sched_4bsd.c revision 1.1.6.2 1 1.1.6.1 ad /* $NetBSD: sched_4bsd.c,v 1.1.6.2 2007/06/17 21:31:29 ad Exp $ */
2 1.1.6.1 ad
3 1.1.6.1 ad /*-
4 1.1.6.1 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 1.1.6.1 ad * All rights reserved.
6 1.1.6.1 ad *
7 1.1.6.1 ad * This code is derived from software contributed to The NetBSD Foundation
8 1.1.6.1 ad * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.1.6.1 ad * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
10 1.1.6.1 ad * Daniel Sieger.
11 1.1.6.1 ad *
12 1.1.6.1 ad * Redistribution and use in source and binary forms, with or without
13 1.1.6.1 ad * modification, are permitted provided that the following conditions
14 1.1.6.1 ad * are met:
15 1.1.6.1 ad * 1. Redistributions of source code must retain the above copyright
16 1.1.6.1 ad * notice, this list of conditions and the following disclaimer.
17 1.1.6.1 ad * 2. Redistributions in binary form must reproduce the above copyright
18 1.1.6.1 ad * notice, this list of conditions and the following disclaimer in the
19 1.1.6.1 ad * documentation and/or other materials provided with the distribution.
20 1.1.6.1 ad * 3. All advertising materials mentioning features or use of this software
21 1.1.6.1 ad * must display the following acknowledgement:
22 1.1.6.1 ad * This product includes software developed by the NetBSD
23 1.1.6.1 ad * Foundation, Inc. and its contributors.
24 1.1.6.1 ad * 4. Neither the name of The NetBSD Foundation nor the names of its
25 1.1.6.1 ad * contributors may be used to endorse or promote products derived
26 1.1.6.1 ad * from this software without specific prior written permission.
27 1.1.6.1 ad *
28 1.1.6.1 ad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 1.1.6.1 ad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 1.1.6.1 ad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 1.1.6.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 1.1.6.1 ad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 1.1.6.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 1.1.6.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 1.1.6.1 ad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 1.1.6.1 ad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 1.1.6.1 ad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 1.1.6.1 ad * POSSIBILITY OF SUCH DAMAGE.
39 1.1.6.1 ad */
40 1.1.6.1 ad
41 1.1.6.1 ad /*-
42 1.1.6.1 ad * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 1.1.6.1 ad * The Regents of the University of California. All rights reserved.
44 1.1.6.1 ad * (c) UNIX System Laboratories, Inc.
45 1.1.6.1 ad * All or some portions of this file are derived from material licensed
46 1.1.6.1 ad * to the University of California by American Telephone and Telegraph
47 1.1.6.1 ad * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 1.1.6.1 ad * the permission of UNIX System Laboratories, Inc.
49 1.1.6.1 ad *
50 1.1.6.1 ad * Redistribution and use in source and binary forms, with or without
51 1.1.6.1 ad * modification, are permitted provided that the following conditions
52 1.1.6.1 ad * are met:
53 1.1.6.1 ad * 1. Redistributions of source code must retain the above copyright
54 1.1.6.1 ad * notice, this list of conditions and the following disclaimer.
55 1.1.6.1 ad * 2. Redistributions in binary form must reproduce the above copyright
56 1.1.6.1 ad * notice, this list of conditions and the following disclaimer in the
57 1.1.6.1 ad * documentation and/or other materials provided with the distribution.
58 1.1.6.1 ad * 3. Neither the name of the University nor the names of its contributors
59 1.1.6.1 ad * may be used to endorse or promote products derived from this software
60 1.1.6.1 ad * without specific prior written permission.
61 1.1.6.1 ad *
62 1.1.6.1 ad * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 1.1.6.1 ad * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 1.1.6.1 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 1.1.6.1 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 1.1.6.1 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 1.1.6.1 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 1.1.6.1 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 1.1.6.1 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 1.1.6.1 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 1.1.6.1 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 1.1.6.1 ad * SUCH DAMAGE.
73 1.1.6.1 ad *
74 1.1.6.1 ad * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 1.1.6.1 ad */
76 1.1.6.1 ad
77 1.1.6.1 ad #include <sys/cdefs.h>
78 1.1.6.1 ad __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.1.6.2 2007/06/17 21:31:29 ad Exp $");
79 1.1.6.1 ad
80 1.1.6.1 ad #include "opt_ddb.h"
81 1.1.6.1 ad #include "opt_lockdebug.h"
82 1.1.6.1 ad #include "opt_perfctrs.h"
83 1.1.6.1 ad
84 1.1.6.1 ad #define __MUTEX_PRIVATE
85 1.1.6.1 ad
86 1.1.6.1 ad #include <sys/param.h>
87 1.1.6.1 ad #include <sys/systm.h>
88 1.1.6.1 ad #include <sys/callout.h>
89 1.1.6.1 ad #include <sys/cpu.h>
90 1.1.6.1 ad #include <sys/proc.h>
91 1.1.6.1 ad #include <sys/kernel.h>
92 1.1.6.1 ad #include <sys/signalvar.h>
93 1.1.6.1 ad #include <sys/resourcevar.h>
94 1.1.6.1 ad #include <sys/sched.h>
95 1.1.6.1 ad #include <sys/sysctl.h>
96 1.1.6.1 ad #include <sys/kauth.h>
97 1.1.6.1 ad #include <sys/lockdebug.h>
98 1.1.6.1 ad #include <sys/kmem.h>
99 1.1.6.1 ad
100 1.1.6.1 ad #include <uvm/uvm_extern.h>
101 1.1.6.1 ad
102 1.1.6.1 ad /*
103 1.1.6.1 ad * Run queues.
104 1.1.6.1 ad *
105 1.1.6.1 ad * We have 32 run queues in descending priority of 0..31. We maintain
106 1.1.6.1 ad * a bitmask of non-empty queues in order speed up finding the first
107 1.1.6.1 ad * runnable process. The bitmask is maintained only by machine-dependent
108 1.1.6.1 ad * code, allowing the most efficient instructions to be used to find the
109 1.1.6.1 ad * first non-empty queue.
110 1.1.6.1 ad */
111 1.1.6.1 ad
112 1.1.6.2 ad #define RUNQUE_NQS 64 /* number of runqueues */
113 1.1.6.2 ad #define PPQ (PRI_COUNT / RUNQUE_NQS)/* priorities per queue */
114 1.1.6.1 ad
115 1.1.6.1 ad typedef struct subqueue {
116 1.1.6.1 ad TAILQ_HEAD(, lwp) sq_queue;
117 1.1.6.1 ad } subqueue_t;
118 1.1.6.2 ad
119 1.1.6.1 ad typedef struct runqueue {
120 1.1.6.2 ad subqueue_t rq_subqueues[RUNQUE_NQS]; /* run queues */
121 1.1.6.2 ad uint64_t rq_bitmap; /* bitmap of non-empty queues */
122 1.1.6.1 ad } runqueue_t;
123 1.1.6.2 ad
124 1.1.6.1 ad static runqueue_t global_queue;
125 1.1.6.1 ad
126 1.1.6.1 ad static void updatepri(struct lwp *);
127 1.1.6.1 ad static void resetpriority(struct lwp *);
128 1.1.6.1 ad static void resetprocpriority(struct proc *);
129 1.1.6.1 ad
130 1.1.6.1 ad extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
131 1.1.6.1 ad
132 1.1.6.1 ad /* The global scheduler state */
133 1.1.6.1 ad kmutex_t sched_mutex;
134 1.1.6.1 ad
135 1.1.6.1 ad /* Number of hardclock ticks per sched_tick() */
136 1.1.6.1 ad int rrticks;
137 1.1.6.1 ad
138 1.1.6.1 ad /*
139 1.1.6.1 ad * Force switch among equal priority processes every 100ms.
140 1.1.6.1 ad * Called from hardclock every hz/10 == rrticks hardclock ticks.
141 1.1.6.1 ad */
142 1.1.6.1 ad /* ARGSUSED */
143 1.1.6.1 ad void
144 1.1.6.1 ad sched_tick(struct cpu_info *ci)
145 1.1.6.1 ad {
146 1.1.6.1 ad struct schedstate_percpu *spc = &ci->ci_schedstate;
147 1.1.6.1 ad
148 1.1.6.1 ad spc->spc_ticks = rrticks;
149 1.1.6.1 ad
150 1.1.6.1 ad if (!CURCPU_IDLE_P()) {
151 1.1.6.1 ad if (spc->spc_flags & SPCF_SEENRR) {
152 1.1.6.1 ad /*
153 1.1.6.1 ad * The process has already been through a roundrobin
154 1.1.6.1 ad * without switching and may be hogging the CPU.
155 1.1.6.1 ad * Indicate that the process should yield.
156 1.1.6.1 ad */
157 1.1.6.1 ad spc->spc_flags |= SPCF_SHOULDYIELD;
158 1.1.6.1 ad } else
159 1.1.6.1 ad spc->spc_flags |= SPCF_SEENRR;
160 1.1.6.1 ad }
161 1.1.6.1 ad cpu_need_resched(curcpu(), 0);
162 1.1.6.1 ad }
163 1.1.6.1 ad
164 1.1.6.2 ad #define NICE_WEIGHT 1 /* priorities per nice level */
165 1.1.6.1 ad
166 1.1.6.1 ad #define ESTCPU_SHIFT 11
167 1.1.6.1 ad #define ESTCPU_MAX ((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
168 1.1.6.1 ad #define ESTCPULIM(e) min((e), ESTCPU_MAX)
169 1.1.6.1 ad
170 1.1.6.1 ad /*
171 1.1.6.1 ad * Constants for digital decay and forget:
172 1.1.6.1 ad * 90% of (p_estcpu) usage in 5 * loadav time
173 1.1.6.1 ad * 95% of (p_pctcpu) usage in 60 seconds (load insensitive)
174 1.1.6.1 ad * Note that, as ps(1) mentions, this can let percentages
175 1.1.6.1 ad * total over 100% (I've seen 137.9% for 3 processes).
176 1.1.6.1 ad *
177 1.1.6.1 ad * Note that hardclock updates p_estcpu and p_cpticks independently.
178 1.1.6.1 ad *
179 1.1.6.1 ad * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
180 1.1.6.1 ad * That is, the system wants to compute a value of decay such
181 1.1.6.1 ad * that the following for loop:
182 1.1.6.1 ad * for (i = 0; i < (5 * loadavg); i++)
183 1.1.6.1 ad * p_estcpu *= decay;
184 1.1.6.1 ad * will compute
185 1.1.6.1 ad * p_estcpu *= 0.1;
186 1.1.6.1 ad * for all values of loadavg:
187 1.1.6.1 ad *
188 1.1.6.1 ad * Mathematically this loop can be expressed by saying:
189 1.1.6.1 ad * decay ** (5 * loadavg) ~= .1
190 1.1.6.1 ad *
191 1.1.6.1 ad * The system computes decay as:
192 1.1.6.1 ad * decay = (2 * loadavg) / (2 * loadavg + 1)
193 1.1.6.1 ad *
194 1.1.6.1 ad * We wish to prove that the system's computation of decay
195 1.1.6.1 ad * will always fulfill the equation:
196 1.1.6.1 ad * decay ** (5 * loadavg) ~= .1
197 1.1.6.1 ad *
198 1.1.6.1 ad * If we compute b as:
199 1.1.6.1 ad * b = 2 * loadavg
200 1.1.6.1 ad * then
201 1.1.6.1 ad * decay = b / (b + 1)
202 1.1.6.1 ad *
203 1.1.6.1 ad * We now need to prove two things:
204 1.1.6.1 ad * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
205 1.1.6.1 ad * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
206 1.1.6.1 ad *
207 1.1.6.1 ad * Facts:
208 1.1.6.1 ad * For x close to zero, exp(x) =~ 1 + x, since
209 1.1.6.1 ad * exp(x) = 0! + x**1/1! + x**2/2! + ... .
210 1.1.6.1 ad * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
211 1.1.6.1 ad * For x close to zero, ln(1+x) =~ x, since
212 1.1.6.1 ad * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
213 1.1.6.1 ad * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
214 1.1.6.1 ad * ln(.1) =~ -2.30
215 1.1.6.1 ad *
216 1.1.6.1 ad * Proof of (1):
217 1.1.6.1 ad * Solve (factor)**(power) =~ .1 given power (5*loadav):
218 1.1.6.1 ad * solving for factor,
219 1.1.6.1 ad * ln(factor) =~ (-2.30/5*loadav), or
220 1.1.6.1 ad * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
221 1.1.6.1 ad * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
222 1.1.6.1 ad *
223 1.1.6.1 ad * Proof of (2):
224 1.1.6.1 ad * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
225 1.1.6.1 ad * solving for power,
226 1.1.6.1 ad * power*ln(b/(b+1)) =~ -2.30, or
227 1.1.6.1 ad * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
228 1.1.6.1 ad *
229 1.1.6.1 ad * Actual power values for the implemented algorithm are as follows:
230 1.1.6.1 ad * loadav: 1 2 3 4
231 1.1.6.1 ad * power: 5.68 10.32 14.94 19.55
232 1.1.6.1 ad */
233 1.1.6.1 ad
234 1.1.6.1 ad /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
235 1.1.6.1 ad #define loadfactor(loadav) (2 * (loadav))
236 1.1.6.1 ad
237 1.1.6.1 ad static fixpt_t
238 1.1.6.1 ad decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
239 1.1.6.1 ad {
240 1.1.6.1 ad
241 1.1.6.1 ad if (estcpu == 0) {
242 1.1.6.1 ad return 0;
243 1.1.6.1 ad }
244 1.1.6.1 ad
245 1.1.6.1 ad #if !defined(_LP64)
246 1.1.6.1 ad /* avoid 64bit arithmetics. */
247 1.1.6.1 ad #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
248 1.1.6.1 ad if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
249 1.1.6.1 ad return estcpu * loadfac / (loadfac + FSCALE);
250 1.1.6.1 ad }
251 1.1.6.1 ad #endif /* !defined(_LP64) */
252 1.1.6.1 ad
253 1.1.6.1 ad return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
254 1.1.6.1 ad }
255 1.1.6.1 ad
256 1.1.6.1 ad /*
257 1.1.6.1 ad * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
258 1.1.6.1 ad * sleeping for at least seven times the loadfactor will decay p_estcpu to
259 1.1.6.1 ad * less than (1 << ESTCPU_SHIFT).
260 1.1.6.1 ad *
261 1.1.6.1 ad * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
262 1.1.6.1 ad */
263 1.1.6.1 ad static fixpt_t
264 1.1.6.1 ad decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
265 1.1.6.1 ad {
266 1.1.6.1 ad
267 1.1.6.1 ad if ((n << FSHIFT) >= 7 * loadfac) {
268 1.1.6.1 ad return 0;
269 1.1.6.1 ad }
270 1.1.6.1 ad
271 1.1.6.1 ad while (estcpu != 0 && n > 1) {
272 1.1.6.1 ad estcpu = decay_cpu(loadfac, estcpu);
273 1.1.6.1 ad n--;
274 1.1.6.1 ad }
275 1.1.6.1 ad
276 1.1.6.1 ad return estcpu;
277 1.1.6.1 ad }
278 1.1.6.1 ad
279 1.1.6.1 ad /*
280 1.1.6.1 ad * sched_pstats_hook:
281 1.1.6.1 ad *
282 1.1.6.1 ad * Periodically called from sched_pstats(); used to recalculate priorities.
283 1.1.6.1 ad */
284 1.1.6.1 ad void
285 1.1.6.1 ad sched_pstats_hook(struct proc *p, int minslp)
286 1.1.6.1 ad {
287 1.1.6.1 ad struct lwp *l;
288 1.1.6.1 ad fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
289 1.1.6.1 ad
290 1.1.6.1 ad /*
291 1.1.6.1 ad * If the process has slept the entire second,
292 1.1.6.1 ad * stop recalculating its priority until it wakes up.
293 1.1.6.1 ad */
294 1.1.6.1 ad if (minslp <= 1) {
295 1.1.6.1 ad p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
296 1.1.6.1 ad
297 1.1.6.1 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
298 1.1.6.1 ad if ((l->l_flag & LW_IDLE) != 0)
299 1.1.6.1 ad continue;
300 1.1.6.1 ad lwp_lock(l);
301 1.1.6.2 ad if (l->l_slptime <= 1 && l->l_priority < PRI_KERNEL)
302 1.1.6.1 ad resetpriority(l);
303 1.1.6.1 ad lwp_unlock(l);
304 1.1.6.1 ad }
305 1.1.6.1 ad }
306 1.1.6.1 ad }
307 1.1.6.1 ad
308 1.1.6.1 ad /*
309 1.1.6.1 ad * Recalculate the priority of a process after it has slept for a while.
310 1.1.6.1 ad */
311 1.1.6.1 ad static void
312 1.1.6.1 ad updatepri(struct lwp *l)
313 1.1.6.1 ad {
314 1.1.6.1 ad struct proc *p = l->l_proc;
315 1.1.6.1 ad fixpt_t loadfac;
316 1.1.6.1 ad
317 1.1.6.1 ad KASSERT(lwp_locked(l, NULL));
318 1.1.6.1 ad KASSERT(l->l_slptime > 1);
319 1.1.6.1 ad
320 1.1.6.1 ad loadfac = loadfactor(averunnable.ldavg[0]);
321 1.1.6.1 ad
322 1.1.6.1 ad l->l_slptime--; /* the first time was done in sched_pstats */
323 1.1.6.1 ad /* XXX NJWLWP */
324 1.1.6.1 ad /* XXXSMP occasionally unlocked, should be per-LWP */
325 1.1.6.1 ad p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
326 1.1.6.1 ad resetpriority(l);
327 1.1.6.1 ad }
328 1.1.6.1 ad
329 1.1.6.1 ad /*
330 1.1.6.1 ad * On some architectures, it's faster to use a MSB ordering for the priorites
331 1.1.6.1 ad * than the traditional LSB ordering.
332 1.1.6.1 ad */
333 1.1.6.2 ad #define RQMASK(n) (1ULL << (n))
334 1.1.6.2 ad #define WHICHQ(p) (RUNQUE_NQS - 1 - ((p) / PPQ))
335 1.1.6.1 ad
336 1.1.6.1 ad /*
337 1.1.6.1 ad * The primitives that manipulate the run queues. whichqs tells which
338 1.1.6.1 ad * of the 32 queues qs have processes in them. sched_enqueue() puts processes
339 1.1.6.1 ad * into queues, sched_dequeue removes them from queues. The running process is
340 1.1.6.1 ad * on no queue, other processes are on a queue related to p->p_priority,
341 1.1.6.1 ad * divided by 4 actually to shrink the 0-127 range of priorities into the 32
342 1.1.6.1 ad * available queues.
343 1.1.6.1 ad */
344 1.1.6.1 ad #ifdef RQDEBUG
345 1.1.6.1 ad static void
346 1.1.6.1 ad runqueue_check(const runqueue_t *rq, int whichq, struct lwp *l)
347 1.1.6.1 ad {
348 1.1.6.1 ad const subqueue_t * const sq = &rq->rq_subqueues[whichq];
349 1.1.6.1 ad const uint32_t bitmap = rq->rq_bitmap;
350 1.1.6.1 ad struct lwp *l2;
351 1.1.6.1 ad int found = 0;
352 1.1.6.1 ad int die = 0;
353 1.1.6.1 ad int empty = 1;
354 1.1.6.1 ad
355 1.1.6.1 ad TAILQ_FOREACH(l2, &sq->sq_queue, l_runq) {
356 1.1.6.1 ad if (l2->l_stat != LSRUN) {
357 1.1.6.1 ad printf("runqueue_check[%d]: lwp %p state (%d) "
358 1.1.6.1 ad " != LSRUN\n", whichq, l2, l2->l_stat);
359 1.1.6.1 ad }
360 1.1.6.1 ad if (l2 == l)
361 1.1.6.1 ad found = 1;
362 1.1.6.1 ad empty = 0;
363 1.1.6.1 ad }
364 1.1.6.1 ad if (empty && (bitmap & RQMASK(whichq)) != 0) {
365 1.1.6.1 ad printf("runqueue_check[%d]: bit set for empty run-queue %p\n",
366 1.1.6.1 ad whichq, rq);
367 1.1.6.1 ad die = 1;
368 1.1.6.1 ad } else if (!empty && (bitmap & RQMASK(whichq)) == 0) {
369 1.1.6.1 ad printf("runqueue_check[%d]: bit clear for non-empty "
370 1.1.6.1 ad "run-queue %p\n", whichq, rq);
371 1.1.6.1 ad die = 1;
372 1.1.6.1 ad }
373 1.1.6.1 ad if (l != NULL && (bitmap & RQMASK(whichq)) == 0) {
374 1.1.6.1 ad printf("runqueue_check[%d]: bit clear for active lwp %p\n",
375 1.1.6.1 ad whichq, l);
376 1.1.6.1 ad die = 1;
377 1.1.6.1 ad }
378 1.1.6.1 ad if (l != NULL && empty) {
379 1.1.6.1 ad printf("runqueue_check[%d]: empty run-queue %p with "
380 1.1.6.1 ad "active lwp %p\n", whichq, rq, l);
381 1.1.6.1 ad die = 1;
382 1.1.6.1 ad }
383 1.1.6.1 ad if (l != NULL && !found) {
384 1.1.6.1 ad printf("runqueue_check[%d]: lwp %p not in runqueue %p!",
385 1.1.6.1 ad whichq, l, rq);
386 1.1.6.1 ad die = 1;
387 1.1.6.1 ad }
388 1.1.6.1 ad if (die)
389 1.1.6.1 ad panic("runqueue_check: inconsistency found");
390 1.1.6.1 ad }
391 1.1.6.1 ad #else /* RQDEBUG */
392 1.1.6.1 ad #define runqueue_check(a, b, c) /* nothing */
393 1.1.6.1 ad #endif /* RQDEBUG */
394 1.1.6.1 ad
395 1.1.6.1 ad static void
396 1.1.6.1 ad runqueue_init(runqueue_t *rq)
397 1.1.6.1 ad {
398 1.1.6.1 ad int i;
399 1.1.6.1 ad
400 1.1.6.1 ad for (i = 0; i < RUNQUE_NQS; i++)
401 1.1.6.1 ad TAILQ_INIT(&rq->rq_subqueues[i].sq_queue);
402 1.1.6.1 ad }
403 1.1.6.1 ad
404 1.1.6.1 ad static void
405 1.1.6.1 ad runqueue_enqueue(runqueue_t *rq, struct lwp *l)
406 1.1.6.1 ad {
407 1.1.6.1 ad subqueue_t *sq;
408 1.1.6.2 ad const int whichq = WHICHQ(lwp_eprio(l));
409 1.1.6.2 ad const uint64_t rqmask = RQMASK(whichq);
410 1.1.6.1 ad
411 1.1.6.1 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
412 1.1.6.1 ad
413 1.1.6.1 ad runqueue_check(rq, whichq, NULL);
414 1.1.6.2 ad rq->rq_bitmap |= rqmask;
415 1.1.6.1 ad sq = &rq->rq_subqueues[whichq];
416 1.1.6.1 ad TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_runq);
417 1.1.6.1 ad runqueue_check(rq, whichq, l);
418 1.1.6.1 ad }
419 1.1.6.1 ad
420 1.1.6.1 ad static void
421 1.1.6.1 ad runqueue_dequeue(runqueue_t *rq, struct lwp *l)
422 1.1.6.1 ad {
423 1.1.6.1 ad subqueue_t *sq;
424 1.1.6.2 ad const int whichq = WHICHQ(lwp_eprio(l));
425 1.1.6.2 ad const uint64_t rqmask = RQMASK(whichq);
426 1.1.6.1 ad
427 1.1.6.1 ad KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
428 1.1.6.1 ad
429 1.1.6.1 ad runqueue_check(rq, whichq, l);
430 1.1.6.2 ad KASSERT((rq->rq_bitmap & rqmask) != 0);
431 1.1.6.1 ad sq = &rq->rq_subqueues[whichq];
432 1.1.6.1 ad TAILQ_REMOVE(&sq->sq_queue, l, l_runq);
433 1.1.6.1 ad if (TAILQ_EMPTY(&sq->sq_queue))
434 1.1.6.2 ad rq->rq_bitmap &= ~rqmask;
435 1.1.6.1 ad runqueue_check(rq, whichq, NULL);
436 1.1.6.1 ad }
437 1.1.6.1 ad
438 1.1.6.1 ad static struct lwp *
439 1.1.6.1 ad runqueue_nextlwp(runqueue_t *rq)
440 1.1.6.1 ad {
441 1.1.6.2 ad const uint64_t bitmap = rq->rq_bitmap;
442 1.1.6.1 ad int whichq;
443 1.1.6.1 ad
444 1.1.6.1 ad if (bitmap == 0) {
445 1.1.6.1 ad return NULL;
446 1.1.6.1 ad }
447 1.1.6.2 ad whichq = ffs((uint32_t)bitmap) - 1;
448 1.1.6.2 ad if (whichq != -1)
449 1.1.6.2 ad return TAILQ_FIRST(&rq->rq_subqueues[whichq].sq_queue);
450 1.1.6.2 ad whichq = ffs((uint32_t)(bitmap >> 32)) - 1;
451 1.1.6.2 ad return TAILQ_FIRST(&rq->rq_subqueues[whichq + 32].sq_queue);
452 1.1.6.1 ad }
453 1.1.6.1 ad
454 1.1.6.1 ad #if defined(DDB)
455 1.1.6.1 ad static void
456 1.1.6.1 ad runqueue_print(const runqueue_t *rq, void (*pr)(const char *, ...))
457 1.1.6.1 ad {
458 1.1.6.2 ad const uint64_t bitmap = rq->rq_bitmap;
459 1.1.6.1 ad struct lwp *l;
460 1.1.6.1 ad int i, first;
461 1.1.6.1 ad
462 1.1.6.1 ad for (i = 0; i < RUNQUE_NQS; i++) {
463 1.1.6.1 ad const subqueue_t *sq;
464 1.1.6.1 ad first = 1;
465 1.1.6.1 ad sq = &rq->rq_subqueues[i];
466 1.1.6.1 ad TAILQ_FOREACH(l, &sq->sq_queue, l_runq) {
467 1.1.6.1 ad if (first) {
468 1.1.6.1 ad (*pr)("%c%d",
469 1.1.6.1 ad (bitmap & RQMASK(i)) ? ' ' : '!', i);
470 1.1.6.1 ad first = 0;
471 1.1.6.1 ad }
472 1.1.6.1 ad (*pr)("\t%d.%d (%s) pri=%d usrpri=%d\n",
473 1.1.6.1 ad l->l_proc->p_pid,
474 1.1.6.1 ad l->l_lid, l->l_proc->p_comm,
475 1.1.6.1 ad (int)l->l_priority, (int)l->l_usrpri);
476 1.1.6.1 ad }
477 1.1.6.1 ad }
478 1.1.6.1 ad }
479 1.1.6.1 ad #endif /* defined(DDB) */
480 1.1.6.1 ad
481 1.1.6.1 ad /*
482 1.1.6.1 ad * Initialize the (doubly-linked) run queues
483 1.1.6.1 ad * to be empty.
484 1.1.6.1 ad */
485 1.1.6.1 ad void
486 1.1.6.1 ad sched_rqinit()
487 1.1.6.1 ad {
488 1.1.6.1 ad
489 1.1.6.1 ad runqueue_init(&global_queue);
490 1.1.6.1 ad mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
491 1.1.6.1 ad /* Initialize the lock pointer for lwp0 */
492 1.1.6.1 ad lwp0.l_mutex = &curcpu()->ci_schedstate.spc_lwplock;
493 1.1.6.1 ad }
494 1.1.6.1 ad
495 1.1.6.1 ad void
496 1.1.6.1 ad sched_cpuattach(struct cpu_info *ci)
497 1.1.6.1 ad {
498 1.1.6.1 ad runqueue_t *rq;
499 1.1.6.1 ad
500 1.1.6.1 ad ci->ci_schedstate.spc_mutex = &sched_mutex;
501 1.1.6.1 ad rq = kmem_zalloc(sizeof(*rq), KM_NOSLEEP);
502 1.1.6.1 ad runqueue_init(rq);
503 1.1.6.1 ad ci->ci_schedstate.spc_sched_info = rq;
504 1.1.6.1 ad }
505 1.1.6.1 ad
506 1.1.6.1 ad void
507 1.1.6.1 ad sched_setup()
508 1.1.6.1 ad {
509 1.1.6.1 ad
510 1.1.6.1 ad rrticks = hz / 10;
511 1.1.6.1 ad sched_pstats(NULL);
512 1.1.6.1 ad }
513 1.1.6.1 ad
514 1.1.6.1 ad void
515 1.1.6.1 ad sched_setrunnable(struct lwp *l)
516 1.1.6.1 ad {
517 1.1.6.1 ad
518 1.1.6.1 ad if (l->l_slptime > 1)
519 1.1.6.1 ad updatepri(l);
520 1.1.6.1 ad }
521 1.1.6.1 ad
522 1.1.6.1 ad bool
523 1.1.6.1 ad sched_curcpu_runnable_p(void)
524 1.1.6.1 ad {
525 1.1.6.1 ad runqueue_t *rq = curcpu()->ci_schedstate.spc_sched_info;
526 1.1.6.1 ad
527 1.1.6.1 ad return (global_queue.rq_bitmap | rq->rq_bitmap) != 0;
528 1.1.6.1 ad }
529 1.1.6.1 ad
530 1.1.6.1 ad void
531 1.1.6.1 ad sched_nice(struct proc *chgp, int n)
532 1.1.6.1 ad {
533 1.1.6.1 ad
534 1.1.6.1 ad chgp->p_nice = n;
535 1.1.6.1 ad (void)resetprocpriority(chgp);
536 1.1.6.1 ad }
537 1.1.6.1 ad
538 1.1.6.1 ad /*
539 1.1.6.1 ad * Compute the priority of a process when running in user mode.
540 1.1.6.1 ad * Arrange to reschedule if the resulting priority is better
541 1.1.6.1 ad * than that of the current process.
542 1.1.6.1 ad */
543 1.1.6.1 ad static void
544 1.1.6.1 ad resetpriority(struct lwp *l)
545 1.1.6.1 ad {
546 1.1.6.1 ad unsigned int newpriority;
547 1.1.6.1 ad struct proc *p = l->l_proc;
548 1.1.6.1 ad
549 1.1.6.1 ad /* XXXSMP KASSERT(mutex_owned(&p->p_stmutex)); */
550 1.1.6.1 ad KASSERT(lwp_locked(l, NULL));
551 1.1.6.1 ad
552 1.1.6.1 ad if ((l->l_flag & LW_SYSTEM) != 0)
553 1.1.6.1 ad return;
554 1.1.6.1 ad
555 1.1.6.2 ad newpriority = PRI_KERNEL - 1 - (p->p_estcpu >> ESTCPU_SHIFT) -
556 1.1.6.1 ad NICE_WEIGHT * (p->p_nice - NZERO);
557 1.1.6.2 ad newpriority = max(newpriority, 0);
558 1.1.6.1 ad lwp_changepri(l, newpriority);
559 1.1.6.1 ad }
560 1.1.6.1 ad
561 1.1.6.1 ad /*
562 1.1.6.1 ad * Recompute priority for all LWPs in a process.
563 1.1.6.1 ad */
564 1.1.6.1 ad static void
565 1.1.6.1 ad resetprocpriority(struct proc *p)
566 1.1.6.1 ad {
567 1.1.6.1 ad struct lwp *l;
568 1.1.6.1 ad
569 1.1.6.1 ad KASSERT(mutex_owned(&p->p_stmutex));
570 1.1.6.1 ad
571 1.1.6.1 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
572 1.1.6.1 ad lwp_lock(l);
573 1.1.6.1 ad resetpriority(l);
574 1.1.6.1 ad lwp_unlock(l);
575 1.1.6.1 ad }
576 1.1.6.1 ad }
577 1.1.6.1 ad
578 1.1.6.1 ad /*
579 1.1.6.1 ad * We adjust the priority of the current process. The priority of a process
580 1.1.6.1 ad * gets worse as it accumulates CPU time. The CPU usage estimator (p_estcpu)
581 1.1.6.1 ad * is increased here. The formula for computing priorities (in kern_synch.c)
582 1.1.6.1 ad * will compute a different value each time p_estcpu increases. This can
583 1.1.6.1 ad * cause a switch, but unless the priority crosses a PPQ boundary the actual
584 1.1.6.1 ad * queue will not change. The CPU usage estimator ramps up quite quickly
585 1.1.6.1 ad * when the process is running (linearly), and decays away exponentially, at
586 1.1.6.1 ad * a rate which is proportionally slower when the system is busy. The basic
587 1.1.6.1 ad * principle is that the system will 90% forget that the process used a lot
588 1.1.6.1 ad * of CPU time in 5 * loadav seconds. This causes the system to favor
589 1.1.6.1 ad * processes which haven't run much recently, and to round-robin among other
590 1.1.6.1 ad * processes.
591 1.1.6.1 ad */
592 1.1.6.1 ad
593 1.1.6.1 ad void
594 1.1.6.1 ad sched_schedclock(struct lwp *l)
595 1.1.6.1 ad {
596 1.1.6.1 ad struct proc *p = l->l_proc;
597 1.1.6.1 ad
598 1.1.6.1 ad KASSERT(!CURCPU_IDLE_P());
599 1.1.6.1 ad mutex_spin_enter(&p->p_stmutex);
600 1.1.6.1 ad p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
601 1.1.6.1 ad lwp_lock(l);
602 1.1.6.1 ad resetpriority(l);
603 1.1.6.1 ad mutex_spin_exit(&p->p_stmutex);
604 1.1.6.2 ad if ((l->l_flag & LW_SYSTEM) == 0 && l->l_priority < PRI_KERNEL)
605 1.1.6.1 ad l->l_priority = l->l_usrpri;
606 1.1.6.1 ad lwp_unlock(l);
607 1.1.6.1 ad }
608 1.1.6.1 ad
609 1.1.6.1 ad /*
610 1.1.6.1 ad * sched_proc_fork:
611 1.1.6.1 ad *
612 1.1.6.1 ad * Inherit the parent's scheduler history.
613 1.1.6.1 ad */
614 1.1.6.1 ad void
615 1.1.6.1 ad sched_proc_fork(struct proc *parent, struct proc *child)
616 1.1.6.1 ad {
617 1.1.6.1 ad
618 1.1.6.1 ad KASSERT(mutex_owned(&parent->p_smutex));
619 1.1.6.1 ad
620 1.1.6.1 ad child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
621 1.1.6.1 ad child->p_forktime = sched_pstats_ticks;
622 1.1.6.1 ad }
623 1.1.6.1 ad
624 1.1.6.1 ad /*
625 1.1.6.1 ad * sched_proc_exit:
626 1.1.6.1 ad *
627 1.1.6.1 ad * Chargeback parents for the sins of their children.
628 1.1.6.1 ad */
629 1.1.6.1 ad void
630 1.1.6.1 ad sched_proc_exit(struct proc *parent, struct proc *child)
631 1.1.6.1 ad {
632 1.1.6.1 ad fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
633 1.1.6.1 ad fixpt_t estcpu;
634 1.1.6.1 ad
635 1.1.6.1 ad /* XXX Only if parent != init?? */
636 1.1.6.1 ad
637 1.1.6.1 ad mutex_spin_enter(&parent->p_stmutex);
638 1.1.6.1 ad estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
639 1.1.6.1 ad sched_pstats_ticks - child->p_forktime);
640 1.1.6.1 ad if (child->p_estcpu > estcpu)
641 1.1.6.1 ad parent->p_estcpu =
642 1.1.6.1 ad ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
643 1.1.6.1 ad mutex_spin_exit(&parent->p_stmutex);
644 1.1.6.1 ad }
645 1.1.6.1 ad
646 1.1.6.1 ad void
647 1.1.6.1 ad sched_enqueue(struct lwp *l, bool ctxswitch)
648 1.1.6.1 ad {
649 1.1.6.1 ad
650 1.1.6.1 ad if ((l->l_flag & LW_BOUND) != 0)
651 1.1.6.1 ad runqueue_enqueue(l->l_cpu->ci_schedstate.spc_sched_info, l);
652 1.1.6.1 ad else
653 1.1.6.1 ad runqueue_enqueue(&global_queue, l);
654 1.1.6.1 ad }
655 1.1.6.1 ad
656 1.1.6.1 ad /*
657 1.1.6.1 ad * XXXSMP When LWP dispatch (cpu_switch()) is changed to use sched_dequeue(),
658 1.1.6.1 ad * drop of the effective priority level from kernel to user needs to be
659 1.1.6.1 ad * moved here from userret(). The assignment in userret() is currently
660 1.1.6.1 ad * done unlocked.
661 1.1.6.1 ad */
662 1.1.6.1 ad void
663 1.1.6.1 ad sched_dequeue(struct lwp *l)
664 1.1.6.1 ad {
665 1.1.6.1 ad
666 1.1.6.1 ad if ((l->l_flag & LW_BOUND) != 0)
667 1.1.6.1 ad runqueue_dequeue(l->l_cpu->ci_schedstate.spc_sched_info, l);
668 1.1.6.1 ad else
669 1.1.6.1 ad runqueue_dequeue(&global_queue, l);
670 1.1.6.1 ad }
671 1.1.6.1 ad
672 1.1.6.1 ad struct lwp *
673 1.1.6.1 ad sched_nextlwp(void)
674 1.1.6.1 ad {
675 1.1.6.1 ad lwp_t *l1, *l2;
676 1.1.6.1 ad
677 1.1.6.1 ad /* For now, just pick the highest priority LWP. */
678 1.1.6.1 ad l1 = runqueue_nextlwp(curcpu()->ci_schedstate.spc_sched_info);
679 1.1.6.1 ad l2 = runqueue_nextlwp(&global_queue);
680 1.1.6.1 ad
681 1.1.6.1 ad if (l1 == NULL)
682 1.1.6.1 ad return l2;
683 1.1.6.1 ad if (l2 == NULL)
684 1.1.6.1 ad return l1;
685 1.1.6.2 ad if (lwp_eprio(l2) > lwp_eprio(l1))
686 1.1.6.1 ad return l2;
687 1.1.6.1 ad else
688 1.1.6.1 ad return l1;
689 1.1.6.1 ad }
690 1.1.6.1 ad
691 1.1.6.1 ad /* Dummy */
692 1.1.6.1 ad void
693 1.1.6.1 ad sched_lwp_fork(struct lwp *l)
694 1.1.6.1 ad {
695 1.1.6.1 ad
696 1.1.6.1 ad }
697 1.1.6.1 ad
698 1.1.6.1 ad void
699 1.1.6.1 ad sched_lwp_exit(struct lwp *l)
700 1.1.6.1 ad {
701 1.1.6.1 ad
702 1.1.6.1 ad }
703 1.1.6.1 ad
704 1.1.6.1 ad /* SysCtl */
705 1.1.6.1 ad
706 1.1.6.1 ad SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
707 1.1.6.1 ad {
708 1.1.6.1 ad const struct sysctlnode *node = NULL;
709 1.1.6.1 ad
710 1.1.6.1 ad sysctl_createv(clog, 0, NULL, NULL,
711 1.1.6.1 ad CTLFLAG_PERMANENT,
712 1.1.6.1 ad CTLTYPE_NODE, "kern", NULL,
713 1.1.6.1 ad NULL, 0, NULL, 0,
714 1.1.6.1 ad CTL_KERN, CTL_EOL);
715 1.1.6.1 ad sysctl_createv(clog, 0, NULL, &node,
716 1.1.6.1 ad CTLFLAG_PERMANENT,
717 1.1.6.1 ad CTLTYPE_NODE, "sched",
718 1.1.6.1 ad SYSCTL_DESCR("Scheduler options"),
719 1.1.6.1 ad NULL, 0, NULL, 0,
720 1.1.6.1 ad CTL_KERN, CTL_CREATE, CTL_EOL);
721 1.1.6.1 ad
722 1.1.6.1 ad if (node != NULL) {
723 1.1.6.1 ad sysctl_createv(clog, 0, &node, NULL,
724 1.1.6.1 ad CTLFLAG_PERMANENT,
725 1.1.6.1 ad CTLTYPE_STRING, "name", NULL,
726 1.1.6.1 ad NULL, 0, __UNCONST("4.4BSD"), 0,
727 1.1.6.1 ad CTL_CREATE, CTL_EOL);
728 1.1.6.1 ad }
729 1.1.6.1 ad }
730 1.1.6.1 ad
731 1.1.6.1 ad #if defined(DDB)
732 1.1.6.1 ad void
733 1.1.6.1 ad sched_print_runqueue(void (*pr)(const char *, ...))
734 1.1.6.1 ad {
735 1.1.6.1 ad
736 1.1.6.1 ad runqueue_print(&global_queue, pr);
737 1.1.6.1 ad }
738 1.1.6.1 ad #endif /* defined(DDB) */
739