sched_4bsd.c revision 1.1.2.30 1 1.1.2.30 yamt /* $NetBSD: sched_4bsd.c,v 1.1.2.30 2007/05/07 11:03:58 yamt Exp $ */
2 1.1.2.1 rmind
3 1.1.2.1 rmind /*-
4 1.1.2.1 rmind * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 1.1.2.1 rmind * All rights reserved.
6 1.1.2.1 rmind *
7 1.1.2.1 rmind * This code is derived from software contributed to The NetBSD Foundation
8 1.1.2.1 rmind * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.1.2.1 rmind * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
10 1.1.2.1 rmind * Daniel Sieger.
11 1.1.2.1 rmind *
12 1.1.2.1 rmind * Redistribution and use in source and binary forms, with or without
13 1.1.2.1 rmind * modification, are permitted provided that the following conditions
14 1.1.2.1 rmind * are met:
15 1.1.2.1 rmind * 1. Redistributions of source code must retain the above copyright
16 1.1.2.1 rmind * notice, this list of conditions and the following disclaimer.
17 1.1.2.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
18 1.1.2.1 rmind * notice, this list of conditions and the following disclaimer in the
19 1.1.2.1 rmind * documentation and/or other materials provided with the distribution.
20 1.1.2.1 rmind * 3. All advertising materials mentioning features or use of this software
21 1.1.2.1 rmind * must display the following acknowledgement:
22 1.1.2.1 rmind * This product includes software developed by the NetBSD
23 1.1.2.1 rmind * Foundation, Inc. and its contributors.
24 1.1.2.1 rmind * 4. Neither the name of The NetBSD Foundation nor the names of its
25 1.1.2.1 rmind * contributors may be used to endorse or promote products derived
26 1.1.2.1 rmind * from this software without specific prior written permission.
27 1.1.2.1 rmind *
28 1.1.2.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 1.1.2.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 1.1.2.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 1.1.2.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 1.1.2.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 1.1.2.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 1.1.2.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 1.1.2.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 1.1.2.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 1.1.2.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 1.1.2.1 rmind * POSSIBILITY OF SUCH DAMAGE.
39 1.1.2.1 rmind */
40 1.1.2.1 rmind
41 1.1.2.1 rmind /*-
42 1.1.2.1 rmind * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 1.1.2.1 rmind * The Regents of the University of California. All rights reserved.
44 1.1.2.1 rmind * (c) UNIX System Laboratories, Inc.
45 1.1.2.1 rmind * All or some portions of this file are derived from material licensed
46 1.1.2.1 rmind * to the University of California by American Telephone and Telegraph
47 1.1.2.1 rmind * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 1.1.2.1 rmind * the permission of UNIX System Laboratories, Inc.
49 1.1.2.1 rmind *
50 1.1.2.1 rmind * Redistribution and use in source and binary forms, with or without
51 1.1.2.1 rmind * modification, are permitted provided that the following conditions
52 1.1.2.1 rmind * are met:
53 1.1.2.1 rmind * 1. Redistributions of source code must retain the above copyright
54 1.1.2.1 rmind * notice, this list of conditions and the following disclaimer.
55 1.1.2.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
56 1.1.2.1 rmind * notice, this list of conditions and the following disclaimer in the
57 1.1.2.1 rmind * documentation and/or other materials provided with the distribution.
58 1.1.2.1 rmind * 3. Neither the name of the University nor the names of its contributors
59 1.1.2.1 rmind * may be used to endorse or promote products derived from this software
60 1.1.2.1 rmind * without specific prior written permission.
61 1.1.2.1 rmind *
62 1.1.2.1 rmind * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 1.1.2.1 rmind * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 1.1.2.1 rmind * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 1.1.2.1 rmind * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 1.1.2.1 rmind * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 1.1.2.1 rmind * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 1.1.2.1 rmind * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 1.1.2.1 rmind * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 1.1.2.1 rmind * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 1.1.2.1 rmind * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 1.1.2.1 rmind * SUCH DAMAGE.
73 1.1.2.1 rmind *
74 1.1.2.1 rmind * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 1.1.2.1 rmind */
76 1.1.2.1 rmind
77 1.1.2.1 rmind #include <sys/cdefs.h>
78 1.1.2.30 yamt __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.1.2.30 2007/05/07 11:03:58 yamt Exp $");
79 1.1.2.1 rmind
80 1.1.2.1 rmind #include "opt_ddb.h"
81 1.1.2.1 rmind #include "opt_lockdebug.h"
82 1.1.2.1 rmind #include "opt_perfctrs.h"
83 1.1.2.1 rmind
84 1.1.2.1 rmind #define __MUTEX_PRIVATE
85 1.1.2.1 rmind
86 1.1.2.1 rmind #include <sys/param.h>
87 1.1.2.1 rmind #include <sys/systm.h>
88 1.1.2.1 rmind #include <sys/callout.h>
89 1.1.2.6 yamt #include <sys/cpu.h>
90 1.1.2.1 rmind #include <sys/proc.h>
91 1.1.2.1 rmind #include <sys/kernel.h>
92 1.1.2.1 rmind #include <sys/signalvar.h>
93 1.1.2.1 rmind #include <sys/resourcevar.h>
94 1.1.2.1 rmind #include <sys/sched.h>
95 1.1.2.9 rmind #include <sys/sysctl.h>
96 1.1.2.1 rmind #include <sys/kauth.h>
97 1.1.2.1 rmind #include <sys/lockdebug.h>
98 1.1.2.25 ad #include <sys/kmem.h>
99 1.1.2.1 rmind
100 1.1.2.1 rmind #include <uvm/uvm_extern.h>
101 1.1.2.1 rmind
102 1.1.2.1 rmind /*
103 1.1.2.1 rmind * Run queues.
104 1.1.2.1 rmind *
105 1.1.2.1 rmind * We have 32 run queues in descending priority of 0..31. We maintain
106 1.1.2.1 rmind * a bitmask of non-empty queues in order speed up finding the first
107 1.1.2.1 rmind * runnable process. The bitmask is maintained only by machine-dependent
108 1.1.2.1 rmind * code, allowing the most efficient instructions to be used to find the
109 1.1.2.1 rmind * first non-empty queue.
110 1.1.2.1 rmind */
111 1.1.2.1 rmind
112 1.1.2.1 rmind #define RUNQUE_NQS 32 /* number of runqueues */
113 1.1.2.1 rmind #define PPQ (128 / RUNQUE_NQS) /* priorities per queue */
114 1.1.2.1 rmind
115 1.1.2.16 yamt typedef struct subqueue {
116 1.1.2.16 yamt TAILQ_HEAD(, lwp) sq_queue;
117 1.1.2.16 yamt } subqueue_t;
118 1.1.2.16 yamt typedef struct runqueue {
119 1.1.2.16 yamt subqueue_t rq_subqueues[RUNQUE_NQS]; /* run queues */
120 1.1.2.16 yamt uint32_t rq_bitmap; /* bitmap of non-empty queues */
121 1.1.2.16 yamt } runqueue_t;
122 1.1.2.16 yamt static runqueue_t global_queue;
123 1.1.2.1 rmind
124 1.1.2.15 yamt static void updatepri(struct lwp *);
125 1.1.2.15 yamt static void resetpriority(struct lwp *);
126 1.1.2.15 yamt static void resetprocpriority(struct proc *);
127 1.1.2.1 rmind
128 1.1.2.23 rmind extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
129 1.1.2.19 rmind
130 1.1.2.19 rmind /* The global scheduler state */
131 1.1.2.19 rmind kmutex_t sched_mutex;
132 1.1.2.19 rmind
133 1.1.2.19 rmind /* Number of hardclock ticks per sched_tick() */
134 1.1.2.19 rmind int rrticks;
135 1.1.2.1 rmind
136 1.1.2.1 rmind /*
137 1.1.2.1 rmind * Force switch among equal priority processes every 100ms.
138 1.1.2.1 rmind * Called from hardclock every hz/10 == rrticks hardclock ticks.
139 1.1.2.1 rmind */
140 1.1.2.1 rmind /* ARGSUSED */
141 1.1.2.1 rmind void
142 1.1.2.1 rmind sched_tick(struct cpu_info *ci)
143 1.1.2.1 rmind {
144 1.1.2.1 rmind struct schedstate_percpu *spc = &ci->ci_schedstate;
145 1.1.2.1 rmind
146 1.1.2.1 rmind spc->spc_ticks = rrticks;
147 1.1.2.1 rmind
148 1.1.2.1 rmind if (!CURCPU_IDLE_P()) {
149 1.1.2.1 rmind if (spc->spc_flags & SPCF_SEENRR) {
150 1.1.2.1 rmind /*
151 1.1.2.1 rmind * The process has already been through a roundrobin
152 1.1.2.1 rmind * without switching and may be hogging the CPU.
153 1.1.2.1 rmind * Indicate that the process should yield.
154 1.1.2.1 rmind */
155 1.1.2.1 rmind spc->spc_flags |= SPCF_SHOULDYIELD;
156 1.1.2.1 rmind } else
157 1.1.2.1 rmind spc->spc_flags |= SPCF_SEENRR;
158 1.1.2.1 rmind }
159 1.1.2.7 yamt cpu_need_resched(curcpu(), 0);
160 1.1.2.1 rmind }
161 1.1.2.1 rmind
162 1.1.2.1 rmind #define NICE_WEIGHT 2 /* priorities per nice level */
163 1.1.2.1 rmind
164 1.1.2.1 rmind #define ESTCPU_SHIFT 11
165 1.1.2.1 rmind #define ESTCPU_MAX ((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
166 1.1.2.1 rmind #define ESTCPULIM(e) min((e), ESTCPU_MAX)
167 1.1.2.1 rmind
168 1.1.2.1 rmind /*
169 1.1.2.1 rmind * Constants for digital decay and forget:
170 1.1.2.1 rmind * 90% of (p_estcpu) usage in 5 * loadav time
171 1.1.2.1 rmind * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
172 1.1.2.1 rmind * Note that, as ps(1) mentions, this can let percentages
173 1.1.2.1 rmind * total over 100% (I've seen 137.9% for 3 processes).
174 1.1.2.1 rmind *
175 1.1.2.1 rmind * Note that hardclock updates p_estcpu and p_cpticks independently.
176 1.1.2.1 rmind *
177 1.1.2.1 rmind * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
178 1.1.2.1 rmind * That is, the system wants to compute a value of decay such
179 1.1.2.1 rmind * that the following for loop:
180 1.1.2.1 rmind * for (i = 0; i < (5 * loadavg); i++)
181 1.1.2.1 rmind * p_estcpu *= decay;
182 1.1.2.1 rmind * will compute
183 1.1.2.1 rmind * p_estcpu *= 0.1;
184 1.1.2.1 rmind * for all values of loadavg:
185 1.1.2.1 rmind *
186 1.1.2.1 rmind * Mathematically this loop can be expressed by saying:
187 1.1.2.1 rmind * decay ** (5 * loadavg) ~= .1
188 1.1.2.1 rmind *
189 1.1.2.1 rmind * The system computes decay as:
190 1.1.2.1 rmind * decay = (2 * loadavg) / (2 * loadavg + 1)
191 1.1.2.1 rmind *
192 1.1.2.1 rmind * We wish to prove that the system's computation of decay
193 1.1.2.1 rmind * will always fulfill the equation:
194 1.1.2.1 rmind * decay ** (5 * loadavg) ~= .1
195 1.1.2.1 rmind *
196 1.1.2.1 rmind * If we compute b as:
197 1.1.2.1 rmind * b = 2 * loadavg
198 1.1.2.1 rmind * then
199 1.1.2.1 rmind * decay = b / (b + 1)
200 1.1.2.1 rmind *
201 1.1.2.1 rmind * We now need to prove two things:
202 1.1.2.1 rmind * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
203 1.1.2.1 rmind * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
204 1.1.2.1 rmind *
205 1.1.2.1 rmind * Facts:
206 1.1.2.1 rmind * For x close to zero, exp(x) =~ 1 + x, since
207 1.1.2.1 rmind * exp(x) = 0! + x**1/1! + x**2/2! + ... .
208 1.1.2.1 rmind * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
209 1.1.2.1 rmind * For x close to zero, ln(1+x) =~ x, since
210 1.1.2.1 rmind * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
211 1.1.2.1 rmind * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
212 1.1.2.1 rmind * ln(.1) =~ -2.30
213 1.1.2.1 rmind *
214 1.1.2.1 rmind * Proof of (1):
215 1.1.2.1 rmind * Solve (factor)**(power) =~ .1 given power (5*loadav):
216 1.1.2.1 rmind * solving for factor,
217 1.1.2.1 rmind * ln(factor) =~ (-2.30/5*loadav), or
218 1.1.2.1 rmind * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
219 1.1.2.1 rmind * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
220 1.1.2.1 rmind *
221 1.1.2.1 rmind * Proof of (2):
222 1.1.2.1 rmind * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
223 1.1.2.1 rmind * solving for power,
224 1.1.2.1 rmind * power*ln(b/(b+1)) =~ -2.30, or
225 1.1.2.1 rmind * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
226 1.1.2.1 rmind *
227 1.1.2.1 rmind * Actual power values for the implemented algorithm are as follows:
228 1.1.2.1 rmind * loadav: 1 2 3 4
229 1.1.2.1 rmind * power: 5.68 10.32 14.94 19.55
230 1.1.2.1 rmind */
231 1.1.2.1 rmind
232 1.1.2.1 rmind /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
233 1.1.2.1 rmind #define loadfactor(loadav) (2 * (loadav))
234 1.1.2.1 rmind
235 1.1.2.1 rmind static fixpt_t
236 1.1.2.1 rmind decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
237 1.1.2.1 rmind {
238 1.1.2.1 rmind
239 1.1.2.1 rmind if (estcpu == 0) {
240 1.1.2.1 rmind return 0;
241 1.1.2.1 rmind }
242 1.1.2.1 rmind
243 1.1.2.1 rmind #if !defined(_LP64)
244 1.1.2.1 rmind /* avoid 64bit arithmetics. */
245 1.1.2.1 rmind #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
246 1.1.2.1 rmind if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
247 1.1.2.1 rmind return estcpu * loadfac / (loadfac + FSCALE);
248 1.1.2.1 rmind }
249 1.1.2.1 rmind #endif /* !defined(_LP64) */
250 1.1.2.1 rmind
251 1.1.2.1 rmind return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
252 1.1.2.1 rmind }
253 1.1.2.1 rmind
254 1.1.2.1 rmind /*
255 1.1.2.1 rmind * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
256 1.1.2.1 rmind * sleeping for at least seven times the loadfactor will decay p_estcpu to
257 1.1.2.1 rmind * less than (1 << ESTCPU_SHIFT).
258 1.1.2.1 rmind *
259 1.1.2.1 rmind * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
260 1.1.2.1 rmind */
261 1.1.2.1 rmind static fixpt_t
262 1.1.2.1 rmind decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
263 1.1.2.1 rmind {
264 1.1.2.1 rmind
265 1.1.2.1 rmind if ((n << FSHIFT) >= 7 * loadfac) {
266 1.1.2.1 rmind return 0;
267 1.1.2.1 rmind }
268 1.1.2.1 rmind
269 1.1.2.1 rmind while (estcpu != 0 && n > 1) {
270 1.1.2.1 rmind estcpu = decay_cpu(loadfac, estcpu);
271 1.1.2.1 rmind n--;
272 1.1.2.1 rmind }
273 1.1.2.1 rmind
274 1.1.2.1 rmind return estcpu;
275 1.1.2.1 rmind }
276 1.1.2.1 rmind
277 1.1.2.1 rmind /*
278 1.1.2.23 rmind * sched_pstats_hook:
279 1.1.2.1 rmind *
280 1.1.2.23 rmind * Periodically called from sched_pstats(); used to recalculate priorities.
281 1.1.2.1 rmind */
282 1.1.2.27 yamt void
283 1.1.2.23 rmind sched_pstats_hook(struct proc *p, int minslp)
284 1.1.2.1 rmind {
285 1.1.2.1 rmind struct lwp *l;
286 1.1.2.23 rmind fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
287 1.1.2.23 rmind
288 1.1.2.23 rmind /*
289 1.1.2.23 rmind * If the process has slept the entire second,
290 1.1.2.23 rmind * stop recalculating its priority until it wakes up.
291 1.1.2.23 rmind */
292 1.1.2.23 rmind if (minslp <= 1) {
293 1.1.2.23 rmind p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
294 1.1.2.23 rmind
295 1.1.2.1 rmind LIST_FOREACH(l, &p->p_lwps, l_sibling) {
296 1.1.2.8 yamt if ((l->l_flag & LW_IDLE) != 0)
297 1.1.2.1 rmind continue;
298 1.1.2.1 rmind lwp_lock(l);
299 1.1.2.28 yamt if (l->l_slptime <= 1 && l->l_priority >= PUSER)
300 1.1.2.23 rmind resetpriority(l);
301 1.1.2.1 rmind lwp_unlock(l);
302 1.1.2.1 rmind }
303 1.1.2.1 rmind }
304 1.1.2.1 rmind }
305 1.1.2.1 rmind
306 1.1.2.1 rmind /*
307 1.1.2.1 rmind * Recalculate the priority of a process after it has slept for a while.
308 1.1.2.1 rmind */
309 1.1.2.15 yamt static void
310 1.1.2.1 rmind updatepri(struct lwp *l)
311 1.1.2.1 rmind {
312 1.1.2.1 rmind struct proc *p = l->l_proc;
313 1.1.2.1 rmind fixpt_t loadfac;
314 1.1.2.1 rmind
315 1.1.2.1 rmind LOCK_ASSERT(lwp_locked(l, NULL));
316 1.1.2.1 rmind KASSERT(l->l_slptime > 1);
317 1.1.2.1 rmind
318 1.1.2.1 rmind loadfac = loadfactor(averunnable.ldavg[0]);
319 1.1.2.1 rmind
320 1.1.2.23 rmind l->l_slptime--; /* the first time was done in sched_pstats */
321 1.1.2.1 rmind /* XXX NJWLWP */
322 1.1.2.1 rmind /* XXXSMP occasionally unlocked, should be per-LWP */
323 1.1.2.1 rmind p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
324 1.1.2.1 rmind resetpriority(l);
325 1.1.2.1 rmind }
326 1.1.2.1 rmind
327 1.1.2.1 rmind /*
328 1.1.2.16 yamt * On some architectures, it's faster to use a MSB ordering for the priorites
329 1.1.2.16 yamt * than the traditional LSB ordering.
330 1.1.2.16 yamt */
331 1.1.2.16 yamt #define RQMASK(n) (0x00000001 << (n))
332 1.1.2.16 yamt
333 1.1.2.16 yamt /*
334 1.1.2.16 yamt * The primitives that manipulate the run queues. whichqs tells which
335 1.1.2.16 yamt * of the 32 queues qs have processes in them. sched_enqueue() puts processes
336 1.1.2.16 yamt * into queues, sched_dequeue removes them from queues. The running process is
337 1.1.2.16 yamt * on no queue, other processes are on a queue related to p->p_priority,
338 1.1.2.16 yamt * divided by 4 actually to shrink the 0-127 range of priorities into the 32
339 1.1.2.16 yamt * available queues.
340 1.1.2.16 yamt */
341 1.1.2.16 yamt #ifdef RQDEBUG
342 1.1.2.16 yamt static void
343 1.1.2.16 yamt runqueue_check(const runqueue_t *rq, int whichq, struct lwp *l)
344 1.1.2.16 yamt {
345 1.1.2.16 yamt const subqueue_t * const sq = &rq->rq_subqueues[whichq];
346 1.1.2.16 yamt const uint32_t bitmap = rq->rq_bitmap;
347 1.1.2.16 yamt struct lwp *l2;
348 1.1.2.16 yamt int found = 0;
349 1.1.2.16 yamt int die = 0;
350 1.1.2.16 yamt int empty = 1;
351 1.1.2.16 yamt
352 1.1.2.16 yamt TAILQ_FOREACH(l2, &sq->sq_queue, l_runq) {
353 1.1.2.16 yamt if (l2->l_stat != LSRUN) {
354 1.1.2.16 yamt printf("runqueue_check[%d]: lwp %p state (%d) "
355 1.1.2.16 yamt " != LSRUN\n", whichq, l2, l2->l_stat);
356 1.1.2.16 yamt }
357 1.1.2.16 yamt if (l2 == l)
358 1.1.2.16 yamt found = 1;
359 1.1.2.16 yamt empty = 0;
360 1.1.2.16 yamt }
361 1.1.2.16 yamt if (empty && (bitmap & RQMASK(whichq)) != 0) {
362 1.1.2.16 yamt printf("runqueue_check[%d]: bit set for empty run-queue %p\n",
363 1.1.2.16 yamt whichq, rq);
364 1.1.2.16 yamt die = 1;
365 1.1.2.16 yamt } else if (!empty && (bitmap & RQMASK(whichq)) == 0) {
366 1.1.2.16 yamt printf("runqueue_check[%d]: bit clear for non-empty "
367 1.1.2.16 yamt "run-queue %p\n", whichq, rq);
368 1.1.2.16 yamt die = 1;
369 1.1.2.16 yamt }
370 1.1.2.16 yamt if (l != NULL && (bitmap & RQMASK(whichq)) == 0) {
371 1.1.2.16 yamt printf("runqueue_check[%d]: bit clear for active lwp %p\n",
372 1.1.2.16 yamt whichq, l);
373 1.1.2.16 yamt die = 1;
374 1.1.2.16 yamt }
375 1.1.2.16 yamt if (l != NULL && empty) {
376 1.1.2.16 yamt printf("runqueue_check[%d]: empty run-queue %p with "
377 1.1.2.16 yamt "active lwp %p\n", whichq, rq, l);
378 1.1.2.16 yamt die = 1;
379 1.1.2.16 yamt }
380 1.1.2.16 yamt if (l != NULL && !found) {
381 1.1.2.16 yamt printf("runqueue_check[%d]: lwp %p not in runqueue %p!",
382 1.1.2.16 yamt whichq, l, rq);
383 1.1.2.16 yamt die = 1;
384 1.1.2.16 yamt }
385 1.1.2.16 yamt if (die)
386 1.1.2.16 yamt panic("runqueue_check: inconsistency found");
387 1.1.2.16 yamt }
388 1.1.2.17 yamt #else /* RQDEBUG */
389 1.1.2.17 yamt #define runqueue_check(a, b, c) /* nothing */
390 1.1.2.16 yamt #endif /* RQDEBUG */
391 1.1.2.16 yamt
392 1.1.2.16 yamt static void
393 1.1.2.16 yamt runqueue_init(runqueue_t *rq)
394 1.1.2.16 yamt {
395 1.1.2.16 yamt int i;
396 1.1.2.16 yamt
397 1.1.2.16 yamt for (i = 0; i < RUNQUE_NQS; i++)
398 1.1.2.16 yamt TAILQ_INIT(&rq->rq_subqueues[i].sq_queue);
399 1.1.2.16 yamt }
400 1.1.2.16 yamt
401 1.1.2.16 yamt static void
402 1.1.2.16 yamt runqueue_enqueue(runqueue_t *rq, struct lwp *l)
403 1.1.2.16 yamt {
404 1.1.2.16 yamt subqueue_t *sq;
405 1.1.2.16 yamt const int whichq = lwp_eprio(l) / PPQ;
406 1.1.2.16 yamt
407 1.1.2.19 rmind LOCK_ASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
408 1.1.2.16 yamt
409 1.1.2.16 yamt runqueue_check(rq, whichq, NULL);
410 1.1.2.16 yamt rq->rq_bitmap |= RQMASK(whichq);
411 1.1.2.16 yamt sq = &rq->rq_subqueues[whichq];
412 1.1.2.16 yamt TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_runq);
413 1.1.2.16 yamt runqueue_check(rq, whichq, l);
414 1.1.2.16 yamt }
415 1.1.2.16 yamt
416 1.1.2.16 yamt static void
417 1.1.2.16 yamt runqueue_dequeue(runqueue_t *rq, struct lwp *l)
418 1.1.2.16 yamt {
419 1.1.2.16 yamt subqueue_t *sq;
420 1.1.2.16 yamt const int whichq = lwp_eprio(l) / PPQ;
421 1.1.2.16 yamt
422 1.1.2.19 rmind LOCK_ASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
423 1.1.2.16 yamt
424 1.1.2.16 yamt runqueue_check(rq, whichq, l);
425 1.1.2.16 yamt KASSERT((rq->rq_bitmap & RQMASK(whichq)) != 0);
426 1.1.2.16 yamt sq = &rq->rq_subqueues[whichq];
427 1.1.2.16 yamt TAILQ_REMOVE(&sq->sq_queue, l, l_runq);
428 1.1.2.16 yamt if (TAILQ_EMPTY(&sq->sq_queue))
429 1.1.2.16 yamt rq->rq_bitmap &= ~RQMASK(whichq);
430 1.1.2.16 yamt runqueue_check(rq, whichq, NULL);
431 1.1.2.16 yamt }
432 1.1.2.16 yamt
433 1.1.2.16 yamt static struct lwp *
434 1.1.2.16 yamt runqueue_nextlwp(runqueue_t *rq)
435 1.1.2.16 yamt {
436 1.1.2.16 yamt const uint32_t bitmap = rq->rq_bitmap;
437 1.1.2.16 yamt int whichq;
438 1.1.2.16 yamt
439 1.1.2.16 yamt if (bitmap == 0) {
440 1.1.2.16 yamt return NULL;
441 1.1.2.16 yamt }
442 1.1.2.16 yamt whichq = ffs(bitmap) - 1;
443 1.1.2.16 yamt return TAILQ_FIRST(&rq->rq_subqueues[whichq].sq_queue);
444 1.1.2.16 yamt }
445 1.1.2.16 yamt
446 1.1.2.16 yamt #if defined(DDB)
447 1.1.2.16 yamt static void
448 1.1.2.16 yamt runqueue_print(const runqueue_t *rq, void (*pr)(const char *, ...))
449 1.1.2.16 yamt {
450 1.1.2.16 yamt const uint32_t bitmap = rq->rq_bitmap;
451 1.1.2.16 yamt struct lwp *l;
452 1.1.2.16 yamt int i, first;
453 1.1.2.16 yamt
454 1.1.2.16 yamt for (i = 0; i < RUNQUE_NQS; i++) {
455 1.1.2.16 yamt const subqueue_t *sq;
456 1.1.2.16 yamt first = 1;
457 1.1.2.16 yamt sq = &rq->rq_subqueues[i];
458 1.1.2.16 yamt TAILQ_FOREACH(l, &sq->sq_queue, l_runq) {
459 1.1.2.16 yamt if (first) {
460 1.1.2.16 yamt (*pr)("%c%d",
461 1.1.2.16 yamt (bitmap & RQMASK(i)) ? ' ' : '!', i);
462 1.1.2.16 yamt first = 0;
463 1.1.2.16 yamt }
464 1.1.2.16 yamt (*pr)("\t%d.%d (%s) pri=%d usrpri=%d\n",
465 1.1.2.16 yamt l->l_proc->p_pid,
466 1.1.2.16 yamt l->l_lid, l->l_proc->p_comm,
467 1.1.2.16 yamt (int)l->l_priority, (int)l->l_usrpri);
468 1.1.2.16 yamt }
469 1.1.2.16 yamt }
470 1.1.2.16 yamt }
471 1.1.2.16 yamt #endif /* defined(DDB) */
472 1.1.2.16 yamt #undef RQMASK
473 1.1.2.16 yamt
474 1.1.2.16 yamt /*
475 1.1.2.1 rmind * Initialize the (doubly-linked) run queues
476 1.1.2.1 rmind * to be empty.
477 1.1.2.1 rmind */
478 1.1.2.1 rmind void
479 1.1.2.1 rmind sched_rqinit()
480 1.1.2.1 rmind {
481 1.1.2.1 rmind
482 1.1.2.16 yamt runqueue_init(&global_queue);
483 1.1.2.1 rmind mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
484 1.1.2.19 rmind /* Initialize the lock pointer for lwp0 */
485 1.1.2.19 rmind lwp0.l_mutex = &sched_mutex;
486 1.1.2.1 rmind }
487 1.1.2.1 rmind
488 1.1.2.1 rmind void
489 1.1.2.20 yamt sched_cpuattach(struct cpu_info *ci)
490 1.1.2.20 yamt {
491 1.1.2.25 ad runqueue_t *rq;
492 1.1.2.20 yamt
493 1.1.2.20 yamt ci->ci_schedstate.spc_mutex = &sched_mutex;
494 1.1.2.25 ad rq = kmem_zalloc(sizeof(*rq), KM_NOSLEEP);
495 1.1.2.25 ad runqueue_init(rq);
496 1.1.2.25 ad ci->ci_schedstate.spc_sched_info = rq;
497 1.1.2.20 yamt }
498 1.1.2.20 yamt
499 1.1.2.20 yamt void
500 1.1.2.1 rmind sched_setup()
501 1.1.2.1 rmind {
502 1.1.2.18 yamt
503 1.1.2.1 rmind rrticks = hz / 10;
504 1.1.2.23 rmind sched_pstats(NULL);
505 1.1.2.1 rmind }
506 1.1.2.1 rmind
507 1.1.2.1 rmind void
508 1.1.2.1 rmind sched_setrunnable(struct lwp *l)
509 1.1.2.1 rmind {
510 1.1.2.16 yamt
511 1.1.2.1 rmind if (l->l_slptime > 1)
512 1.1.2.1 rmind updatepri(l);
513 1.1.2.1 rmind }
514 1.1.2.1 rmind
515 1.1.2.9 rmind bool
516 1.1.2.1 rmind sched_curcpu_runnable_p(void)
517 1.1.2.1 rmind {
518 1.1.2.26 ad runqueue_t *rq = curcpu()->ci_schedstate.spc_sched_info;
519 1.1.2.1 rmind
520 1.1.2.26 ad return (global_queue.rq_bitmap | rq->rq_bitmap) != 0;
521 1.1.2.1 rmind }
522 1.1.2.1 rmind
523 1.1.2.1 rmind void
524 1.1.2.1 rmind sched_nice(struct proc *chgp, int n)
525 1.1.2.1 rmind {
526 1.1.2.16 yamt
527 1.1.2.1 rmind chgp->p_nice = n;
528 1.1.2.1 rmind (void)resetprocpriority(chgp);
529 1.1.2.1 rmind }
530 1.1.2.1 rmind
531 1.1.2.1 rmind /*
532 1.1.2.1 rmind * Compute the priority of a process when running in user mode.
533 1.1.2.1 rmind * Arrange to reschedule if the resulting priority is better
534 1.1.2.1 rmind * than that of the current process.
535 1.1.2.1 rmind */
536 1.1.2.15 yamt static void
537 1.1.2.1 rmind resetpriority(struct lwp *l)
538 1.1.2.1 rmind {
539 1.1.2.1 rmind unsigned int newpriority;
540 1.1.2.1 rmind struct proc *p = l->l_proc;
541 1.1.2.1 rmind
542 1.1.2.1 rmind /* XXXSMP LOCK_ASSERT(mutex_owned(&p->p_stmutex)); */
543 1.1.2.1 rmind LOCK_ASSERT(lwp_locked(l, NULL));
544 1.1.2.1 rmind
545 1.1.2.8 yamt if ((l->l_flag & LW_SYSTEM) != 0)
546 1.1.2.1 rmind return;
547 1.1.2.1 rmind
548 1.1.2.1 rmind newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
549 1.1.2.1 rmind NICE_WEIGHT * (p->p_nice - NZERO);
550 1.1.2.1 rmind newpriority = min(newpriority, MAXPRI);
551 1.1.2.1 rmind lwp_changepri(l, newpriority);
552 1.1.2.1 rmind }
553 1.1.2.1 rmind
554 1.1.2.1 rmind /*
555 1.1.2.1 rmind * Recompute priority for all LWPs in a process.
556 1.1.2.1 rmind */
557 1.1.2.15 yamt static void
558 1.1.2.1 rmind resetprocpriority(struct proc *p)
559 1.1.2.1 rmind {
560 1.1.2.1 rmind struct lwp *l;
561 1.1.2.1 rmind
562 1.1.2.1 rmind LOCK_ASSERT(mutex_owned(&p->p_stmutex));
563 1.1.2.1 rmind
564 1.1.2.1 rmind LIST_FOREACH(l, &p->p_lwps, l_sibling) {
565 1.1.2.1 rmind lwp_lock(l);
566 1.1.2.1 rmind resetpriority(l);
567 1.1.2.1 rmind lwp_unlock(l);
568 1.1.2.1 rmind }
569 1.1.2.1 rmind }
570 1.1.2.1 rmind
571 1.1.2.1 rmind /*
572 1.1.2.1 rmind * We adjust the priority of the current process. The priority of a process
573 1.1.2.1 rmind * gets worse as it accumulates CPU time. The CPU usage estimator (p_estcpu)
574 1.1.2.1 rmind * is increased here. The formula for computing priorities (in kern_synch.c)
575 1.1.2.1 rmind * will compute a different value each time p_estcpu increases. This can
576 1.1.2.1 rmind * cause a switch, but unless the priority crosses a PPQ boundary the actual
577 1.1.2.1 rmind * queue will not change. The CPU usage estimator ramps up quite quickly
578 1.1.2.1 rmind * when the process is running (linearly), and decays away exponentially, at
579 1.1.2.1 rmind * a rate which is proportionally slower when the system is busy. The basic
580 1.1.2.1 rmind * principle is that the system will 90% forget that the process used a lot
581 1.1.2.1 rmind * of CPU time in 5 * loadav seconds. This causes the system to favor
582 1.1.2.1 rmind * processes which haven't run much recently, and to round-robin among other
583 1.1.2.1 rmind * processes.
584 1.1.2.1 rmind */
585 1.1.2.1 rmind
586 1.1.2.1 rmind void
587 1.1.2.13 yamt sched_schedclock(struct lwp *l)
588 1.1.2.1 rmind {
589 1.1.2.1 rmind struct proc *p = l->l_proc;
590 1.1.2.1 rmind
591 1.1.2.1 rmind KASSERT(!CURCPU_IDLE_P());
592 1.1.2.1 rmind mutex_spin_enter(&p->p_stmutex);
593 1.1.2.1 rmind p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
594 1.1.2.1 rmind lwp_lock(l);
595 1.1.2.1 rmind resetpriority(l);
596 1.1.2.1 rmind mutex_spin_exit(&p->p_stmutex);
597 1.1.2.8 yamt if ((l->l_flag & LW_SYSTEM) == 0 && l->l_priority >= PUSER)
598 1.1.2.1 rmind l->l_priority = l->l_usrpri;
599 1.1.2.1 rmind lwp_unlock(l);
600 1.1.2.1 rmind }
601 1.1.2.1 rmind
602 1.1.2.1 rmind /*
603 1.1.2.30 yamt * sched_proc_fork:
604 1.1.2.1 rmind *
605 1.1.2.1 rmind * Inherit the parent's scheduler history.
606 1.1.2.1 rmind */
607 1.1.2.1 rmind void
608 1.1.2.1 rmind sched_proc_fork(struct proc *parent, struct proc *child)
609 1.1.2.1 rmind {
610 1.1.2.1 rmind
611 1.1.2.1 rmind LOCK_ASSERT(mutex_owned(&parent->p_smutex));
612 1.1.2.1 rmind
613 1.1.2.1 rmind child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
614 1.1.2.23 rmind child->p_forktime = sched_pstats_ticks;
615 1.1.2.1 rmind }
616 1.1.2.1 rmind
617 1.1.2.1 rmind /*
618 1.1.2.30 yamt * sched_proc_exit:
619 1.1.2.1 rmind *
620 1.1.2.1 rmind * Chargeback parents for the sins of their children.
621 1.1.2.1 rmind */
622 1.1.2.1 rmind void
623 1.1.2.1 rmind sched_proc_exit(struct proc *parent, struct proc *child)
624 1.1.2.1 rmind {
625 1.1.2.1 rmind fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
626 1.1.2.1 rmind fixpt_t estcpu;
627 1.1.2.1 rmind
628 1.1.2.1 rmind /* XXX Only if parent != init?? */
629 1.1.2.1 rmind
630 1.1.2.1 rmind mutex_spin_enter(&parent->p_stmutex);
631 1.1.2.1 rmind estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
632 1.1.2.23 rmind sched_pstats_ticks - child->p_forktime);
633 1.1.2.1 rmind if (child->p_estcpu > estcpu)
634 1.1.2.1 rmind parent->p_estcpu =
635 1.1.2.1 rmind ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
636 1.1.2.1 rmind mutex_spin_exit(&parent->p_stmutex);
637 1.1.2.1 rmind }
638 1.1.2.1 rmind
639 1.1.2.1 rmind void
640 1.1.2.11 rmind sched_enqueue(struct lwp *l, bool ctxswitch)
641 1.1.2.1 rmind {
642 1.1.2.1 rmind
643 1.1.2.25 ad if ((l->l_flag & LW_BOUND) != 0)
644 1.1.2.25 ad runqueue_enqueue(l->l_cpu->ci_schedstate.spc_sched_info, l);
645 1.1.2.25 ad else
646 1.1.2.25 ad runqueue_enqueue(&global_queue, l);
647 1.1.2.1 rmind }
648 1.1.2.1 rmind
649 1.1.2.1 rmind /*
650 1.1.2.4 yamt * XXXSMP When LWP dispatch (cpu_switch()) is changed to use sched_dequeue(),
651 1.1.2.1 rmind * drop of the effective priority level from kernel to user needs to be
652 1.1.2.1 rmind * moved here from userret(). The assignment in userret() is currently
653 1.1.2.1 rmind * done unlocked.
654 1.1.2.1 rmind */
655 1.1.2.1 rmind void
656 1.1.2.1 rmind sched_dequeue(struct lwp *l)
657 1.1.2.1 rmind {
658 1.1.2.1 rmind
659 1.1.2.25 ad if ((l->l_flag & LW_BOUND) != 0)
660 1.1.2.25 ad runqueue_dequeue(l->l_cpu->ci_schedstate.spc_sched_info, l);
661 1.1.2.25 ad else
662 1.1.2.25 ad runqueue_dequeue(&global_queue, l);
663 1.1.2.1 rmind }
664 1.1.2.1 rmind
665 1.1.2.1 rmind struct lwp *
666 1.1.2.25 ad sched_nextlwp(void)
667 1.1.2.1 rmind {
668 1.1.2.25 ad lwp_t *l1, *l2;
669 1.1.2.22 rmind
670 1.1.2.25 ad /* For now, just pick the highest priority LWP. */
671 1.1.2.25 ad l1 = runqueue_nextlwp(curcpu()->ci_schedstate.spc_sched_info);
672 1.1.2.25 ad l2 = runqueue_nextlwp(&global_queue);
673 1.1.2.25 ad
674 1.1.2.25 ad if (l1 == NULL)
675 1.1.2.25 ad return l2;
676 1.1.2.25 ad if (l2 == NULL)
677 1.1.2.25 ad return l1;
678 1.1.2.25 ad if (lwp_eprio(l2) < lwp_eprio(l1))
679 1.1.2.25 ad return l2;
680 1.1.2.25 ad else
681 1.1.2.25 ad return l1;
682 1.1.2.1 rmind }
683 1.1.2.1 rmind
684 1.1.2.9 rmind /* Dummy */
685 1.1.2.14 yamt void
686 1.1.2.14 yamt sched_lwp_fork(struct lwp *l)
687 1.1.2.9 rmind {
688 1.1.2.9 rmind
689 1.1.2.9 rmind }
690 1.1.2.9 rmind
691 1.1.2.14 yamt void
692 1.1.2.14 yamt sched_lwp_exit(struct lwp *l)
693 1.1.2.9 rmind {
694 1.1.2.9 rmind
695 1.1.2.9 rmind }
696 1.1.2.9 rmind
697 1.1.2.9 rmind /* SysCtl */
698 1.1.2.9 rmind
699 1.1.2.14 yamt SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
700 1.1.2.14 yamt {
701 1.1.2.29 rmind const struct sysctlnode *node = NULL;
702 1.1.2.29 rmind
703 1.1.2.9 rmind sysctl_createv(clog, 0, NULL, NULL,
704 1.1.2.9 rmind CTLFLAG_PERMANENT,
705 1.1.2.9 rmind CTLTYPE_NODE, "kern", NULL,
706 1.1.2.9 rmind NULL, 0, NULL, 0,
707 1.1.2.9 rmind CTL_KERN, CTL_EOL);
708 1.1.2.29 rmind sysctl_createv(clog, 0, NULL, &node,
709 1.1.2.9 rmind CTLFLAG_PERMANENT,
710 1.1.2.9 rmind CTLTYPE_NODE, "sched",
711 1.1.2.9 rmind SYSCTL_DESCR("Scheduler options"),
712 1.1.2.9 rmind NULL, 0, NULL, 0,
713 1.1.2.29 rmind CTL_KERN, CTL_CREATE, CTL_EOL);
714 1.1.2.29 rmind
715 1.1.2.29 rmind if (node != NULL) {
716 1.1.2.29 rmind sysctl_createv(clog, 0, &node, NULL,
717 1.1.2.29 rmind CTLFLAG_PERMANENT,
718 1.1.2.29 rmind CTLTYPE_STRING, "name", NULL,
719 1.1.2.29 rmind NULL, 0, __UNCONST("4.4BSD"), 0,
720 1.1.2.29 rmind CTL_CREATE, CTL_EOL);
721 1.1.2.29 rmind }
722 1.1.2.9 rmind }
723 1.1.2.9 rmind
724 1.1.2.1 rmind #if defined(DDB)
725 1.1.2.1 rmind void
726 1.1.2.1 rmind sched_print_runqueue(void (*pr)(const char *, ...))
727 1.1.2.1 rmind {
728 1.1.2.1 rmind
729 1.1.2.16 yamt runqueue_print(&global_queue, pr);
730 1.1.2.1 rmind }
731 1.1.2.1 rmind #endif /* defined(DDB) */
732