Home | History | Annotate | Line # | Download | only in kern
sched_4bsd.c revision 1.1.6.7
      1  1.1.6.7  ad /*	$NetBSD: sched_4bsd.c,v 1.1.6.7 2007/08/21 13:59:44 ad Exp $	*/
      2  1.1.6.1  ad 
      3  1.1.6.1  ad /*-
      4  1.1.6.1  ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5  1.1.6.1  ad  * All rights reserved.
      6  1.1.6.1  ad  *
      7  1.1.6.1  ad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.1.6.1  ad  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.1.6.1  ad  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
     10  1.1.6.1  ad  * Daniel Sieger.
     11  1.1.6.1  ad  *
     12  1.1.6.1  ad  * Redistribution and use in source and binary forms, with or without
     13  1.1.6.1  ad  * modification, are permitted provided that the following conditions
     14  1.1.6.1  ad  * are met:
     15  1.1.6.1  ad  * 1. Redistributions of source code must retain the above copyright
     16  1.1.6.1  ad  *    notice, this list of conditions and the following disclaimer.
     17  1.1.6.1  ad  * 2. Redistributions in binary form must reproduce the above copyright
     18  1.1.6.1  ad  *    notice, this list of conditions and the following disclaimer in the
     19  1.1.6.1  ad  *    documentation and/or other materials provided with the distribution.
     20  1.1.6.1  ad  * 3. All advertising materials mentioning features or use of this software
     21  1.1.6.1  ad  *    must display the following acknowledgement:
     22  1.1.6.1  ad  *	This product includes software developed by the NetBSD
     23  1.1.6.1  ad  *	Foundation, Inc. and its contributors.
     24  1.1.6.1  ad  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25  1.1.6.1  ad  *    contributors may be used to endorse or promote products derived
     26  1.1.6.1  ad  *    from this software without specific prior written permission.
     27  1.1.6.1  ad  *
     28  1.1.6.1  ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29  1.1.6.1  ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30  1.1.6.1  ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31  1.1.6.1  ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32  1.1.6.1  ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33  1.1.6.1  ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34  1.1.6.1  ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35  1.1.6.1  ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36  1.1.6.1  ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37  1.1.6.1  ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  1.1.6.1  ad  * POSSIBILITY OF SUCH DAMAGE.
     39  1.1.6.1  ad  */
     40  1.1.6.1  ad 
     41  1.1.6.1  ad /*-
     42  1.1.6.1  ad  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43  1.1.6.1  ad  *	The Regents of the University of California.  All rights reserved.
     44  1.1.6.1  ad  * (c) UNIX System Laboratories, Inc.
     45  1.1.6.1  ad  * All or some portions of this file are derived from material licensed
     46  1.1.6.1  ad  * to the University of California by American Telephone and Telegraph
     47  1.1.6.1  ad  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48  1.1.6.1  ad  * the permission of UNIX System Laboratories, Inc.
     49  1.1.6.1  ad  *
     50  1.1.6.1  ad  * Redistribution and use in source and binary forms, with or without
     51  1.1.6.1  ad  * modification, are permitted provided that the following conditions
     52  1.1.6.1  ad  * are met:
     53  1.1.6.1  ad  * 1. Redistributions of source code must retain the above copyright
     54  1.1.6.1  ad  *    notice, this list of conditions and the following disclaimer.
     55  1.1.6.1  ad  * 2. Redistributions in binary form must reproduce the above copyright
     56  1.1.6.1  ad  *    notice, this list of conditions and the following disclaimer in the
     57  1.1.6.1  ad  *    documentation and/or other materials provided with the distribution.
     58  1.1.6.1  ad  * 3. Neither the name of the University nor the names of its contributors
     59  1.1.6.1  ad  *    may be used to endorse or promote products derived from this software
     60  1.1.6.1  ad  *    without specific prior written permission.
     61  1.1.6.1  ad  *
     62  1.1.6.1  ad  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  1.1.6.1  ad  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  1.1.6.1  ad  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  1.1.6.1  ad  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  1.1.6.1  ad  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  1.1.6.1  ad  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  1.1.6.1  ad  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  1.1.6.1  ad  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  1.1.6.1  ad  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  1.1.6.1  ad  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  1.1.6.1  ad  * SUCH DAMAGE.
     73  1.1.6.1  ad  *
     74  1.1.6.1  ad  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75  1.1.6.1  ad  */
     76  1.1.6.1  ad 
     77  1.1.6.1  ad #include <sys/cdefs.h>
     78  1.1.6.7  ad __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.1.6.7 2007/08/21 13:59:44 ad Exp $");
     79  1.1.6.1  ad 
     80  1.1.6.1  ad #include "opt_ddb.h"
     81  1.1.6.1  ad #include "opt_lockdebug.h"
     82  1.1.6.1  ad #include "opt_perfctrs.h"
     83  1.1.6.1  ad 
     84  1.1.6.1  ad #define	__MUTEX_PRIVATE
     85  1.1.6.1  ad 
     86  1.1.6.1  ad #include <sys/param.h>
     87  1.1.6.1  ad #include <sys/systm.h>
     88  1.1.6.1  ad #include <sys/callout.h>
     89  1.1.6.1  ad #include <sys/cpu.h>
     90  1.1.6.1  ad #include <sys/proc.h>
     91  1.1.6.1  ad #include <sys/kernel.h>
     92  1.1.6.1  ad #include <sys/signalvar.h>
     93  1.1.6.1  ad #include <sys/resourcevar.h>
     94  1.1.6.1  ad #include <sys/sched.h>
     95  1.1.6.1  ad #include <sys/sysctl.h>
     96  1.1.6.1  ad #include <sys/kauth.h>
     97  1.1.6.1  ad #include <sys/lockdebug.h>
     98  1.1.6.1  ad #include <sys/kmem.h>
     99  1.1.6.5  ad #include <sys/intr.h>
    100  1.1.6.1  ad 
    101  1.1.6.1  ad #include <uvm/uvm_extern.h>
    102  1.1.6.1  ad 
    103  1.1.6.1  ad /*
    104  1.1.6.1  ad  * Run queues.
    105  1.1.6.1  ad  *
    106  1.1.6.4  ad  * We maintain a bitmask of non-empty queues in order speed up finding
    107  1.1.6.4  ad  * the first runnable process.
    108  1.1.6.1  ad  */
    109  1.1.6.1  ad 
    110  1.1.6.4  ad #define	PPQ		4			/* priorities per queue */
    111  1.1.6.4  ad #define	RUNQUE_NQS	(PRI_COUNT / PPQ)	/* number of runqueues */
    112  1.1.6.1  ad 
    113  1.1.6.1  ad typedef struct subqueue {
    114  1.1.6.1  ad 	TAILQ_HEAD(, lwp) sq_queue;
    115  1.1.6.1  ad } subqueue_t;
    116  1.1.6.2  ad 
    117  1.1.6.1  ad typedef struct runqueue {
    118  1.1.6.2  ad 	subqueue_t	rq_subqueues[RUNQUE_NQS];	/* run queues */
    119  1.1.6.2  ad 	uint64_t	rq_bitmap;	/* bitmap of non-empty queues */
    120  1.1.6.1  ad } runqueue_t;
    121  1.1.6.2  ad 
    122  1.1.6.1  ad static runqueue_t global_queue;
    123  1.1.6.1  ad 
    124  1.1.6.1  ad static void updatepri(struct lwp *);
    125  1.1.6.1  ad static void resetpriority(struct lwp *);
    126  1.1.6.1  ad static void resetprocpriority(struct proc *);
    127  1.1.6.1  ad 
    128  1.1.6.1  ad extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
    129  1.1.6.1  ad 
    130  1.1.6.1  ad /* The global scheduler state */
    131  1.1.6.1  ad kmutex_t sched_mutex;
    132  1.1.6.1  ad 
    133  1.1.6.1  ad /* Number of hardclock ticks per sched_tick() */
    134  1.1.6.1  ad int rrticks;
    135  1.1.6.1  ad 
    136  1.1.6.4  ad const int schedppq = PPQ;
    137  1.1.6.4  ad 
    138  1.1.6.1  ad /*
    139  1.1.6.1  ad  * Force switch among equal priority processes every 100ms.
    140  1.1.6.1  ad  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    141  1.1.6.1  ad  */
    142  1.1.6.1  ad /* ARGSUSED */
    143  1.1.6.1  ad void
    144  1.1.6.1  ad sched_tick(struct cpu_info *ci)
    145  1.1.6.1  ad {
    146  1.1.6.1  ad 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    147  1.1.6.1  ad 
    148  1.1.6.1  ad 	spc->spc_ticks = rrticks;
    149  1.1.6.1  ad 
    150  1.1.6.6  ad 	spc_lock(ci);
    151  1.1.6.1  ad 	if (!CURCPU_IDLE_P()) {
    152  1.1.6.1  ad 		if (spc->spc_flags & SPCF_SEENRR) {
    153  1.1.6.1  ad 			/*
    154  1.1.6.1  ad 			 * The process has already been through a roundrobin
    155  1.1.6.1  ad 			 * without switching and may be hogging the CPU.
    156  1.1.6.1  ad 			 * Indicate that the process should yield.
    157  1.1.6.1  ad 			 */
    158  1.1.6.1  ad 			spc->spc_flags |= SPCF_SHOULDYIELD;
    159  1.1.6.1  ad 		} else
    160  1.1.6.1  ad 			spc->spc_flags |= SPCF_SEENRR;
    161  1.1.6.1  ad 	}
    162  1.1.6.7  ad 	cpu_need_resched(ci, 0);
    163  1.1.6.6  ad 	spc_unlock(ci);
    164  1.1.6.1  ad }
    165  1.1.6.1  ad 
    166  1.1.6.2  ad #define	NICE_WEIGHT 	1			/* priorities per nice level */
    167  1.1.6.1  ad 
    168  1.1.6.1  ad #define	ESTCPU_SHIFT	11
    169  1.1.6.1  ad #define	ESTCPU_MAX	((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
    170  1.1.6.1  ad #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    171  1.1.6.1  ad 
    172  1.1.6.1  ad /*
    173  1.1.6.1  ad  * Constants for digital decay and forget:
    174  1.1.6.1  ad  *	90% of (p_estcpu) usage in 5 * loadav time
    175  1.1.6.1  ad  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    176  1.1.6.1  ad  *          Note that, as ps(1) mentions, this can let percentages
    177  1.1.6.1  ad  *          total over 100% (I've seen 137.9% for 3 processes).
    178  1.1.6.1  ad  *
    179  1.1.6.1  ad  * Note that hardclock updates p_estcpu and p_cpticks independently.
    180  1.1.6.1  ad  *
    181  1.1.6.1  ad  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    182  1.1.6.1  ad  * That is, the system wants to compute a value of decay such
    183  1.1.6.1  ad  * that the following for loop:
    184  1.1.6.1  ad  * 	for (i = 0; i < (5 * loadavg); i++)
    185  1.1.6.1  ad  * 		p_estcpu *= decay;
    186  1.1.6.1  ad  * will compute
    187  1.1.6.1  ad  * 	p_estcpu *= 0.1;
    188  1.1.6.1  ad  * for all values of loadavg:
    189  1.1.6.1  ad  *
    190  1.1.6.1  ad  * Mathematically this loop can be expressed by saying:
    191  1.1.6.1  ad  * 	decay ** (5 * loadavg) ~= .1
    192  1.1.6.1  ad  *
    193  1.1.6.1  ad  * The system computes decay as:
    194  1.1.6.1  ad  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    195  1.1.6.1  ad  *
    196  1.1.6.1  ad  * We wish to prove that the system's computation of decay
    197  1.1.6.1  ad  * will always fulfill the equation:
    198  1.1.6.1  ad  * 	decay ** (5 * loadavg) ~= .1
    199  1.1.6.1  ad  *
    200  1.1.6.1  ad  * If we compute b as:
    201  1.1.6.1  ad  * 	b = 2 * loadavg
    202  1.1.6.1  ad  * then
    203  1.1.6.1  ad  * 	decay = b / (b + 1)
    204  1.1.6.1  ad  *
    205  1.1.6.1  ad  * We now need to prove two things:
    206  1.1.6.1  ad  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    207  1.1.6.1  ad  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    208  1.1.6.1  ad  *
    209  1.1.6.1  ad  * Facts:
    210  1.1.6.1  ad  *         For x close to zero, exp(x) =~ 1 + x, since
    211  1.1.6.1  ad  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    212  1.1.6.1  ad  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    213  1.1.6.1  ad  *         For x close to zero, ln(1+x) =~ x, since
    214  1.1.6.1  ad  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    215  1.1.6.1  ad  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    216  1.1.6.1  ad  *         ln(.1) =~ -2.30
    217  1.1.6.1  ad  *
    218  1.1.6.1  ad  * Proof of (1):
    219  1.1.6.1  ad  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    220  1.1.6.1  ad  *	solving for factor,
    221  1.1.6.1  ad  *      ln(factor) =~ (-2.30/5*loadav), or
    222  1.1.6.1  ad  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    223  1.1.6.1  ad  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    224  1.1.6.1  ad  *
    225  1.1.6.1  ad  * Proof of (2):
    226  1.1.6.1  ad  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    227  1.1.6.1  ad  *	solving for power,
    228  1.1.6.1  ad  *      power*ln(b/(b+1)) =~ -2.30, or
    229  1.1.6.1  ad  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    230  1.1.6.1  ad  *
    231  1.1.6.1  ad  * Actual power values for the implemented algorithm are as follows:
    232  1.1.6.1  ad  *      loadav: 1       2       3       4
    233  1.1.6.1  ad  *      power:  5.68    10.32   14.94   19.55
    234  1.1.6.1  ad  */
    235  1.1.6.1  ad 
    236  1.1.6.1  ad /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    237  1.1.6.1  ad #define	loadfactor(loadav)	(2 * (loadav))
    238  1.1.6.1  ad 
    239  1.1.6.1  ad static fixpt_t
    240  1.1.6.1  ad decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    241  1.1.6.1  ad {
    242  1.1.6.1  ad 
    243  1.1.6.1  ad 	if (estcpu == 0) {
    244  1.1.6.1  ad 		return 0;
    245  1.1.6.1  ad 	}
    246  1.1.6.1  ad 
    247  1.1.6.1  ad #if !defined(_LP64)
    248  1.1.6.1  ad 	/* avoid 64bit arithmetics. */
    249  1.1.6.1  ad #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    250  1.1.6.1  ad 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    251  1.1.6.1  ad 		return estcpu * loadfac / (loadfac + FSCALE);
    252  1.1.6.1  ad 	}
    253  1.1.6.1  ad #endif /* !defined(_LP64) */
    254  1.1.6.1  ad 
    255  1.1.6.1  ad 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    256  1.1.6.1  ad }
    257  1.1.6.1  ad 
    258  1.1.6.1  ad /*
    259  1.1.6.1  ad  * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
    260  1.1.6.1  ad  * sleeping for at least seven times the loadfactor will decay p_estcpu to
    261  1.1.6.1  ad  * less than (1 << ESTCPU_SHIFT).
    262  1.1.6.1  ad  *
    263  1.1.6.1  ad  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    264  1.1.6.1  ad  */
    265  1.1.6.1  ad static fixpt_t
    266  1.1.6.1  ad decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    267  1.1.6.1  ad {
    268  1.1.6.1  ad 
    269  1.1.6.1  ad 	if ((n << FSHIFT) >= 7 * loadfac) {
    270  1.1.6.1  ad 		return 0;
    271  1.1.6.1  ad 	}
    272  1.1.6.1  ad 
    273  1.1.6.1  ad 	while (estcpu != 0 && n > 1) {
    274  1.1.6.1  ad 		estcpu = decay_cpu(loadfac, estcpu);
    275  1.1.6.1  ad 		n--;
    276  1.1.6.1  ad 	}
    277  1.1.6.1  ad 
    278  1.1.6.1  ad 	return estcpu;
    279  1.1.6.1  ad }
    280  1.1.6.1  ad 
    281  1.1.6.1  ad /*
    282  1.1.6.1  ad  * sched_pstats_hook:
    283  1.1.6.1  ad  *
    284  1.1.6.1  ad  * Periodically called from sched_pstats(); used to recalculate priorities.
    285  1.1.6.1  ad  */
    286  1.1.6.1  ad void
    287  1.1.6.1  ad sched_pstats_hook(struct proc *p, int minslp)
    288  1.1.6.1  ad {
    289  1.1.6.1  ad 	struct lwp *l;
    290  1.1.6.1  ad 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    291  1.1.6.1  ad 
    292  1.1.6.1  ad 	/*
    293  1.1.6.1  ad 	 * If the process has slept the entire second,
    294  1.1.6.1  ad 	 * stop recalculating its priority until it wakes up.
    295  1.1.6.1  ad 	 */
    296  1.1.6.1  ad 	if (minslp <= 1) {
    297  1.1.6.1  ad 		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
    298  1.1.6.1  ad 
    299  1.1.6.1  ad 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    300  1.1.6.1  ad 			if ((l->l_flag & LW_IDLE) != 0)
    301  1.1.6.1  ad 				continue;
    302  1.1.6.1  ad 			lwp_lock(l);
    303  1.1.6.2  ad 			if (l->l_slptime <= 1 && l->l_priority < PRI_KERNEL)
    304  1.1.6.1  ad 				resetpriority(l);
    305  1.1.6.1  ad 			lwp_unlock(l);
    306  1.1.6.1  ad 		}
    307  1.1.6.1  ad 	}
    308  1.1.6.1  ad }
    309  1.1.6.1  ad 
    310  1.1.6.1  ad /*
    311  1.1.6.1  ad  * Recalculate the priority of a process after it has slept for a while.
    312  1.1.6.1  ad  */
    313  1.1.6.1  ad static void
    314  1.1.6.1  ad updatepri(struct lwp *l)
    315  1.1.6.1  ad {
    316  1.1.6.1  ad 	struct proc *p = l->l_proc;
    317  1.1.6.1  ad 	fixpt_t loadfac;
    318  1.1.6.1  ad 
    319  1.1.6.1  ad 	KASSERT(lwp_locked(l, NULL));
    320  1.1.6.1  ad 	KASSERT(l->l_slptime > 1);
    321  1.1.6.1  ad 
    322  1.1.6.1  ad 	loadfac = loadfactor(averunnable.ldavg[0]);
    323  1.1.6.1  ad 
    324  1.1.6.1  ad 	l->l_slptime--; /* the first time was done in sched_pstats */
    325  1.1.6.1  ad 	/* XXX NJWLWP */
    326  1.1.6.1  ad 	/* XXXSMP occasionally unlocked, should be per-LWP */
    327  1.1.6.1  ad 	p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
    328  1.1.6.1  ad 	resetpriority(l);
    329  1.1.6.1  ad }
    330  1.1.6.1  ad 
    331  1.1.6.1  ad /*
    332  1.1.6.1  ad  * On some architectures, it's faster to use a MSB ordering for the priorites
    333  1.1.6.1  ad  * than the traditional LSB ordering.
    334  1.1.6.1  ad  */
    335  1.1.6.2  ad #define	RQMASK(n)	(1ULL << (n))
    336  1.1.6.2  ad #define WHICHQ(p)	(RUNQUE_NQS - 1 - ((p) / PPQ))
    337  1.1.6.1  ad 
    338  1.1.6.1  ad /*
    339  1.1.6.4  ad  * The primitives that manipulate the run queues.  whichqs tells which of
    340  1.1.6.4  ad  * the queues have processes in them.  sched_enqueue() puts processes into
    341  1.1.6.4  ad  * queues, sched_dequeue() removes them from queues.
    342  1.1.6.1  ad  */
    343  1.1.6.1  ad #ifdef RQDEBUG
    344  1.1.6.1  ad static void
    345  1.1.6.1  ad runqueue_check(const runqueue_t *rq, int whichq, struct lwp *l)
    346  1.1.6.1  ad {
    347  1.1.6.1  ad 	const subqueue_t * const sq = &rq->rq_subqueues[whichq];
    348  1.1.6.1  ad 	const uint32_t bitmap = rq->rq_bitmap;
    349  1.1.6.1  ad 	struct lwp *l2;
    350  1.1.6.1  ad 	int found = 0;
    351  1.1.6.1  ad 	int die = 0;
    352  1.1.6.1  ad 	int empty = 1;
    353  1.1.6.1  ad 
    354  1.1.6.1  ad 	TAILQ_FOREACH(l2, &sq->sq_queue, l_runq) {
    355  1.1.6.1  ad 		if (l2->l_stat != LSRUN) {
    356  1.1.6.1  ad 			printf("runqueue_check[%d]: lwp %p state (%d) "
    357  1.1.6.1  ad 			    " != LSRUN\n", whichq, l2, l2->l_stat);
    358  1.1.6.1  ad 		}
    359  1.1.6.1  ad 		if (l2 == l)
    360  1.1.6.1  ad 			found = 1;
    361  1.1.6.1  ad 		empty = 0;
    362  1.1.6.1  ad 	}
    363  1.1.6.1  ad 	if (empty && (bitmap & RQMASK(whichq)) != 0) {
    364  1.1.6.1  ad 		printf("runqueue_check[%d]: bit set for empty run-queue %p\n",
    365  1.1.6.1  ad 		    whichq, rq);
    366  1.1.6.1  ad 		die = 1;
    367  1.1.6.1  ad 	} else if (!empty && (bitmap & RQMASK(whichq)) == 0) {
    368  1.1.6.1  ad 		printf("runqueue_check[%d]: bit clear for non-empty "
    369  1.1.6.1  ad 		    "run-queue %p\n", whichq, rq);
    370  1.1.6.1  ad 		die = 1;
    371  1.1.6.1  ad 	}
    372  1.1.6.1  ad 	if (l != NULL && (bitmap & RQMASK(whichq)) == 0) {
    373  1.1.6.1  ad 		printf("runqueue_check[%d]: bit clear for active lwp %p\n",
    374  1.1.6.1  ad 		    whichq, l);
    375  1.1.6.1  ad 		die = 1;
    376  1.1.6.1  ad 	}
    377  1.1.6.1  ad 	if (l != NULL && empty) {
    378  1.1.6.1  ad 		printf("runqueue_check[%d]: empty run-queue %p with "
    379  1.1.6.1  ad 		    "active lwp %p\n", whichq, rq, l);
    380  1.1.6.1  ad 		die = 1;
    381  1.1.6.1  ad 	}
    382  1.1.6.1  ad 	if (l != NULL && !found) {
    383  1.1.6.1  ad 		printf("runqueue_check[%d]: lwp %p not in runqueue %p!",
    384  1.1.6.1  ad 		    whichq, l, rq);
    385  1.1.6.1  ad 		die = 1;
    386  1.1.6.1  ad 	}
    387  1.1.6.1  ad 	if (die)
    388  1.1.6.1  ad 		panic("runqueue_check: inconsistency found");
    389  1.1.6.1  ad }
    390  1.1.6.1  ad #else /* RQDEBUG */
    391  1.1.6.1  ad #define	runqueue_check(a, b, c)	/* nothing */
    392  1.1.6.1  ad #endif /* RQDEBUG */
    393  1.1.6.1  ad 
    394  1.1.6.1  ad static void
    395  1.1.6.1  ad runqueue_init(runqueue_t *rq)
    396  1.1.6.1  ad {
    397  1.1.6.1  ad 	int i;
    398  1.1.6.1  ad 
    399  1.1.6.1  ad 	for (i = 0; i < RUNQUE_NQS; i++)
    400  1.1.6.1  ad 		TAILQ_INIT(&rq->rq_subqueues[i].sq_queue);
    401  1.1.6.1  ad }
    402  1.1.6.1  ad 
    403  1.1.6.1  ad static void
    404  1.1.6.1  ad runqueue_enqueue(runqueue_t *rq, struct lwp *l)
    405  1.1.6.1  ad {
    406  1.1.6.1  ad 	subqueue_t *sq;
    407  1.1.6.2  ad 	const int whichq = WHICHQ(lwp_eprio(l));
    408  1.1.6.2  ad 	const uint64_t rqmask = RQMASK(whichq);
    409  1.1.6.1  ad 
    410  1.1.6.1  ad 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    411  1.1.6.1  ad 
    412  1.1.6.1  ad 	runqueue_check(rq, whichq, NULL);
    413  1.1.6.2  ad 	rq->rq_bitmap |= rqmask;
    414  1.1.6.1  ad 	sq = &rq->rq_subqueues[whichq];
    415  1.1.6.1  ad 	TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_runq);
    416  1.1.6.1  ad 	runqueue_check(rq, whichq, l);
    417  1.1.6.1  ad }
    418  1.1.6.1  ad 
    419  1.1.6.1  ad static void
    420  1.1.6.1  ad runqueue_dequeue(runqueue_t *rq, struct lwp *l)
    421  1.1.6.1  ad {
    422  1.1.6.1  ad 	subqueue_t *sq;
    423  1.1.6.2  ad 	const int whichq = WHICHQ(lwp_eprio(l));
    424  1.1.6.2  ad 	const uint64_t rqmask = RQMASK(whichq);
    425  1.1.6.1  ad 
    426  1.1.6.1  ad 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    427  1.1.6.1  ad 
    428  1.1.6.1  ad 	runqueue_check(rq, whichq, l);
    429  1.1.6.2  ad 	KASSERT((rq->rq_bitmap & rqmask) != 0);
    430  1.1.6.1  ad 	sq = &rq->rq_subqueues[whichq];
    431  1.1.6.1  ad 	TAILQ_REMOVE(&sq->sq_queue, l, l_runq);
    432  1.1.6.1  ad 	if (TAILQ_EMPTY(&sq->sq_queue))
    433  1.1.6.2  ad 		rq->rq_bitmap &= ~rqmask;
    434  1.1.6.1  ad 	runqueue_check(rq, whichq, NULL);
    435  1.1.6.1  ad }
    436  1.1.6.1  ad 
    437  1.1.6.1  ad static struct lwp *
    438  1.1.6.1  ad runqueue_nextlwp(runqueue_t *rq)
    439  1.1.6.1  ad {
    440  1.1.6.2  ad 	const uint64_t bitmap = rq->rq_bitmap;
    441  1.1.6.1  ad 	int whichq;
    442  1.1.6.1  ad 
    443  1.1.6.1  ad 	if (bitmap == 0) {
    444  1.1.6.1  ad 		return NULL;
    445  1.1.6.1  ad 	}
    446  1.1.6.2  ad 	whichq = ffs((uint32_t)bitmap) - 1;
    447  1.1.6.2  ad 	if (whichq != -1)
    448  1.1.6.2  ad 		return TAILQ_FIRST(&rq->rq_subqueues[whichq].sq_queue);
    449  1.1.6.2  ad 	whichq = ffs((uint32_t)(bitmap >> 32)) - 1;
    450  1.1.6.2  ad 	return TAILQ_FIRST(&rq->rq_subqueues[whichq + 32].sq_queue);
    451  1.1.6.1  ad }
    452  1.1.6.1  ad 
    453  1.1.6.1  ad #if defined(DDB)
    454  1.1.6.1  ad static void
    455  1.1.6.1  ad runqueue_print(const runqueue_t *rq, void (*pr)(const char *, ...))
    456  1.1.6.1  ad {
    457  1.1.6.2  ad 	const uint64_t bitmap = rq->rq_bitmap;
    458  1.1.6.1  ad 	struct lwp *l;
    459  1.1.6.1  ad 	int i, first;
    460  1.1.6.1  ad 
    461  1.1.6.1  ad 	for (i = 0; i < RUNQUE_NQS; i++) {
    462  1.1.6.1  ad 		const subqueue_t *sq;
    463  1.1.6.1  ad 		first = 1;
    464  1.1.6.1  ad 		sq = &rq->rq_subqueues[i];
    465  1.1.6.1  ad 		TAILQ_FOREACH(l, &sq->sq_queue, l_runq) {
    466  1.1.6.1  ad 			if (first) {
    467  1.1.6.1  ad 				(*pr)("%c%d",
    468  1.1.6.1  ad 				    (bitmap & RQMASK(i)) ? ' ' : '!', i);
    469  1.1.6.1  ad 				first = 0;
    470  1.1.6.1  ad 			}
    471  1.1.6.1  ad 			(*pr)("\t%d.%d (%s) pri=%d usrpri=%d\n",
    472  1.1.6.1  ad 			    l->l_proc->p_pid,
    473  1.1.6.1  ad 			    l->l_lid, l->l_proc->p_comm,
    474  1.1.6.1  ad 			    (int)l->l_priority, (int)l->l_usrpri);
    475  1.1.6.1  ad 		}
    476  1.1.6.1  ad 	}
    477  1.1.6.1  ad }
    478  1.1.6.1  ad #endif /* defined(DDB) */
    479  1.1.6.1  ad 
    480  1.1.6.1  ad /*
    481  1.1.6.1  ad  * Initialize the (doubly-linked) run queues
    482  1.1.6.1  ad  * to be empty.
    483  1.1.6.1  ad  */
    484  1.1.6.1  ad void
    485  1.1.6.1  ad sched_rqinit()
    486  1.1.6.1  ad {
    487  1.1.6.1  ad 
    488  1.1.6.1  ad 	runqueue_init(&global_queue);
    489  1.1.6.1  ad 	mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
    490  1.1.6.1  ad 	/* Initialize the lock pointer for lwp0 */
    491  1.1.6.1  ad 	lwp0.l_mutex = &curcpu()->ci_schedstate.spc_lwplock;
    492  1.1.6.1  ad }
    493  1.1.6.1  ad 
    494  1.1.6.1  ad void
    495  1.1.6.1  ad sched_cpuattach(struct cpu_info *ci)
    496  1.1.6.1  ad {
    497  1.1.6.1  ad 	runqueue_t *rq;
    498  1.1.6.1  ad 
    499  1.1.6.1  ad 	ci->ci_schedstate.spc_mutex = &sched_mutex;
    500  1.1.6.1  ad 	rq = kmem_zalloc(sizeof(*rq), KM_NOSLEEP);
    501  1.1.6.1  ad 	runqueue_init(rq);
    502  1.1.6.1  ad 	ci->ci_schedstate.spc_sched_info = rq;
    503  1.1.6.1  ad }
    504  1.1.6.1  ad 
    505  1.1.6.1  ad void
    506  1.1.6.1  ad sched_setup()
    507  1.1.6.1  ad {
    508  1.1.6.1  ad 
    509  1.1.6.1  ad 	rrticks = hz / 10;
    510  1.1.6.1  ad }
    511  1.1.6.1  ad 
    512  1.1.6.1  ad void
    513  1.1.6.1  ad sched_setrunnable(struct lwp *l)
    514  1.1.6.1  ad {
    515  1.1.6.1  ad 
    516  1.1.6.1  ad  	if (l->l_slptime > 1)
    517  1.1.6.1  ad  		updatepri(l);
    518  1.1.6.1  ad }
    519  1.1.6.1  ad 
    520  1.1.6.1  ad bool
    521  1.1.6.1  ad sched_curcpu_runnable_p(void)
    522  1.1.6.1  ad {
    523  1.1.6.6  ad 	struct schedstate_percpu *spc;
    524  1.1.6.6  ad 	runqueue_t *rq;
    525  1.1.6.6  ad 
    526  1.1.6.6  ad 	spc = &curcpu()->ci_schedstate;
    527  1.1.6.6  ad 	rq = spc->spc_sched_info;
    528  1.1.6.1  ad 
    529  1.1.6.6  ad 	if (__predict_true((spc->spc_flags & SPCF_OFFLINE) == 0))
    530  1.1.6.6  ad 		return (global_queue.rq_bitmap | rq->rq_bitmap) != 0;
    531  1.1.6.6  ad 	return rq->rq_bitmap != 0;
    532  1.1.6.1  ad }
    533  1.1.6.1  ad 
    534  1.1.6.1  ad void
    535  1.1.6.1  ad sched_nice(struct proc *chgp, int n)
    536  1.1.6.1  ad {
    537  1.1.6.1  ad 
    538  1.1.6.1  ad 	chgp->p_nice = n;
    539  1.1.6.1  ad 	(void)resetprocpriority(chgp);
    540  1.1.6.1  ad }
    541  1.1.6.1  ad 
    542  1.1.6.1  ad /*
    543  1.1.6.1  ad  * Compute the priority of a process when running in user mode.
    544  1.1.6.1  ad  * Arrange to reschedule if the resulting priority is better
    545  1.1.6.1  ad  * than that of the current process.
    546  1.1.6.1  ad  */
    547  1.1.6.1  ad static void
    548  1.1.6.1  ad resetpriority(struct lwp *l)
    549  1.1.6.1  ad {
    550  1.1.6.1  ad 	unsigned int newpriority;
    551  1.1.6.1  ad 	struct proc *p = l->l_proc;
    552  1.1.6.1  ad 
    553  1.1.6.1  ad 	/* XXXSMP KASSERT(mutex_owned(&p->p_stmutex)); */
    554  1.1.6.1  ad 	KASSERT(lwp_locked(l, NULL));
    555  1.1.6.1  ad 
    556  1.1.6.1  ad 	if ((l->l_flag & LW_SYSTEM) != 0)
    557  1.1.6.1  ad 		return;
    558  1.1.6.1  ad 
    559  1.1.6.2  ad 	newpriority = PRI_KERNEL - 1 - (p->p_estcpu >> ESTCPU_SHIFT) -
    560  1.1.6.1  ad 	    NICE_WEIGHT * (p->p_nice - NZERO);
    561  1.1.6.2  ad 	newpriority = max(newpriority, 0);
    562  1.1.6.1  ad 	lwp_changepri(l, newpriority);
    563  1.1.6.1  ad }
    564  1.1.6.1  ad 
    565  1.1.6.1  ad /*
    566  1.1.6.1  ad  * Recompute priority for all LWPs in a process.
    567  1.1.6.1  ad  */
    568  1.1.6.1  ad static void
    569  1.1.6.1  ad resetprocpriority(struct proc *p)
    570  1.1.6.1  ad {
    571  1.1.6.1  ad 	struct lwp *l;
    572  1.1.6.1  ad 
    573  1.1.6.1  ad 	KASSERT(mutex_owned(&p->p_stmutex));
    574  1.1.6.1  ad 
    575  1.1.6.1  ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    576  1.1.6.1  ad 		lwp_lock(l);
    577  1.1.6.1  ad 		resetpriority(l);
    578  1.1.6.1  ad 		lwp_unlock(l);
    579  1.1.6.1  ad 	}
    580  1.1.6.1  ad }
    581  1.1.6.1  ad 
    582  1.1.6.1  ad /*
    583  1.1.6.1  ad  * We adjust the priority of the current process.  The priority of a process
    584  1.1.6.1  ad  * gets worse as it accumulates CPU time.  The CPU usage estimator (p_estcpu)
    585  1.1.6.1  ad  * is increased here.  The formula for computing priorities (in kern_synch.c)
    586  1.1.6.1  ad  * will compute a different value each time p_estcpu increases. This can
    587  1.1.6.1  ad  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    588  1.1.6.1  ad  * queue will not change.  The CPU usage estimator ramps up quite quickly
    589  1.1.6.1  ad  * when the process is running (linearly), and decays away exponentially, at
    590  1.1.6.1  ad  * a rate which is proportionally slower when the system is busy.  The basic
    591  1.1.6.1  ad  * principle is that the system will 90% forget that the process used a lot
    592  1.1.6.1  ad  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    593  1.1.6.1  ad  * processes which haven't run much recently, and to round-robin among other
    594  1.1.6.1  ad  * processes.
    595  1.1.6.1  ad  */
    596  1.1.6.1  ad 
    597  1.1.6.1  ad void
    598  1.1.6.1  ad sched_schedclock(struct lwp *l)
    599  1.1.6.1  ad {
    600  1.1.6.1  ad 	struct proc *p = l->l_proc;
    601  1.1.6.1  ad 
    602  1.1.6.1  ad 	KASSERT(!CURCPU_IDLE_P());
    603  1.1.6.1  ad 	mutex_spin_enter(&p->p_stmutex);
    604  1.1.6.1  ad 	p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
    605  1.1.6.1  ad 	lwp_lock(l);
    606  1.1.6.1  ad 	resetpriority(l);
    607  1.1.6.1  ad 	mutex_spin_exit(&p->p_stmutex);
    608  1.1.6.2  ad 	if ((l->l_flag & LW_SYSTEM) == 0 && l->l_priority < PRI_KERNEL)
    609  1.1.6.1  ad 		l->l_priority = l->l_usrpri;
    610  1.1.6.1  ad 	lwp_unlock(l);
    611  1.1.6.1  ad }
    612  1.1.6.1  ad 
    613  1.1.6.1  ad /*
    614  1.1.6.1  ad  * sched_proc_fork:
    615  1.1.6.1  ad  *
    616  1.1.6.1  ad  *	Inherit the parent's scheduler history.
    617  1.1.6.1  ad  */
    618  1.1.6.1  ad void
    619  1.1.6.1  ad sched_proc_fork(struct proc *parent, struct proc *child)
    620  1.1.6.1  ad {
    621  1.1.6.1  ad 
    622  1.1.6.1  ad 	KASSERT(mutex_owned(&parent->p_smutex));
    623  1.1.6.1  ad 
    624  1.1.6.1  ad 	child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
    625  1.1.6.1  ad 	child->p_forktime = sched_pstats_ticks;
    626  1.1.6.1  ad }
    627  1.1.6.1  ad 
    628  1.1.6.1  ad /*
    629  1.1.6.1  ad  * sched_proc_exit:
    630  1.1.6.1  ad  *
    631  1.1.6.1  ad  *	Chargeback parents for the sins of their children.
    632  1.1.6.1  ad  */
    633  1.1.6.1  ad void
    634  1.1.6.1  ad sched_proc_exit(struct proc *parent, struct proc *child)
    635  1.1.6.1  ad {
    636  1.1.6.1  ad 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    637  1.1.6.1  ad 	fixpt_t estcpu;
    638  1.1.6.1  ad 
    639  1.1.6.1  ad 	/* XXX Only if parent != init?? */
    640  1.1.6.1  ad 
    641  1.1.6.1  ad 	mutex_spin_enter(&parent->p_stmutex);
    642  1.1.6.1  ad 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
    643  1.1.6.1  ad 	    sched_pstats_ticks - child->p_forktime);
    644  1.1.6.1  ad 	if (child->p_estcpu > estcpu)
    645  1.1.6.1  ad 		parent->p_estcpu =
    646  1.1.6.1  ad 		    ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
    647  1.1.6.1  ad 	mutex_spin_exit(&parent->p_stmutex);
    648  1.1.6.1  ad }
    649  1.1.6.1  ad 
    650  1.1.6.1  ad void
    651  1.1.6.1  ad sched_enqueue(struct lwp *l, bool ctxswitch)
    652  1.1.6.1  ad {
    653  1.1.6.1  ad 
    654  1.1.6.1  ad 	if ((l->l_flag & LW_BOUND) != 0)
    655  1.1.6.1  ad 		runqueue_enqueue(l->l_cpu->ci_schedstate.spc_sched_info, l);
    656  1.1.6.1  ad 	else
    657  1.1.6.1  ad 		runqueue_enqueue(&global_queue, l);
    658  1.1.6.1  ad }
    659  1.1.6.1  ad 
    660  1.1.6.1  ad /*
    661  1.1.6.1  ad  * XXXSMP When LWP dispatch (cpu_switch()) is changed to use sched_dequeue(),
    662  1.1.6.1  ad  * drop of the effective priority level from kernel to user needs to be
    663  1.1.6.1  ad  * moved here from userret().  The assignment in userret() is currently
    664  1.1.6.1  ad  * done unlocked.
    665  1.1.6.1  ad  */
    666  1.1.6.1  ad void
    667  1.1.6.1  ad sched_dequeue(struct lwp *l)
    668  1.1.6.1  ad {
    669  1.1.6.1  ad 
    670  1.1.6.1  ad 	if ((l->l_flag & LW_BOUND) != 0)
    671  1.1.6.1  ad 		runqueue_dequeue(l->l_cpu->ci_schedstate.spc_sched_info, l);
    672  1.1.6.1  ad 	else
    673  1.1.6.1  ad 		runqueue_dequeue(&global_queue, l);
    674  1.1.6.1  ad }
    675  1.1.6.1  ad 
    676  1.1.6.1  ad struct lwp *
    677  1.1.6.1  ad sched_nextlwp(void)
    678  1.1.6.1  ad {
    679  1.1.6.6  ad 	struct schedstate_percpu *spc;
    680  1.1.6.1  ad 	lwp_t *l1, *l2;
    681  1.1.6.1  ad 
    682  1.1.6.6  ad 	spc = &curcpu()->ci_schedstate;
    683  1.1.6.6  ad 
    684  1.1.6.1  ad 	/* For now, just pick the highest priority LWP. */
    685  1.1.6.6  ad 	l1 = runqueue_nextlwp(spc->spc_sched_info);
    686  1.1.6.6  ad 	if (__predict_false((spc->spc_flags & SPCF_OFFLINE) != 0))
    687  1.1.6.6  ad 		return l1;
    688  1.1.6.1  ad 	l2 = runqueue_nextlwp(&global_queue);
    689  1.1.6.1  ad 
    690  1.1.6.1  ad 	if (l1 == NULL)
    691  1.1.6.1  ad 		return l2;
    692  1.1.6.1  ad 	if (l2 == NULL)
    693  1.1.6.1  ad 		return l1;
    694  1.1.6.2  ad 	if (lwp_eprio(l2) > lwp_eprio(l1))
    695  1.1.6.1  ad 		return l2;
    696  1.1.6.1  ad 	else
    697  1.1.6.1  ad 		return l1;
    698  1.1.6.1  ad }
    699  1.1.6.1  ad 
    700  1.1.6.1  ad void
    701  1.1.6.1  ad sched_lwp_fork(struct lwp *l)
    702  1.1.6.1  ad {
    703  1.1.6.1  ad 
    704  1.1.6.1  ad }
    705  1.1.6.1  ad 
    706  1.1.6.1  ad void
    707  1.1.6.1  ad sched_lwp_exit(struct lwp *l)
    708  1.1.6.1  ad {
    709  1.1.6.1  ad 
    710  1.1.6.1  ad }
    711  1.1.6.1  ad 
    712  1.1.6.5  ad /*
    713  1.1.6.5  ad  * sysctl setup.  XXX This should be split with kern_synch.c.
    714  1.1.6.5  ad  */
    715  1.1.6.1  ad SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
    716  1.1.6.1  ad {
    717  1.1.6.1  ad 	const struct sysctlnode *node = NULL;
    718  1.1.6.1  ad 
    719  1.1.6.1  ad 	sysctl_createv(clog, 0, NULL, NULL,
    720  1.1.6.1  ad 		CTLFLAG_PERMANENT,
    721  1.1.6.1  ad 		CTLTYPE_NODE, "kern", NULL,
    722  1.1.6.1  ad 		NULL, 0, NULL, 0,
    723  1.1.6.1  ad 		CTL_KERN, CTL_EOL);
    724  1.1.6.1  ad 	sysctl_createv(clog, 0, NULL, &node,
    725  1.1.6.1  ad 		CTLFLAG_PERMANENT,
    726  1.1.6.1  ad 		CTLTYPE_NODE, "sched",
    727  1.1.6.1  ad 		SYSCTL_DESCR("Scheduler options"),
    728  1.1.6.1  ad 		NULL, 0, NULL, 0,
    729  1.1.6.1  ad 		CTL_KERN, CTL_CREATE, CTL_EOL);
    730  1.1.6.1  ad 
    731  1.1.6.5  ad 	KASSERT(node != NULL);
    732  1.1.6.5  ad 
    733  1.1.6.5  ad 	sysctl_createv(clog, 0, &node, NULL,
    734  1.1.6.5  ad 		CTLFLAG_PERMANENT,
    735  1.1.6.5  ad 		CTLTYPE_STRING, "name", NULL,
    736  1.1.6.5  ad 		NULL, 0, __UNCONST("4.4BSD"), 0,
    737  1.1.6.5  ad 		CTL_CREATE, CTL_EOL);
    738  1.1.6.5  ad 	sysctl_createv(clog, 0, &node, NULL,
    739  1.1.6.5  ad 		CTLFLAG_READWRITE,
    740  1.1.6.5  ad 		CTLTYPE_INT, "timesoftints",
    741  1.1.6.5  ad 		SYSCTL_DESCR("Track CPU time for soft interrupts"),
    742  1.1.6.5  ad 		NULL, 0, &softint_timing, 0,
    743  1.1.6.5  ad 		CTL_CREATE, CTL_EOL);
    744  1.1.6.1  ad }
    745  1.1.6.1  ad 
    746  1.1.6.1  ad #if defined(DDB)
    747  1.1.6.1  ad void
    748  1.1.6.1  ad sched_print_runqueue(void (*pr)(const char *, ...))
    749  1.1.6.1  ad {
    750  1.1.6.1  ad 
    751  1.1.6.1  ad 	runqueue_print(&global_queue, pr);
    752  1.1.6.1  ad }
    753  1.1.6.1  ad #endif /* defined(DDB) */
    754