sched_4bsd.c revision 1.1.2.9 1 1.1.2.9 rmind /* $NetBSD: sched_4bsd.c,v 1.1.2.9 2007/03/09 15:16:25 rmind Exp $ */
2 1.1.2.1 rmind
3 1.1.2.1 rmind /*-
4 1.1.2.1 rmind * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 1.1.2.1 rmind * All rights reserved.
6 1.1.2.1 rmind *
7 1.1.2.1 rmind * This code is derived from software contributed to The NetBSD Foundation
8 1.1.2.1 rmind * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.1.2.1 rmind * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
10 1.1.2.1 rmind * Daniel Sieger.
11 1.1.2.1 rmind *
12 1.1.2.1 rmind * Redistribution and use in source and binary forms, with or without
13 1.1.2.1 rmind * modification, are permitted provided that the following conditions
14 1.1.2.1 rmind * are met:
15 1.1.2.1 rmind * 1. Redistributions of source code must retain the above copyright
16 1.1.2.1 rmind * notice, this list of conditions and the following disclaimer.
17 1.1.2.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
18 1.1.2.1 rmind * notice, this list of conditions and the following disclaimer in the
19 1.1.2.1 rmind * documentation and/or other materials provided with the distribution.
20 1.1.2.1 rmind * 3. All advertising materials mentioning features or use of this software
21 1.1.2.1 rmind * must display the following acknowledgement:
22 1.1.2.1 rmind * This product includes software developed by the NetBSD
23 1.1.2.1 rmind * Foundation, Inc. and its contributors.
24 1.1.2.1 rmind * 4. Neither the name of The NetBSD Foundation nor the names of its
25 1.1.2.1 rmind * contributors may be used to endorse or promote products derived
26 1.1.2.1 rmind * from this software without specific prior written permission.
27 1.1.2.1 rmind *
28 1.1.2.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 1.1.2.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 1.1.2.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 1.1.2.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 1.1.2.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 1.1.2.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 1.1.2.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 1.1.2.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 1.1.2.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 1.1.2.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 1.1.2.1 rmind * POSSIBILITY OF SUCH DAMAGE.
39 1.1.2.1 rmind */
40 1.1.2.1 rmind
41 1.1.2.1 rmind /*-
42 1.1.2.1 rmind * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 1.1.2.1 rmind * The Regents of the University of California. All rights reserved.
44 1.1.2.1 rmind * (c) UNIX System Laboratories, Inc.
45 1.1.2.1 rmind * All or some portions of this file are derived from material licensed
46 1.1.2.1 rmind * to the University of California by American Telephone and Telegraph
47 1.1.2.1 rmind * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 1.1.2.1 rmind * the permission of UNIX System Laboratories, Inc.
49 1.1.2.1 rmind *
50 1.1.2.1 rmind * Redistribution and use in source and binary forms, with or without
51 1.1.2.1 rmind * modification, are permitted provided that the following conditions
52 1.1.2.1 rmind * are met:
53 1.1.2.1 rmind * 1. Redistributions of source code must retain the above copyright
54 1.1.2.1 rmind * notice, this list of conditions and the following disclaimer.
55 1.1.2.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
56 1.1.2.1 rmind * notice, this list of conditions and the following disclaimer in the
57 1.1.2.1 rmind * documentation and/or other materials provided with the distribution.
58 1.1.2.1 rmind * 3. Neither the name of the University nor the names of its contributors
59 1.1.2.1 rmind * may be used to endorse or promote products derived from this software
60 1.1.2.1 rmind * without specific prior written permission.
61 1.1.2.1 rmind *
62 1.1.2.1 rmind * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 1.1.2.1 rmind * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 1.1.2.1 rmind * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 1.1.2.1 rmind * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 1.1.2.1 rmind * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 1.1.2.1 rmind * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 1.1.2.1 rmind * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 1.1.2.1 rmind * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 1.1.2.1 rmind * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 1.1.2.1 rmind * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 1.1.2.1 rmind * SUCH DAMAGE.
73 1.1.2.1 rmind *
74 1.1.2.1 rmind * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 1.1.2.1 rmind */
76 1.1.2.1 rmind
77 1.1.2.1 rmind #include <sys/cdefs.h>
78 1.1.2.9 rmind __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.1.2.9 2007/03/09 15:16:25 rmind Exp $");
79 1.1.2.1 rmind
80 1.1.2.1 rmind #include "opt_ddb.h"
81 1.1.2.1 rmind #include "opt_lockdebug.h"
82 1.1.2.1 rmind #include "opt_perfctrs.h"
83 1.1.2.1 rmind
84 1.1.2.1 rmind #define __MUTEX_PRIVATE
85 1.1.2.1 rmind
86 1.1.2.1 rmind #include <sys/param.h>
87 1.1.2.1 rmind #include <sys/systm.h>
88 1.1.2.1 rmind #include <sys/callout.h>
89 1.1.2.6 yamt #include <sys/cpu.h>
90 1.1.2.1 rmind #include <sys/proc.h>
91 1.1.2.1 rmind #include <sys/kernel.h>
92 1.1.2.1 rmind #include <sys/signalvar.h>
93 1.1.2.1 rmind #include <sys/resourcevar.h>
94 1.1.2.1 rmind #include <sys/sched.h>
95 1.1.2.9 rmind #include <sys/sysctl.h>
96 1.1.2.1 rmind #include <sys/kauth.h>
97 1.1.2.1 rmind #include <sys/lockdebug.h>
98 1.1.2.1 rmind
99 1.1.2.1 rmind #include <uvm/uvm_extern.h>
100 1.1.2.1 rmind
101 1.1.2.1 rmind /*
102 1.1.2.1 rmind * Run queues.
103 1.1.2.1 rmind *
104 1.1.2.1 rmind * We have 32 run queues in descending priority of 0..31. We maintain
105 1.1.2.1 rmind * a bitmask of non-empty queues in order speed up finding the first
106 1.1.2.1 rmind * runnable process. The bitmask is maintained only by machine-dependent
107 1.1.2.1 rmind * code, allowing the most efficient instructions to be used to find the
108 1.1.2.1 rmind * first non-empty queue.
109 1.1.2.1 rmind */
110 1.1.2.1 rmind
111 1.1.2.1 rmind
112 1.1.2.1 rmind #define RUNQUE_NQS 32 /* number of runqueues */
113 1.1.2.1 rmind #define PPQ (128 / RUNQUE_NQS) /* priorities per queue */
114 1.1.2.1 rmind
115 1.1.2.1 rmind struct prochd {
116 1.1.2.1 rmind struct lwp *ph_link;
117 1.1.2.1 rmind struct lwp *ph_rlink;
118 1.1.2.1 rmind };
119 1.1.2.1 rmind
120 1.1.2.1 rmind struct prochd sched_qs[RUNQUE_NQS]; /* run queues */
121 1.1.2.1 rmind volatile uint32_t sched_whichqs; /* bitmap of non-empty queues */
122 1.1.2.1 rmind
123 1.1.2.1 rmind void schedcpu(void *);
124 1.1.2.1 rmind void updatepri(struct lwp *);
125 1.1.2.3 yamt void resetpriority(struct lwp *);
126 1.1.2.1 rmind void resetprocpriority(struct proc *);
127 1.1.2.1 rmind
128 1.1.2.1 rmind struct callout schedcpu_ch = CALLOUT_INITIALIZER_SETFUNC(schedcpu, NULL);
129 1.1.2.1 rmind static unsigned int schedcpu_ticks;
130 1.1.2.1 rmind
131 1.1.2.1 rmind int rrticks; /* number of hardclock ticks per sched_tick() */
132 1.1.2.1 rmind
133 1.1.2.1 rmind /*
134 1.1.2.1 rmind * Force switch among equal priority processes every 100ms.
135 1.1.2.1 rmind * Called from hardclock every hz/10 == rrticks hardclock ticks.
136 1.1.2.1 rmind */
137 1.1.2.1 rmind /* ARGSUSED */
138 1.1.2.1 rmind void
139 1.1.2.1 rmind sched_tick(struct cpu_info *ci)
140 1.1.2.1 rmind {
141 1.1.2.1 rmind struct schedstate_percpu *spc = &ci->ci_schedstate;
142 1.1.2.1 rmind
143 1.1.2.1 rmind spc->spc_ticks = rrticks;
144 1.1.2.1 rmind
145 1.1.2.1 rmind if (!CURCPU_IDLE_P()) {
146 1.1.2.1 rmind if (spc->spc_flags & SPCF_SEENRR) {
147 1.1.2.1 rmind /*
148 1.1.2.1 rmind * The process has already been through a roundrobin
149 1.1.2.1 rmind * without switching and may be hogging the CPU.
150 1.1.2.1 rmind * Indicate that the process should yield.
151 1.1.2.1 rmind */
152 1.1.2.1 rmind spc->spc_flags |= SPCF_SHOULDYIELD;
153 1.1.2.1 rmind } else
154 1.1.2.1 rmind spc->spc_flags |= SPCF_SEENRR;
155 1.1.2.1 rmind }
156 1.1.2.7 yamt cpu_need_resched(curcpu(), 0);
157 1.1.2.1 rmind }
158 1.1.2.1 rmind
159 1.1.2.1 rmind #define NICE_WEIGHT 2 /* priorities per nice level */
160 1.1.2.1 rmind
161 1.1.2.1 rmind #define ESTCPU_SHIFT 11
162 1.1.2.1 rmind #define ESTCPU_MAX ((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
163 1.1.2.1 rmind #define ESTCPULIM(e) min((e), ESTCPU_MAX)
164 1.1.2.1 rmind
165 1.1.2.1 rmind /*
166 1.1.2.1 rmind * Constants for digital decay and forget:
167 1.1.2.1 rmind * 90% of (p_estcpu) usage in 5 * loadav time
168 1.1.2.1 rmind * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
169 1.1.2.1 rmind * Note that, as ps(1) mentions, this can let percentages
170 1.1.2.1 rmind * total over 100% (I've seen 137.9% for 3 processes).
171 1.1.2.1 rmind *
172 1.1.2.1 rmind * Note that hardclock updates p_estcpu and p_cpticks independently.
173 1.1.2.1 rmind *
174 1.1.2.1 rmind * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
175 1.1.2.1 rmind * That is, the system wants to compute a value of decay such
176 1.1.2.1 rmind * that the following for loop:
177 1.1.2.1 rmind * for (i = 0; i < (5 * loadavg); i++)
178 1.1.2.1 rmind * p_estcpu *= decay;
179 1.1.2.1 rmind * will compute
180 1.1.2.1 rmind * p_estcpu *= 0.1;
181 1.1.2.1 rmind * for all values of loadavg:
182 1.1.2.1 rmind *
183 1.1.2.1 rmind * Mathematically this loop can be expressed by saying:
184 1.1.2.1 rmind * decay ** (5 * loadavg) ~= .1
185 1.1.2.1 rmind *
186 1.1.2.1 rmind * The system computes decay as:
187 1.1.2.1 rmind * decay = (2 * loadavg) / (2 * loadavg + 1)
188 1.1.2.1 rmind *
189 1.1.2.1 rmind * We wish to prove that the system's computation of decay
190 1.1.2.1 rmind * will always fulfill the equation:
191 1.1.2.1 rmind * decay ** (5 * loadavg) ~= .1
192 1.1.2.1 rmind *
193 1.1.2.1 rmind * If we compute b as:
194 1.1.2.1 rmind * b = 2 * loadavg
195 1.1.2.1 rmind * then
196 1.1.2.1 rmind * decay = b / (b + 1)
197 1.1.2.1 rmind *
198 1.1.2.1 rmind * We now need to prove two things:
199 1.1.2.1 rmind * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
200 1.1.2.1 rmind * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
201 1.1.2.1 rmind *
202 1.1.2.1 rmind * Facts:
203 1.1.2.1 rmind * For x close to zero, exp(x) =~ 1 + x, since
204 1.1.2.1 rmind * exp(x) = 0! + x**1/1! + x**2/2! + ... .
205 1.1.2.1 rmind * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
206 1.1.2.1 rmind * For x close to zero, ln(1+x) =~ x, since
207 1.1.2.1 rmind * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
208 1.1.2.1 rmind * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
209 1.1.2.1 rmind * ln(.1) =~ -2.30
210 1.1.2.1 rmind *
211 1.1.2.1 rmind * Proof of (1):
212 1.1.2.1 rmind * Solve (factor)**(power) =~ .1 given power (5*loadav):
213 1.1.2.1 rmind * solving for factor,
214 1.1.2.1 rmind * ln(factor) =~ (-2.30/5*loadav), or
215 1.1.2.1 rmind * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
216 1.1.2.1 rmind * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
217 1.1.2.1 rmind *
218 1.1.2.1 rmind * Proof of (2):
219 1.1.2.1 rmind * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
220 1.1.2.1 rmind * solving for power,
221 1.1.2.1 rmind * power*ln(b/(b+1)) =~ -2.30, or
222 1.1.2.1 rmind * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
223 1.1.2.1 rmind *
224 1.1.2.1 rmind * Actual power values for the implemented algorithm are as follows:
225 1.1.2.1 rmind * loadav: 1 2 3 4
226 1.1.2.1 rmind * power: 5.68 10.32 14.94 19.55
227 1.1.2.1 rmind */
228 1.1.2.1 rmind
229 1.1.2.1 rmind /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
230 1.1.2.1 rmind #define loadfactor(loadav) (2 * (loadav))
231 1.1.2.1 rmind
232 1.1.2.1 rmind static fixpt_t
233 1.1.2.1 rmind decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
234 1.1.2.1 rmind {
235 1.1.2.1 rmind
236 1.1.2.1 rmind if (estcpu == 0) {
237 1.1.2.1 rmind return 0;
238 1.1.2.1 rmind }
239 1.1.2.1 rmind
240 1.1.2.1 rmind #if !defined(_LP64)
241 1.1.2.1 rmind /* avoid 64bit arithmetics. */
242 1.1.2.1 rmind #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
243 1.1.2.1 rmind if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
244 1.1.2.1 rmind return estcpu * loadfac / (loadfac + FSCALE);
245 1.1.2.1 rmind }
246 1.1.2.1 rmind #endif /* !defined(_LP64) */
247 1.1.2.1 rmind
248 1.1.2.1 rmind return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
249 1.1.2.1 rmind }
250 1.1.2.1 rmind
251 1.1.2.1 rmind /*
252 1.1.2.1 rmind * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
253 1.1.2.1 rmind * sleeping for at least seven times the loadfactor will decay p_estcpu to
254 1.1.2.1 rmind * less than (1 << ESTCPU_SHIFT).
255 1.1.2.1 rmind *
256 1.1.2.1 rmind * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
257 1.1.2.1 rmind */
258 1.1.2.1 rmind static fixpt_t
259 1.1.2.1 rmind decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
260 1.1.2.1 rmind {
261 1.1.2.1 rmind
262 1.1.2.1 rmind if ((n << FSHIFT) >= 7 * loadfac) {
263 1.1.2.1 rmind return 0;
264 1.1.2.1 rmind }
265 1.1.2.1 rmind
266 1.1.2.1 rmind while (estcpu != 0 && n > 1) {
267 1.1.2.1 rmind estcpu = decay_cpu(loadfac, estcpu);
268 1.1.2.1 rmind n--;
269 1.1.2.1 rmind }
270 1.1.2.1 rmind
271 1.1.2.1 rmind return estcpu;
272 1.1.2.1 rmind }
273 1.1.2.1 rmind
274 1.1.2.1 rmind /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
275 1.1.2.1 rmind fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
276 1.1.2.1 rmind
277 1.1.2.1 rmind /*
278 1.1.2.1 rmind * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
279 1.1.2.1 rmind * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
280 1.1.2.1 rmind * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
281 1.1.2.1 rmind *
282 1.1.2.1 rmind * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
283 1.1.2.1 rmind * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
284 1.1.2.1 rmind *
285 1.1.2.1 rmind * If you dont want to bother with the faster/more-accurate formula, you
286 1.1.2.1 rmind * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
287 1.1.2.1 rmind * (more general) method of calculating the %age of CPU used by a process.
288 1.1.2.1 rmind */
289 1.1.2.1 rmind #define CCPU_SHIFT 11
290 1.1.2.1 rmind
291 1.1.2.1 rmind /*
292 1.1.2.1 rmind * schedcpu:
293 1.1.2.1 rmind *
294 1.1.2.1 rmind * Recompute process priorities, every hz ticks.
295 1.1.2.1 rmind *
296 1.1.2.1 rmind * XXXSMP This needs to be reorganised in order to reduce the locking
297 1.1.2.1 rmind * burden.
298 1.1.2.1 rmind */
299 1.1.2.1 rmind /* ARGSUSED */
300 1.1.2.1 rmind void
301 1.1.2.1 rmind schedcpu(void *arg)
302 1.1.2.1 rmind {
303 1.1.2.1 rmind fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
304 1.1.2.1 rmind struct rlimit *rlim;
305 1.1.2.1 rmind struct lwp *l;
306 1.1.2.1 rmind struct proc *p;
307 1.1.2.1 rmind int minslp, clkhz, sig;
308 1.1.2.1 rmind long runtm;
309 1.1.2.1 rmind
310 1.1.2.1 rmind schedcpu_ticks++;
311 1.1.2.1 rmind
312 1.1.2.1 rmind mutex_enter(&proclist_mutex);
313 1.1.2.1 rmind PROCLIST_FOREACH(p, &allproc) {
314 1.1.2.1 rmind /*
315 1.1.2.1 rmind * Increment time in/out of memory and sleep time (if
316 1.1.2.1 rmind * sleeping). We ignore overflow; with 16-bit int's
317 1.1.2.1 rmind * (remember them?) overflow takes 45 days.
318 1.1.2.1 rmind */
319 1.1.2.1 rmind minslp = 2;
320 1.1.2.1 rmind mutex_enter(&p->p_smutex);
321 1.1.2.1 rmind runtm = p->p_rtime.tv_sec;
322 1.1.2.1 rmind LIST_FOREACH(l, &p->p_lwps, l_sibling) {
323 1.1.2.8 yamt if ((l->l_flag & LW_IDLE) != 0)
324 1.1.2.1 rmind continue;
325 1.1.2.1 rmind lwp_lock(l);
326 1.1.2.1 rmind runtm += l->l_rtime.tv_sec;
327 1.1.2.1 rmind l->l_swtime++;
328 1.1.2.1 rmind if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
329 1.1.2.1 rmind l->l_stat == LSSUSPENDED) {
330 1.1.2.1 rmind l->l_slptime++;
331 1.1.2.1 rmind minslp = min(minslp, l->l_slptime);
332 1.1.2.1 rmind } else
333 1.1.2.1 rmind minslp = 0;
334 1.1.2.1 rmind lwp_unlock(l);
335 1.1.2.1 rmind }
336 1.1.2.1 rmind p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
337 1.1.2.1 rmind
338 1.1.2.1 rmind /*
339 1.1.2.1 rmind * Check if the process exceeds its CPU resource allocation.
340 1.1.2.1 rmind * If over max, kill it.
341 1.1.2.1 rmind */
342 1.1.2.1 rmind rlim = &p->p_rlimit[RLIMIT_CPU];
343 1.1.2.1 rmind sig = 0;
344 1.1.2.1 rmind if (runtm >= rlim->rlim_cur) {
345 1.1.2.1 rmind if (runtm >= rlim->rlim_max)
346 1.1.2.1 rmind sig = SIGKILL;
347 1.1.2.1 rmind else {
348 1.1.2.1 rmind sig = SIGXCPU;
349 1.1.2.1 rmind if (rlim->rlim_cur < rlim->rlim_max)
350 1.1.2.1 rmind rlim->rlim_cur += 5;
351 1.1.2.1 rmind }
352 1.1.2.1 rmind }
353 1.1.2.1 rmind
354 1.1.2.1 rmind /*
355 1.1.2.1 rmind * If the process has run for more than autonicetime, reduce
356 1.1.2.1 rmind * priority to give others a chance.
357 1.1.2.1 rmind */
358 1.1.2.1 rmind if (autonicetime && runtm > autonicetime && p->p_nice == NZERO
359 1.1.2.1 rmind && kauth_cred_geteuid(p->p_cred)) {
360 1.1.2.1 rmind mutex_spin_enter(&p->p_stmutex);
361 1.1.2.1 rmind p->p_nice = autoniceval + NZERO;
362 1.1.2.1 rmind resetprocpriority(p);
363 1.1.2.1 rmind mutex_spin_exit(&p->p_stmutex);
364 1.1.2.1 rmind }
365 1.1.2.1 rmind
366 1.1.2.1 rmind /*
367 1.1.2.1 rmind * If the process has slept the entire second,
368 1.1.2.1 rmind * stop recalculating its priority until it wakes up.
369 1.1.2.1 rmind */
370 1.1.2.1 rmind if (minslp <= 1) {
371 1.1.2.1 rmind /*
372 1.1.2.1 rmind * p_pctcpu is only for ps.
373 1.1.2.1 rmind */
374 1.1.2.1 rmind mutex_spin_enter(&p->p_stmutex);
375 1.1.2.1 rmind clkhz = stathz != 0 ? stathz : hz;
376 1.1.2.1 rmind #if (FSHIFT >= CCPU_SHIFT)
377 1.1.2.1 rmind p->p_pctcpu += (clkhz == 100)?
378 1.1.2.1 rmind ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
379 1.1.2.1 rmind 100 * (((fixpt_t) p->p_cpticks)
380 1.1.2.1 rmind << (FSHIFT - CCPU_SHIFT)) / clkhz;
381 1.1.2.1 rmind #else
382 1.1.2.1 rmind p->p_pctcpu += ((FSCALE - ccpu) *
383 1.1.2.1 rmind (p->p_cpticks * FSCALE / clkhz)) >> FSHIFT;
384 1.1.2.1 rmind #endif
385 1.1.2.1 rmind p->p_cpticks = 0;
386 1.1.2.1 rmind p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
387 1.1.2.1 rmind
388 1.1.2.1 rmind LIST_FOREACH(l, &p->p_lwps, l_sibling) {
389 1.1.2.8 yamt if ((l->l_flag & LW_IDLE) != 0)
390 1.1.2.1 rmind continue;
391 1.1.2.1 rmind lwp_lock(l);
392 1.1.2.1 rmind if (l->l_slptime <= 1 &&
393 1.1.2.1 rmind l->l_priority >= PUSER)
394 1.1.2.1 rmind resetpriority(l);
395 1.1.2.1 rmind lwp_unlock(l);
396 1.1.2.1 rmind }
397 1.1.2.1 rmind mutex_spin_exit(&p->p_stmutex);
398 1.1.2.1 rmind }
399 1.1.2.1 rmind
400 1.1.2.1 rmind mutex_exit(&p->p_smutex);
401 1.1.2.1 rmind if (sig) {
402 1.1.2.1 rmind psignal(p, sig);
403 1.1.2.1 rmind }
404 1.1.2.1 rmind }
405 1.1.2.1 rmind mutex_exit(&proclist_mutex);
406 1.1.2.1 rmind uvm_meter();
407 1.1.2.1 rmind wakeup((caddr_t)&lbolt);
408 1.1.2.1 rmind callout_schedule(&schedcpu_ch, hz);
409 1.1.2.1 rmind }
410 1.1.2.1 rmind
411 1.1.2.1 rmind /*
412 1.1.2.1 rmind * Recalculate the priority of a process after it has slept for a while.
413 1.1.2.1 rmind */
414 1.1.2.1 rmind void
415 1.1.2.1 rmind updatepri(struct lwp *l)
416 1.1.2.1 rmind {
417 1.1.2.1 rmind struct proc *p = l->l_proc;
418 1.1.2.1 rmind fixpt_t loadfac;
419 1.1.2.1 rmind
420 1.1.2.1 rmind LOCK_ASSERT(lwp_locked(l, NULL));
421 1.1.2.1 rmind KASSERT(l->l_slptime > 1);
422 1.1.2.1 rmind
423 1.1.2.1 rmind loadfac = loadfactor(averunnable.ldavg[0]);
424 1.1.2.1 rmind
425 1.1.2.1 rmind l->l_slptime--; /* the first time was done in schedcpu */
426 1.1.2.1 rmind /* XXX NJWLWP */
427 1.1.2.1 rmind /* XXXSMP occasionally unlocked, should be per-LWP */
428 1.1.2.1 rmind p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
429 1.1.2.1 rmind resetpriority(l);
430 1.1.2.1 rmind }
431 1.1.2.1 rmind
432 1.1.2.1 rmind /*
433 1.1.2.1 rmind * Initialize the (doubly-linked) run queues
434 1.1.2.1 rmind * to be empty.
435 1.1.2.1 rmind */
436 1.1.2.1 rmind void
437 1.1.2.1 rmind sched_rqinit()
438 1.1.2.1 rmind {
439 1.1.2.1 rmind int i;
440 1.1.2.1 rmind
441 1.1.2.1 rmind for (i = 0; i < RUNQUE_NQS; i++)
442 1.1.2.1 rmind sched_qs[i].ph_link = sched_qs[i].ph_rlink =
443 1.1.2.1 rmind (struct lwp *)&sched_qs[i];
444 1.1.2.1 rmind
445 1.1.2.1 rmind mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
446 1.1.2.1 rmind }
447 1.1.2.1 rmind
448 1.1.2.1 rmind void
449 1.1.2.1 rmind sched_setup()
450 1.1.2.1 rmind {
451 1.1.2.1 rmind rrticks = hz / 10;
452 1.1.2.1 rmind
453 1.1.2.1 rmind schedcpu(NULL);
454 1.1.2.1 rmind }
455 1.1.2.1 rmind
456 1.1.2.1 rmind void
457 1.1.2.1 rmind sched_setrunnable(struct lwp *l)
458 1.1.2.1 rmind {
459 1.1.2.1 rmind if (l->l_slptime > 1)
460 1.1.2.1 rmind updatepri(l);
461 1.1.2.1 rmind }
462 1.1.2.1 rmind
463 1.1.2.9 rmind bool
464 1.1.2.1 rmind sched_curcpu_runnable_p(void)
465 1.1.2.1 rmind {
466 1.1.2.1 rmind
467 1.1.2.1 rmind return sched_whichqs != 0;
468 1.1.2.1 rmind }
469 1.1.2.1 rmind
470 1.1.2.1 rmind void
471 1.1.2.1 rmind sched_nice(struct proc *chgp, int n)
472 1.1.2.1 rmind {
473 1.1.2.1 rmind chgp->p_nice = n;
474 1.1.2.1 rmind (void)resetprocpriority(chgp);
475 1.1.2.1 rmind }
476 1.1.2.1 rmind
477 1.1.2.1 rmind /*
478 1.1.2.1 rmind * Compute the priority of a process when running in user mode.
479 1.1.2.1 rmind * Arrange to reschedule if the resulting priority is better
480 1.1.2.1 rmind * than that of the current process.
481 1.1.2.1 rmind */
482 1.1.2.1 rmind void
483 1.1.2.1 rmind resetpriority(struct lwp *l)
484 1.1.2.1 rmind {
485 1.1.2.1 rmind unsigned int newpriority;
486 1.1.2.1 rmind struct proc *p = l->l_proc;
487 1.1.2.1 rmind
488 1.1.2.1 rmind /* XXXSMP LOCK_ASSERT(mutex_owned(&p->p_stmutex)); */
489 1.1.2.1 rmind LOCK_ASSERT(lwp_locked(l, NULL));
490 1.1.2.1 rmind
491 1.1.2.8 yamt if ((l->l_flag & LW_SYSTEM) != 0)
492 1.1.2.1 rmind return;
493 1.1.2.1 rmind
494 1.1.2.1 rmind newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
495 1.1.2.1 rmind NICE_WEIGHT * (p->p_nice - NZERO);
496 1.1.2.1 rmind newpriority = min(newpriority, MAXPRI);
497 1.1.2.1 rmind lwp_changepri(l, newpriority);
498 1.1.2.1 rmind }
499 1.1.2.1 rmind
500 1.1.2.1 rmind /*
501 1.1.2.1 rmind * Recompute priority for all LWPs in a process.
502 1.1.2.1 rmind */
503 1.1.2.1 rmind void
504 1.1.2.1 rmind resetprocpriority(struct proc *p)
505 1.1.2.1 rmind {
506 1.1.2.1 rmind struct lwp *l;
507 1.1.2.1 rmind
508 1.1.2.1 rmind LOCK_ASSERT(mutex_owned(&p->p_stmutex));
509 1.1.2.1 rmind
510 1.1.2.1 rmind LIST_FOREACH(l, &p->p_lwps, l_sibling) {
511 1.1.2.1 rmind lwp_lock(l);
512 1.1.2.1 rmind resetpriority(l);
513 1.1.2.1 rmind lwp_unlock(l);
514 1.1.2.1 rmind }
515 1.1.2.1 rmind }
516 1.1.2.1 rmind
517 1.1.2.1 rmind /*
518 1.1.2.1 rmind * We adjust the priority of the current process. The priority of a process
519 1.1.2.1 rmind * gets worse as it accumulates CPU time. The CPU usage estimator (p_estcpu)
520 1.1.2.1 rmind * is increased here. The formula for computing priorities (in kern_synch.c)
521 1.1.2.1 rmind * will compute a different value each time p_estcpu increases. This can
522 1.1.2.1 rmind * cause a switch, but unless the priority crosses a PPQ boundary the actual
523 1.1.2.1 rmind * queue will not change. The CPU usage estimator ramps up quite quickly
524 1.1.2.1 rmind * when the process is running (linearly), and decays away exponentially, at
525 1.1.2.1 rmind * a rate which is proportionally slower when the system is busy. The basic
526 1.1.2.1 rmind * principle is that the system will 90% forget that the process used a lot
527 1.1.2.1 rmind * of CPU time in 5 * loadav seconds. This causes the system to favor
528 1.1.2.1 rmind * processes which haven't run much recently, and to round-robin among other
529 1.1.2.1 rmind * processes.
530 1.1.2.1 rmind */
531 1.1.2.1 rmind
532 1.1.2.1 rmind void
533 1.1.2.5 yamt sched_clock(struct lwp *l)
534 1.1.2.1 rmind {
535 1.1.2.1 rmind struct proc *p = l->l_proc;
536 1.1.2.1 rmind
537 1.1.2.1 rmind KASSERT(!CURCPU_IDLE_P());
538 1.1.2.1 rmind mutex_spin_enter(&p->p_stmutex);
539 1.1.2.1 rmind p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
540 1.1.2.1 rmind lwp_lock(l);
541 1.1.2.1 rmind resetpriority(l);
542 1.1.2.1 rmind mutex_spin_exit(&p->p_stmutex);
543 1.1.2.8 yamt if ((l->l_flag & LW_SYSTEM) == 0 && l->l_priority >= PUSER)
544 1.1.2.1 rmind l->l_priority = l->l_usrpri;
545 1.1.2.1 rmind lwp_unlock(l);
546 1.1.2.1 rmind }
547 1.1.2.1 rmind
548 1.1.2.1 rmind /*
549 1.1.2.1 rmind * scheduler_fork_hook:
550 1.1.2.1 rmind *
551 1.1.2.1 rmind * Inherit the parent's scheduler history.
552 1.1.2.1 rmind */
553 1.1.2.1 rmind void
554 1.1.2.1 rmind sched_proc_fork(struct proc *parent, struct proc *child)
555 1.1.2.1 rmind {
556 1.1.2.1 rmind
557 1.1.2.1 rmind LOCK_ASSERT(mutex_owned(&parent->p_smutex));
558 1.1.2.1 rmind
559 1.1.2.1 rmind child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
560 1.1.2.1 rmind child->p_forktime = schedcpu_ticks;
561 1.1.2.1 rmind }
562 1.1.2.1 rmind
563 1.1.2.1 rmind /*
564 1.1.2.1 rmind * scheduler_wait_hook:
565 1.1.2.1 rmind *
566 1.1.2.1 rmind * Chargeback parents for the sins of their children.
567 1.1.2.1 rmind */
568 1.1.2.1 rmind void
569 1.1.2.1 rmind sched_proc_exit(struct proc *parent, struct proc *child)
570 1.1.2.1 rmind {
571 1.1.2.1 rmind fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
572 1.1.2.1 rmind fixpt_t estcpu;
573 1.1.2.1 rmind
574 1.1.2.1 rmind /* XXX Only if parent != init?? */
575 1.1.2.1 rmind
576 1.1.2.1 rmind mutex_spin_enter(&parent->p_stmutex);
577 1.1.2.1 rmind estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
578 1.1.2.1 rmind schedcpu_ticks - child->p_forktime);
579 1.1.2.1 rmind if (child->p_estcpu > estcpu)
580 1.1.2.1 rmind parent->p_estcpu =
581 1.1.2.1 rmind ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
582 1.1.2.1 rmind mutex_spin_exit(&parent->p_stmutex);
583 1.1.2.1 rmind }
584 1.1.2.1 rmind
585 1.1.2.1 rmind /*
586 1.1.2.1 rmind * On some architectures, it's faster to use a MSB ordering for the priorites
587 1.1.2.1 rmind * than the traditional LSB ordering.
588 1.1.2.1 rmind */
589 1.1.2.1 rmind #ifdef __HAVE_BIGENDIAN_BITOPS
590 1.1.2.1 rmind #define RQMASK(n) (0x80000000 >> (n))
591 1.1.2.1 rmind #else
592 1.1.2.1 rmind #define RQMASK(n) (0x00000001 << (n))
593 1.1.2.1 rmind #endif
594 1.1.2.1 rmind
595 1.1.2.1 rmind /*
596 1.1.2.1 rmind * Low-level routines to access the run queue. Optimised assembler
597 1.1.2.1 rmind * routines can override these.
598 1.1.2.1 rmind */
599 1.1.2.1 rmind
600 1.1.2.1 rmind #ifndef __HAVE_MD_RUNQUEUE
601 1.1.2.1 rmind
602 1.1.2.1 rmind /*
603 1.1.2.1 rmind * The primitives that manipulate the run queues. whichqs tells which
604 1.1.2.4 yamt * of the 32 queues qs have processes in them. sched_enqueue puts processes
605 1.1.2.4 yamt * into queues, sched_dequeue removes them from queues. The running process is
606 1.1.2.1 rmind * on no queue, other processes are on a queue related to p->p_priority,
607 1.1.2.1 rmind * divided by 4 actually to shrink the 0-127 range of priorities into the 32
608 1.1.2.1 rmind * available queues.
609 1.1.2.1 rmind */
610 1.1.2.1 rmind #ifdef RQDEBUG
611 1.1.2.1 rmind static void
612 1.1.2.1 rmind checkrunqueue(int whichq, struct lwp *l)
613 1.1.2.1 rmind {
614 1.1.2.1 rmind const struct prochd * const rq = &sched_qs[whichq];
615 1.1.2.1 rmind struct lwp *l2;
616 1.1.2.1 rmind int found = 0;
617 1.1.2.1 rmind int die = 0;
618 1.1.2.1 rmind int empty = 1;
619 1.1.2.1 rmind for (l2 = rq->ph_link; l2 != (const void*) rq; l2 = l2->l_forw) {
620 1.1.2.1 rmind if (l2->l_stat != LSRUN) {
621 1.1.2.1 rmind printf("checkrunqueue[%d]: lwp %p state (%d) "
622 1.1.2.1 rmind " != LSRUN\n", whichq, l2, l2->l_stat);
623 1.1.2.1 rmind }
624 1.1.2.1 rmind if (l2->l_back->l_forw != l2) {
625 1.1.2.1 rmind printf("checkrunqueue[%d]: lwp %p back-qptr (%p) "
626 1.1.2.1 rmind "corrupt %p\n", whichq, l2, l2->l_back,
627 1.1.2.1 rmind l2->l_back->l_forw);
628 1.1.2.1 rmind die = 1;
629 1.1.2.1 rmind }
630 1.1.2.1 rmind if (l2->l_forw->l_back != l2) {
631 1.1.2.1 rmind printf("checkrunqueue[%d]: lwp %p forw-qptr (%p) "
632 1.1.2.1 rmind "corrupt %p\n", whichq, l2, l2->l_forw,
633 1.1.2.1 rmind l2->l_forw->l_back);
634 1.1.2.1 rmind die = 1;
635 1.1.2.1 rmind }
636 1.1.2.1 rmind if (l2 == l)
637 1.1.2.1 rmind found = 1;
638 1.1.2.1 rmind empty = 0;
639 1.1.2.1 rmind }
640 1.1.2.1 rmind if (empty && (sched_whichqs & RQMASK(whichq)) != 0) {
641 1.1.2.1 rmind printf("checkrunqueue[%d]: bit set for empty run-queue %p\n",
642 1.1.2.1 rmind whichq, rq);
643 1.1.2.1 rmind die = 1;
644 1.1.2.1 rmind } else if (!empty && (sched_whichqs & RQMASK(whichq)) == 0) {
645 1.1.2.1 rmind printf("checkrunqueue[%d]: bit clear for non-empty "
646 1.1.2.1 rmind "run-queue %p\n", whichq, rq);
647 1.1.2.1 rmind die = 1;
648 1.1.2.1 rmind }
649 1.1.2.1 rmind if (l != NULL && (sched_whichqs & RQMASK(whichq)) == 0) {
650 1.1.2.1 rmind printf("checkrunqueue[%d]: bit clear for active lwp %p\n",
651 1.1.2.1 rmind whichq, l);
652 1.1.2.1 rmind die = 1;
653 1.1.2.1 rmind }
654 1.1.2.1 rmind if (l != NULL && empty) {
655 1.1.2.1 rmind printf("checkrunqueue[%d]: empty run-queue %p with "
656 1.1.2.1 rmind "active lwp %p\n", whichq, rq, l);
657 1.1.2.1 rmind die = 1;
658 1.1.2.1 rmind }
659 1.1.2.1 rmind if (l != NULL && !found) {
660 1.1.2.1 rmind printf("checkrunqueue[%d]: lwp %p not in runqueue %p!",
661 1.1.2.1 rmind whichq, l, rq);
662 1.1.2.1 rmind die = 1;
663 1.1.2.1 rmind }
664 1.1.2.1 rmind if (die)
665 1.1.2.1 rmind panic("checkrunqueue: inconsistency found");
666 1.1.2.1 rmind }
667 1.1.2.1 rmind #endif /* RQDEBUG */
668 1.1.2.1 rmind
669 1.1.2.1 rmind void
670 1.1.2.1 rmind sched_enqueue(struct lwp *l)
671 1.1.2.1 rmind {
672 1.1.2.9 rmind struct prochd *rq;
673 1.1.2.1 rmind struct lwp *prev;
674 1.1.2.8 yamt const int whichq = lwp_eprio(l) / PPQ;
675 1.1.2.1 rmind
676 1.1.2.1 rmind LOCK_ASSERT(lwp_locked(l, &sched_mutex));
677 1.1.2.1 rmind
678 1.1.2.1 rmind #ifdef RQDEBUG
679 1.1.2.1 rmind checkrunqueue(whichq, NULL);
680 1.1.2.1 rmind #endif
681 1.1.2.1 rmind #ifdef DIAGNOSTIC
682 1.1.2.1 rmind if (l->l_back != NULL || l->l_stat != LSRUN)
683 1.1.2.4 yamt panic("sched_enqueue");
684 1.1.2.1 rmind #endif
685 1.1.2.1 rmind sched_whichqs |= RQMASK(whichq);
686 1.1.2.1 rmind rq = &sched_qs[whichq];
687 1.1.2.1 rmind prev = rq->ph_rlink;
688 1.1.2.1 rmind l->l_forw = (struct lwp *)rq;
689 1.1.2.1 rmind rq->ph_rlink = l;
690 1.1.2.1 rmind prev->l_forw = l;
691 1.1.2.1 rmind l->l_back = prev;
692 1.1.2.1 rmind #ifdef RQDEBUG
693 1.1.2.1 rmind checkrunqueue(whichq, l);
694 1.1.2.1 rmind #endif
695 1.1.2.1 rmind }
696 1.1.2.1 rmind
697 1.1.2.1 rmind /*
698 1.1.2.4 yamt * XXXSMP When LWP dispatch (cpu_switch()) is changed to use sched_dequeue(),
699 1.1.2.1 rmind * drop of the effective priority level from kernel to user needs to be
700 1.1.2.1 rmind * moved here from userret(). The assignment in userret() is currently
701 1.1.2.1 rmind * done unlocked.
702 1.1.2.1 rmind */
703 1.1.2.1 rmind void
704 1.1.2.1 rmind sched_dequeue(struct lwp *l)
705 1.1.2.1 rmind {
706 1.1.2.1 rmind struct lwp *prev, *next;
707 1.1.2.8 yamt const int whichq = lwp_eprio(l) / PPQ;
708 1.1.2.1 rmind
709 1.1.2.1 rmind LOCK_ASSERT(lwp_locked(l, &sched_mutex));
710 1.1.2.1 rmind
711 1.1.2.1 rmind #ifdef RQDEBUG
712 1.1.2.1 rmind checkrunqueue(whichq, l);
713 1.1.2.1 rmind #endif
714 1.1.2.1 rmind
715 1.1.2.1 rmind #if defined(DIAGNOSTIC)
716 1.1.2.1 rmind if (((sched_whichqs & RQMASK(whichq)) == 0) || l->l_back == NULL) {
717 1.1.2.1 rmind /* Shouldn't happen - interrupts disabled. */
718 1.1.2.4 yamt panic("sched_dequeue: bit %d not set", whichq);
719 1.1.2.1 rmind }
720 1.1.2.1 rmind #endif
721 1.1.2.1 rmind prev = l->l_back;
722 1.1.2.1 rmind l->l_back = NULL;
723 1.1.2.1 rmind next = l->l_forw;
724 1.1.2.1 rmind prev->l_forw = next;
725 1.1.2.1 rmind next->l_back = prev;
726 1.1.2.1 rmind if (prev == next)
727 1.1.2.1 rmind sched_whichqs &= ~RQMASK(whichq);
728 1.1.2.1 rmind #ifdef RQDEBUG
729 1.1.2.1 rmind checkrunqueue(whichq, NULL);
730 1.1.2.1 rmind #endif
731 1.1.2.1 rmind }
732 1.1.2.1 rmind
733 1.1.2.1 rmind struct lwp *
734 1.1.2.9 rmind sched_switch(struct lwp *l)
735 1.1.2.1 rmind {
736 1.1.2.1 rmind const struct prochd *rq;
737 1.1.2.1 rmind int whichq;
738 1.1.2.1 rmind
739 1.1.2.9 rmind KASSERT(l != NULL);
740 1.1.2.9 rmind KASSERT(l->l_stat != LSRUN);
741 1.1.2.9 rmind
742 1.1.2.9 rmind if (l->l_stat == LSONPROC) {
743 1.1.2.9 rmind KASSERT(lwp_locked(l, &sched_mutex));
744 1.1.2.9 rmind l->l_stat = LSRUN;
745 1.1.2.9 rmind if ((l->l_flag & LW_IDLE) == 0) {
746 1.1.2.9 rmind sched_enqueue(l);
747 1.1.2.9 rmind }
748 1.1.2.9 rmind }
749 1.1.2.9 rmind
750 1.1.2.1 rmind if (sched_whichqs == 0) {
751 1.1.2.1 rmind return NULL;
752 1.1.2.1 rmind }
753 1.1.2.1 rmind #ifdef __HAVE_BIGENDIAN_BITOPS
754 1.1.2.1 rmind for (whichq = 0; ; whichq++) {
755 1.1.2.1 rmind if ((sched_whichqs & RQMASK(whichq)) != 0) {
756 1.1.2.1 rmind break;
757 1.1.2.1 rmind }
758 1.1.2.1 rmind }
759 1.1.2.1 rmind #else
760 1.1.2.1 rmind whichq = ffs(sched_whichqs) - 1;
761 1.1.2.1 rmind #endif
762 1.1.2.1 rmind rq = &sched_qs[whichq];
763 1.1.2.9 rmind return rq->ph_link;
764 1.1.2.1 rmind }
765 1.1.2.1 rmind
766 1.1.2.1 rmind #endif /* !defined(__HAVE_MD_RUNQUEUE) */
767 1.1.2.1 rmind
768 1.1.2.9 rmind /* Dummy */
769 1.1.2.9 rmind void sched_lwp_fork(struct lwp *l)
770 1.1.2.9 rmind {
771 1.1.2.9 rmind
772 1.1.2.9 rmind }
773 1.1.2.9 rmind
774 1.1.2.9 rmind void sched_lwp_exit(struct lwp *l)
775 1.1.2.9 rmind {
776 1.1.2.9 rmind
777 1.1.2.9 rmind }
778 1.1.2.9 rmind
779 1.1.2.9 rmind void sched_slept(struct lwp *l)
780 1.1.2.9 rmind {
781 1.1.2.9 rmind
782 1.1.2.9 rmind }
783 1.1.2.9 rmind
784 1.1.2.9 rmind /* SysCtl */
785 1.1.2.9 rmind
786 1.1.2.9 rmind SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup") {
787 1.1.2.9 rmind sysctl_createv(clog, 0, NULL, NULL,
788 1.1.2.9 rmind CTLFLAG_PERMANENT,
789 1.1.2.9 rmind CTLTYPE_NODE, "kern", NULL,
790 1.1.2.9 rmind NULL, 0, NULL, 0,
791 1.1.2.9 rmind CTL_KERN, CTL_EOL);
792 1.1.2.9 rmind sysctl_createv(clog, 0, NULL, NULL,
793 1.1.2.9 rmind CTLFLAG_PERMANENT,
794 1.1.2.9 rmind CTLTYPE_NODE, "sched",
795 1.1.2.9 rmind SYSCTL_DESCR("Scheduler options"),
796 1.1.2.9 rmind NULL, 0, NULL, 0,
797 1.1.2.9 rmind CTL_KERN, KERN_SCHED, CTL_EOL);
798 1.1.2.9 rmind sysctl_createv(clog, 0, NULL, NULL,
799 1.1.2.9 rmind CTLFLAG_PERMANENT,
800 1.1.2.9 rmind CTLTYPE_STRING, "name", NULL,
801 1.1.2.9 rmind NULL, 0, __UNCONST("4.4BSD"), 0,
802 1.1.2.9 rmind CTL_CREATE, CTL_EOL);
803 1.1.2.9 rmind sysctl_createv(clog, 0, NULL, NULL,
804 1.1.2.9 rmind CTLFLAG_PERMANENT,
805 1.1.2.9 rmind CTLTYPE_INT, "ccpu",
806 1.1.2.9 rmind SYSCTL_DESCR("Scheduler exponential decay value"),
807 1.1.2.9 rmind NULL, 0, &ccpu, 0,
808 1.1.2.9 rmind CTL_KERN, KERN_SCHED, CTL_CREATE, CTL_EOL);
809 1.1.2.9 rmind }
810 1.1.2.9 rmind
811 1.1.2.1 rmind #if defined(DDB)
812 1.1.2.1 rmind void
813 1.1.2.1 rmind sched_print_runqueue(void (*pr)(const char *, ...))
814 1.1.2.1 rmind {
815 1.1.2.1 rmind struct prochd *ph;
816 1.1.2.1 rmind struct lwp *l;
817 1.1.2.1 rmind int i, first;
818 1.1.2.1 rmind
819 1.1.2.1 rmind for (i = 0; i < RUNQUE_NQS; i++)
820 1.1.2.1 rmind {
821 1.1.2.1 rmind first = 1;
822 1.1.2.1 rmind ph = &sched_qs[i];
823 1.1.2.1 rmind for (l = ph->ph_link; l != (void *)ph; l = l->l_forw) {
824 1.1.2.1 rmind if (first) {
825 1.1.2.1 rmind (*pr)("%c%d",
826 1.1.2.1 rmind (sched_whichqs & RQMASK(i))
827 1.1.2.1 rmind ? ' ' : '!', i);
828 1.1.2.1 rmind first = 0;
829 1.1.2.1 rmind }
830 1.1.2.1 rmind (*pr)("\t%d.%d (%s) pri=%d usrpri=%d\n",
831 1.1.2.1 rmind l->l_proc->p_pid,
832 1.1.2.1 rmind l->l_lid, l->l_proc->p_comm,
833 1.1.2.1 rmind (int)l->l_priority, (int)l->l_usrpri);
834 1.1.2.1 rmind }
835 1.1.2.1 rmind }
836 1.1.2.1 rmind }
837 1.1.2.1 rmind #endif /* defined(DDB) */
838 1.1.2.1 rmind #undef RQMASK
839