
    652   1.1.2.1  rmind  * moved here from userret().  The assignment in userret() is currently
    653   1.1.2.1  rmind  * done unlocked.
    654   1.1.2.1  rmind  */
    655   1.1.2.1  rmind void
    656   1.1.2.1  rmind sched_dequeue(struct lwp *l)
    657   1.1.2.1  rmind {
    658   1.1.2.1  rmind 
    659  1.1.2.25     ad 	if ((l->l_flag & LW_BOUND) != 0)
    660  1.1.2.25     ad 		runqueue_dequeue(l->l_cpu->ci_schedstate.spc_sched_info, l);
    661  1.1.2.25     ad 	else
    662  1.1.2.25     ad 		runqueue_dequeue(&global_queue, l);
    663   1.1.2.1  rmind }
    664   1.1.2.1  rmind 
    665   1.1.2.1  rmind struct lwp *
    666  1.1.2.25     ad sched_nextlwp(void)
    667   1.1.2.1  rmind {
    668  1.1.2.25     ad 	lwp_t *l1, *l2;
    669  1.1.2.22  rmind 
    670  1.1.2.25     ad 	/* For now, just pick the highest priority LWP. */
    671  1.1.2.25     ad 	l1 = runqueue_nextlwp(curcpu()->ci_schedstate.spc_sched_info);
    672  1.1.2.25     ad 	l2 = runqueue_nextlwp(&global_queue);
    673  1.1.2.25     ad 
    674  1.1.2.25     ad 	if (l1 == NULL)
    675  1.1.2.25     ad 		return l2;
    676  1.1.2.25     ad 	if (l2 == NULL)
    677  1.1.2.25     ad 		return l1;
    678  1.1.2.25     ad 	if (lwp_eprio(l2) < lwp_eprio(l1))
    679  1.1.2.25     ad 		return l2;
    680  1.1.2.25     ad 	else
    681  1.1.2.25     ad 		return l1;
    682   1.1.2.1  rmind }
    683   1.1.2.1  rmind 
    684   1.1.2.9  rmind /* Dummy */
    685  1.1.2.14   yamt void
    686  1.1.2.14   yamt sched_lwp_fork(struct lwp *l)
    687   1.1.2.9  rmind {
    688   1.1.2.9  rmind 
    689   1.1.2.9  rmind }
    690   1.1.2.9  rmind 
    691  1.1.2.14   yamt void
    692  1.1.2.14   yamt sched_lwp_exit(struct lwp *l)
    693   1.1.2.9  rmind {
    694   1.1.2.9  rmind 
    695   1.1.2.9  rmind }
    696   1.1.2.9  rmind 
    697  1.1.2.14   yamt void
    698  1.1.2.14   yamt sched_slept(struct lwp *l)
    699   1.1.2.9  rmind {
    700   1.1.2.9  rmind 
    701   1.1.2.9  rmind }
    702   1.1.2.9  rmind 
    703   1.1.2.9  rmind /* SysCtl */
    704   1.1.2.9  rmind 
    705  1.1.2.14   yamt SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
    706  1.1.2.14   yamt {
    707   1.1.2.9  rmind 	sysctl_createv(clog, 0, NULL, NULL,
    708   1.1.2.9  rmind 		CTLFLAG_PERMANENT,
    709   1.1.2.9  rmind 		CTLTYPE_NODE, "kern", NULL,
    710   1.1.2.9  rmind 		NULL, 0, NULL, 0,
    711   1.1.2.9  rmind 		CTL_KERN, CTL_EOL);
    712   1.1.2.9  rmind 	sysctl_createv(clog, 0, NULL, NULL,
    713   1.1.2.9  rmind 		CTLFLAG_PERMANENT,
    714   1.1.2.9  rmind 		CTLTYPE_NODE, "sched",
    715   1.1.2.9  rmind 		SYSCTL_DESCR("Scheduler options"),
    716   1.1.2.9  rmind 		NULL, 0, NULL, 0,
    717   1.1.2.9  rmind 		CTL_KERN, KERN_SCHED, CTL_EOL);
    718   1.1.2.9  rmind 	sysctl_createv(clog, 0, NULL, NULL,
    719   1.1.2.9  rmind 		CTLFLAG_PERMANENT,
    720   1.1.2.9  rmind 		CTLTYPE_STRING, "name", NULL,
    721   1.1.2.9  rmind 		NULL, 0, __UNCONST("4.4BSD"), 0,
    722  1.1.2.10  rmind 		CTL_KERN, KERN_SCHED, CTL_CREATE, CTL_EOL);
    723   1.1.2.9  rmind }
    724   1.1.2.9  rmind 
    725   1.1.2.1  rmind #if defined(DDB)
    726   1.1.2.1  rmind void
    727   1.1.2.1  rmind sched_print_runqueue(void (*pr)(const char *, ...))
    728   1.1.2.1  rmind {
    729   1.1.2.1  rmind 
    730  1.1.2.16   yamt 	runqueue_print(&global_queue, pr);
    731   1.1.2.1  rmind }
    732   1.1.2.1  rmind #endif /* defined(DDB) */
    733