Home | History | Annotate | Line # | Download | only in kern
sched_4bsd.c revision 1.1.6.9
      1  1.1.6.9  ad /*	$NetBSD: sched_4bsd.c,v 1.1.6.9 2007/10/08 20:26:13 ad Exp $	*/
      2  1.1.6.1  ad 
      3  1.1.6.1  ad /*-
      4  1.1.6.1  ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5  1.1.6.1  ad  * All rights reserved.
      6  1.1.6.1  ad  *
      7  1.1.6.1  ad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.1.6.1  ad  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.1.6.1  ad  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
     10  1.1.6.1  ad  * Daniel Sieger.
     11  1.1.6.1  ad  *
     12  1.1.6.1  ad  * Redistribution and use in source and binary forms, with or without
     13  1.1.6.1  ad  * modification, are permitted provided that the following conditions
     14  1.1.6.1  ad  * are met:
     15  1.1.6.1  ad  * 1. Redistributions of source code must retain the above copyright
     16  1.1.6.1  ad  *    notice, this list of conditions and the following disclaimer.
     17  1.1.6.1  ad  * 2. Redistributions in binary form must reproduce the above copyright
     18  1.1.6.1  ad  *    notice, this list of conditions and the following disclaimer in the
     19  1.1.6.1  ad  *    documentation and/or other materials provided with the distribution.
     20  1.1.6.1  ad  * 3. All advertising materials mentioning features or use of this software
     21  1.1.6.1  ad  *    must display the following acknowledgement:
     22  1.1.6.1  ad  *	This product includes software developed by the NetBSD
     23  1.1.6.1  ad  *	Foundation, Inc. and its contributors.
     24  1.1.6.1  ad  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25  1.1.6.1  ad  *    contributors may be used to endorse or promote products derived
     26  1.1.6.1  ad  *    from this software without specific prior written permission.
     27  1.1.6.1  ad  *
     28  1.1.6.1  ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29  1.1.6.1  ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30  1.1.6.1  ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31  1.1.6.1  ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32  1.1.6.1  ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33  1.1.6.1  ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34  1.1.6.1  ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35  1.1.6.1  ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36  1.1.6.1  ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37  1.1.6.1  ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  1.1.6.1  ad  * POSSIBILITY OF SUCH DAMAGE.
     39  1.1.6.1  ad  */
     40  1.1.6.1  ad 
     41  1.1.6.1  ad /*-
     42  1.1.6.1  ad  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43  1.1.6.1  ad  *	The Regents of the University of California.  All rights reserved.
     44  1.1.6.1  ad  * (c) UNIX System Laboratories, Inc.
     45  1.1.6.1  ad  * All or some portions of this file are derived from material licensed
     46  1.1.6.1  ad  * to the University of California by American Telephone and Telegraph
     47  1.1.6.1  ad  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48  1.1.6.1  ad  * the permission of UNIX System Laboratories, Inc.
     49  1.1.6.1  ad  *
     50  1.1.6.1  ad  * Redistribution and use in source and binary forms, with or without
     51  1.1.6.1  ad  * modification, are permitted provided that the following conditions
     52  1.1.6.1  ad  * are met:
     53  1.1.6.1  ad  * 1. Redistributions of source code must retain the above copyright
     54  1.1.6.1  ad  *    notice, this list of conditions and the following disclaimer.
     55  1.1.6.1  ad  * 2. Redistributions in binary form must reproduce the above copyright
     56  1.1.6.1  ad  *    notice, this list of conditions and the following disclaimer in the
     57  1.1.6.1  ad  *    documentation and/or other materials provided with the distribution.
     58  1.1.6.1  ad  * 3. Neither the name of the University nor the names of its contributors
     59  1.1.6.1  ad  *    may be used to endorse or promote products derived from this software
     60  1.1.6.1  ad  *    without specific prior written permission.
     61  1.1.6.1  ad  *
     62  1.1.6.1  ad  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63  1.1.6.1  ad  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64  1.1.6.1  ad  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65  1.1.6.1  ad  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66  1.1.6.1  ad  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67  1.1.6.1  ad  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68  1.1.6.1  ad  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69  1.1.6.1  ad  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70  1.1.6.1  ad  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71  1.1.6.1  ad  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72  1.1.6.1  ad  * SUCH DAMAGE.
     73  1.1.6.1  ad  *
     74  1.1.6.1  ad  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75  1.1.6.1  ad  */
     76  1.1.6.1  ad 
     77  1.1.6.1  ad #include <sys/cdefs.h>
     78  1.1.6.9  ad __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.1.6.9 2007/10/08 20:26:13 ad Exp $");
     79  1.1.6.1  ad 
     80  1.1.6.1  ad #include "opt_ddb.h"
     81  1.1.6.1  ad #include "opt_lockdebug.h"
     82  1.1.6.1  ad #include "opt_perfctrs.h"
     83  1.1.6.1  ad 
     84  1.1.6.1  ad #define	__MUTEX_PRIVATE
     85  1.1.6.1  ad 
     86  1.1.6.1  ad #include <sys/param.h>
     87  1.1.6.1  ad #include <sys/systm.h>
     88  1.1.6.1  ad #include <sys/callout.h>
     89  1.1.6.1  ad #include <sys/cpu.h>
     90  1.1.6.1  ad #include <sys/proc.h>
     91  1.1.6.1  ad #include <sys/kernel.h>
     92  1.1.6.1  ad #include <sys/signalvar.h>
     93  1.1.6.1  ad #include <sys/resourcevar.h>
     94  1.1.6.1  ad #include <sys/sched.h>
     95  1.1.6.1  ad #include <sys/sysctl.h>
     96  1.1.6.1  ad #include <sys/kauth.h>
     97  1.1.6.1  ad #include <sys/lockdebug.h>
     98  1.1.6.1  ad #include <sys/kmem.h>
     99  1.1.6.5  ad #include <sys/intr.h>
    100  1.1.6.1  ad 
    101  1.1.6.1  ad #include <uvm/uvm_extern.h>
    102  1.1.6.1  ad 
    103  1.1.6.1  ad /*
    104  1.1.6.1  ad  * Run queues.
    105  1.1.6.1  ad  *
    106  1.1.6.9  ad  * We maintain bitmasks of non-empty queues in order speed up finding
    107  1.1.6.9  ad  * the first runnable process.  Since there can be (by definition) few
    108  1.1.6.9  ad  * real time LWPs in the the system, we maintain them on a linked list,
    109  1.1.6.9  ad  * sorted by priority.
    110  1.1.6.1  ad  */
    111  1.1.6.1  ad 
    112  1.1.6.9  ad #define	PPB_SHIFT	5
    113  1.1.6.9  ad #define	PPB_MASK	31
    114  1.1.6.9  ad 
    115  1.1.6.9  ad #define	NUM_Q		(NPRI_KERNEL + NPRI_USER)
    116  1.1.6.9  ad #define	NUM_PPB		(1 << PPB_SHIFT)
    117  1.1.6.9  ad #define	NUM_B		(NUM_Q / NUM_PPB)
    118  1.1.6.2  ad 
    119  1.1.6.1  ad typedef struct runqueue {
    120  1.1.6.9  ad 	TAILQ_HEAD(, lwp) rq_queue[NUM_Q];	/* user+kernel */
    121  1.1.6.9  ad 	TAILQ_HEAD(, lwp) rq_rt;		/* realtime */
    122  1.1.6.9  ad 	uint32_t	rq_bitmap[NUM_B];	/* bitmap of queues */
    123  1.1.6.9  ad 	u_int		rq_count;		/* total # jobs */
    124  1.1.6.1  ad } runqueue_t;
    125  1.1.6.2  ad 
    126  1.1.6.1  ad static runqueue_t global_queue;
    127  1.1.6.1  ad 
    128  1.1.6.1  ad static void updatepri(struct lwp *);
    129  1.1.6.1  ad static void resetpriority(struct lwp *);
    130  1.1.6.1  ad static void resetprocpriority(struct proc *);
    131  1.1.6.1  ad 
    132  1.1.6.1  ad extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
    133  1.1.6.1  ad 
    134  1.1.6.1  ad /* The global scheduler state */
    135  1.1.6.1  ad kmutex_t sched_mutex;
    136  1.1.6.1  ad 
    137  1.1.6.1  ad /* Number of hardclock ticks per sched_tick() */
    138  1.1.6.1  ad int rrticks;
    139  1.1.6.1  ad 
    140  1.1.6.9  ad const int schedppq = 1;
    141  1.1.6.4  ad 
    142  1.1.6.1  ad /*
    143  1.1.6.1  ad  * Force switch among equal priority processes every 100ms.
    144  1.1.6.1  ad  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    145  1.1.6.8  ad  *
    146  1.1.6.8  ad  * There's no need to lock anywhere in this routine, as it's
    147  1.1.6.8  ad  * CPU-local and runs at IPL_SCHED (called from clock interrupt).
    148  1.1.6.1  ad  */
    149  1.1.6.1  ad /* ARGSUSED */
    150  1.1.6.1  ad void
    151  1.1.6.1  ad sched_tick(struct cpu_info *ci)
    152  1.1.6.1  ad {
    153  1.1.6.1  ad 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    154  1.1.6.1  ad 
    155  1.1.6.1  ad 	spc->spc_ticks = rrticks;
    156  1.1.6.1  ad 
    157  1.1.6.1  ad 	if (!CURCPU_IDLE_P()) {
    158  1.1.6.1  ad 		if (spc->spc_flags & SPCF_SEENRR) {
    159  1.1.6.1  ad 			/*
    160  1.1.6.1  ad 			 * The process has already been through a roundrobin
    161  1.1.6.1  ad 			 * without switching and may be hogging the CPU.
    162  1.1.6.1  ad 			 * Indicate that the process should yield.
    163  1.1.6.1  ad 			 */
    164  1.1.6.1  ad 			spc->spc_flags |= SPCF_SHOULDYIELD;
    165  1.1.6.1  ad 		} else
    166  1.1.6.1  ad 			spc->spc_flags |= SPCF_SEENRR;
    167  1.1.6.1  ad 	}
    168  1.1.6.7  ad 	cpu_need_resched(ci, 0);
    169  1.1.6.1  ad }
    170  1.1.6.1  ad 
    171  1.1.6.2  ad #define	NICE_WEIGHT 	1			/* priorities per nice level */
    172  1.1.6.1  ad 
    173  1.1.6.1  ad #define	ESTCPU_SHIFT	11
    174  1.1.6.9  ad #define	ESTCPU_MAX	((NICE_WEIGHT * PRIO_MAX - 1) << ESTCPU_SHIFT)
    175  1.1.6.1  ad #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    176  1.1.6.1  ad 
    177  1.1.6.1  ad /*
    178  1.1.6.1  ad  * Constants for digital decay and forget:
    179  1.1.6.1  ad  *	90% of (p_estcpu) usage in 5 * loadav time
    180  1.1.6.1  ad  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    181  1.1.6.1  ad  *          Note that, as ps(1) mentions, this can let percentages
    182  1.1.6.1  ad  *          total over 100% (I've seen 137.9% for 3 processes).
    183  1.1.6.1  ad  *
    184  1.1.6.1  ad  * Note that hardclock updates p_estcpu and p_cpticks independently.
    185  1.1.6.1  ad  *
    186  1.1.6.1  ad  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    187  1.1.6.1  ad  * That is, the system wants to compute a value of decay such
    188  1.1.6.1  ad  * that the following for loop:
    189  1.1.6.1  ad  * 	for (i = 0; i < (5 * loadavg); i++)
    190  1.1.6.1  ad  * 		p_estcpu *= decay;
    191  1.1.6.1  ad  * will compute
    192  1.1.6.1  ad  * 	p_estcpu *= 0.1;
    193  1.1.6.1  ad  * for all values of loadavg:
    194  1.1.6.1  ad  *
    195  1.1.6.1  ad  * Mathematically this loop can be expressed by saying:
    196  1.1.6.1  ad  * 	decay ** (5 * loadavg) ~= .1
    197  1.1.6.1  ad  *
    198  1.1.6.1  ad  * The system computes decay as:
    199  1.1.6.1  ad  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    200  1.1.6.1  ad  *
    201  1.1.6.1  ad  * We wish to prove that the system's computation of decay
    202  1.1.6.1  ad  * will always fulfill the equation:
    203  1.1.6.1  ad  * 	decay ** (5 * loadavg) ~= .1
    204  1.1.6.1  ad  *
    205  1.1.6.1  ad  * If we compute b as:
    206  1.1.6.1  ad  * 	b = 2 * loadavg
    207  1.1.6.1  ad  * then
    208  1.1.6.1  ad  * 	decay = b / (b + 1)
    209  1.1.6.1  ad  *
    210  1.1.6.1  ad  * We now need to prove two things:
    211  1.1.6.1  ad  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    212  1.1.6.1  ad  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    213  1.1.6.1  ad  *
    214  1.1.6.1  ad  * Facts:
    215  1.1.6.1  ad  *         For x close to zero, exp(x) =~ 1 + x, since
    216  1.1.6.1  ad  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    217  1.1.6.1  ad  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    218  1.1.6.1  ad  *         For x close to zero, ln(1+x) =~ x, since
    219  1.1.6.1  ad  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    220  1.1.6.1  ad  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    221  1.1.6.1  ad  *         ln(.1) =~ -2.30
    222  1.1.6.1  ad  *
    223  1.1.6.1  ad  * Proof of (1):
    224  1.1.6.1  ad  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    225  1.1.6.1  ad  *	solving for factor,
    226  1.1.6.1  ad  *      ln(factor) =~ (-2.30/5*loadav), or
    227  1.1.6.1  ad  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    228  1.1.6.1  ad  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    229  1.1.6.1  ad  *
    230  1.1.6.1  ad  * Proof of (2):
    231  1.1.6.1  ad  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    232  1.1.6.1  ad  *	solving for power,
    233  1.1.6.1  ad  *      power*ln(b/(b+1)) =~ -2.30, or
    234  1.1.6.1  ad  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    235  1.1.6.1  ad  *
    236  1.1.6.1  ad  * Actual power values for the implemented algorithm are as follows:
    237  1.1.6.1  ad  *      loadav: 1       2       3       4
    238  1.1.6.1  ad  *      power:  5.68    10.32   14.94   19.55
    239  1.1.6.1  ad  */
    240  1.1.6.1  ad 
    241  1.1.6.1  ad /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    242  1.1.6.1  ad #define	loadfactor(loadav)	(2 * (loadav))
    243  1.1.6.1  ad 
    244  1.1.6.1  ad static fixpt_t
    245  1.1.6.1  ad decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    246  1.1.6.1  ad {
    247  1.1.6.1  ad 
    248  1.1.6.1  ad 	if (estcpu == 0) {
    249  1.1.6.1  ad 		return 0;
    250  1.1.6.1  ad 	}
    251  1.1.6.1  ad 
    252  1.1.6.1  ad #if !defined(_LP64)
    253  1.1.6.1  ad 	/* avoid 64bit arithmetics. */
    254  1.1.6.1  ad #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    255  1.1.6.1  ad 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    256  1.1.6.1  ad 		return estcpu * loadfac / (loadfac + FSCALE);
    257  1.1.6.1  ad 	}
    258  1.1.6.1  ad #endif /* !defined(_LP64) */
    259  1.1.6.1  ad 
    260  1.1.6.1  ad 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    261  1.1.6.1  ad }
    262  1.1.6.1  ad 
    263  1.1.6.1  ad /*
    264  1.1.6.1  ad  * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
    265  1.1.6.1  ad  * sleeping for at least seven times the loadfactor will decay p_estcpu to
    266  1.1.6.1  ad  * less than (1 << ESTCPU_SHIFT).
    267  1.1.6.1  ad  *
    268  1.1.6.1  ad  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    269  1.1.6.1  ad  */
    270  1.1.6.1  ad static fixpt_t
    271  1.1.6.1  ad decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    272  1.1.6.1  ad {
    273  1.1.6.1  ad 
    274  1.1.6.1  ad 	if ((n << FSHIFT) >= 7 * loadfac) {
    275  1.1.6.1  ad 		return 0;
    276  1.1.6.1  ad 	}
    277  1.1.6.1  ad 
    278  1.1.6.1  ad 	while (estcpu != 0 && n > 1) {
    279  1.1.6.1  ad 		estcpu = decay_cpu(loadfac, estcpu);
    280  1.1.6.1  ad 		n--;
    281  1.1.6.1  ad 	}
    282  1.1.6.1  ad 
    283  1.1.6.1  ad 	return estcpu;
    284  1.1.6.1  ad }
    285  1.1.6.1  ad 
    286  1.1.6.1  ad /*
    287  1.1.6.1  ad  * sched_pstats_hook:
    288  1.1.6.1  ad  *
    289  1.1.6.1  ad  * Periodically called from sched_pstats(); used to recalculate priorities.
    290  1.1.6.1  ad  */
    291  1.1.6.1  ad void
    292  1.1.6.1  ad sched_pstats_hook(struct proc *p, int minslp)
    293  1.1.6.1  ad {
    294  1.1.6.1  ad 	struct lwp *l;
    295  1.1.6.1  ad 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    296  1.1.6.1  ad 
    297  1.1.6.1  ad 	/*
    298  1.1.6.1  ad 	 * If the process has slept the entire second,
    299  1.1.6.1  ad 	 * stop recalculating its priority until it wakes up.
    300  1.1.6.1  ad 	 */
    301  1.1.6.1  ad 	if (minslp <= 1) {
    302  1.1.6.1  ad 		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
    303  1.1.6.1  ad 
    304  1.1.6.1  ad 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    305  1.1.6.1  ad 			if ((l->l_flag & LW_IDLE) != 0)
    306  1.1.6.1  ad 				continue;
    307  1.1.6.1  ad 			lwp_lock(l);
    308  1.1.6.2  ad 			if (l->l_slptime <= 1 && l->l_priority < PRI_KERNEL)
    309  1.1.6.1  ad 				resetpriority(l);
    310  1.1.6.1  ad 			lwp_unlock(l);
    311  1.1.6.1  ad 		}
    312  1.1.6.1  ad 	}
    313  1.1.6.1  ad }
    314  1.1.6.1  ad 
    315  1.1.6.1  ad /*
    316  1.1.6.1  ad  * Recalculate the priority of a process after it has slept for a while.
    317  1.1.6.1  ad  */
    318  1.1.6.1  ad static void
    319  1.1.6.1  ad updatepri(struct lwp *l)
    320  1.1.6.1  ad {
    321  1.1.6.1  ad 	struct proc *p = l->l_proc;
    322  1.1.6.1  ad 	fixpt_t loadfac;
    323  1.1.6.1  ad 
    324  1.1.6.1  ad 	KASSERT(lwp_locked(l, NULL));
    325  1.1.6.1  ad 	KASSERT(l->l_slptime > 1);
    326  1.1.6.1  ad 
    327  1.1.6.1  ad 	loadfac = loadfactor(averunnable.ldavg[0]);
    328  1.1.6.1  ad 
    329  1.1.6.1  ad 	l->l_slptime--; /* the first time was done in sched_pstats */
    330  1.1.6.1  ad 	/* XXX NJWLWP */
    331  1.1.6.1  ad 	/* XXXSMP occasionally unlocked, should be per-LWP */
    332  1.1.6.1  ad 	p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
    333  1.1.6.1  ad 	resetpriority(l);
    334  1.1.6.1  ad }
    335  1.1.6.1  ad 
    336  1.1.6.1  ad /*
    337  1.1.6.4  ad  * The primitives that manipulate the run queues.  whichqs tells which of
    338  1.1.6.4  ad  * the queues have processes in them.  sched_enqueue() puts processes into
    339  1.1.6.4  ad  * queues, sched_dequeue() removes them from queues.
    340  1.1.6.1  ad  */
    341  1.1.6.1  ad #ifdef RQDEBUG
    342  1.1.6.1  ad static void
    343  1.1.6.1  ad runqueue_check(const runqueue_t *rq, int whichq, struct lwp *l)
    344  1.1.6.1  ad {
    345  1.1.6.1  ad 	const subqueue_t * const sq = &rq->rq_subqueues[whichq];
    346  1.1.6.1  ad 	const uint32_t bitmap = rq->rq_bitmap;
    347  1.1.6.1  ad 	struct lwp *l2;
    348  1.1.6.1  ad 	int found = 0;
    349  1.1.6.1  ad 	int die = 0;
    350  1.1.6.1  ad 	int empty = 1;
    351  1.1.6.9  ad 	int j;
    352  1.1.6.1  ad 
    353  1.1.6.9  ad 	for (j = 0; j < PPQ; j++) {
    354  1.1.6.9  ad 		TAILQ_FOREACH(l2, &sq->sq_queue[j], l_runq) {
    355  1.1.6.9  ad 			if (l2->l_stat != LSRUN) {
    356  1.1.6.9  ad 				printf("runqueue_check[%d]: lwp %p state (%d) "
    357  1.1.6.9  ad 				    " != LSRUN\n", whichq, l2, l2->l_stat);
    358  1.1.6.9  ad 			}
    359  1.1.6.9  ad 			if (l2 == l)
    360  1.1.6.9  ad 				found = 1;
    361  1.1.6.9  ad 			empty = 0;
    362  1.1.6.1  ad 		}
    363  1.1.6.1  ad 	}
    364  1.1.6.1  ad 	if (empty && (bitmap & RQMASK(whichq)) != 0) {
    365  1.1.6.1  ad 		printf("runqueue_check[%d]: bit set for empty run-queue %p\n",
    366  1.1.6.1  ad 		    whichq, rq);
    367  1.1.6.1  ad 		die = 1;
    368  1.1.6.1  ad 	} else if (!empty && (bitmap & RQMASK(whichq)) == 0) {
    369  1.1.6.1  ad 		printf("runqueue_check[%d]: bit clear for non-empty "
    370  1.1.6.1  ad 		    "run-queue %p\n", whichq, rq);
    371  1.1.6.1  ad 		die = 1;
    372  1.1.6.1  ad 	}
    373  1.1.6.1  ad 	if (l != NULL && (bitmap & RQMASK(whichq)) == 0) {
    374  1.1.6.1  ad 		printf("runqueue_check[%d]: bit clear for active lwp %p\n",
    375  1.1.6.1  ad 		    whichq, l);
    376  1.1.6.1  ad 		die = 1;
    377  1.1.6.1  ad 	}
    378  1.1.6.1  ad 	if (l != NULL && empty) {
    379  1.1.6.1  ad 		printf("runqueue_check[%d]: empty run-queue %p with "
    380  1.1.6.1  ad 		    "active lwp %p\n", whichq, rq, l);
    381  1.1.6.1  ad 		die = 1;
    382  1.1.6.1  ad 	}
    383  1.1.6.1  ad 	if (l != NULL && !found) {
    384  1.1.6.1  ad 		printf("runqueue_check[%d]: lwp %p not in runqueue %p!",
    385  1.1.6.1  ad 		    whichq, l, rq);
    386  1.1.6.1  ad 		die = 1;
    387  1.1.6.1  ad 	}
    388  1.1.6.1  ad 	if (die)
    389  1.1.6.1  ad 		panic("runqueue_check: inconsistency found");
    390  1.1.6.1  ad }
    391  1.1.6.1  ad #else /* RQDEBUG */
    392  1.1.6.1  ad #define	runqueue_check(a, b, c)	/* nothing */
    393  1.1.6.1  ad #endif /* RQDEBUG */
    394  1.1.6.1  ad 
    395  1.1.6.1  ad static void
    396  1.1.6.1  ad runqueue_init(runqueue_t *rq)
    397  1.1.6.1  ad {
    398  1.1.6.1  ad 	int i;
    399  1.1.6.1  ad 
    400  1.1.6.9  ad 	for (i = 0; i < NUM_Q; i++)
    401  1.1.6.9  ad 		TAILQ_INIT(&rq->rq_queue[i]);
    402  1.1.6.9  ad 	for (i = 0; i < NUM_B; i++)
    403  1.1.6.9  ad 		rq->rq_bitmap[i] = 0;
    404  1.1.6.9  ad 	TAILQ_INIT(&rq->rq_rt);
    405  1.1.6.9  ad 	rq->rq_count = 0;
    406  1.1.6.1  ad }
    407  1.1.6.1  ad 
    408  1.1.6.1  ad static void
    409  1.1.6.1  ad runqueue_enqueue(runqueue_t *rq, struct lwp *l)
    410  1.1.6.1  ad {
    411  1.1.6.9  ad 	pri_t pri;
    412  1.1.6.9  ad 	lwp_t *l2;
    413  1.1.6.1  ad 
    414  1.1.6.1  ad 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    415  1.1.6.1  ad 
    416  1.1.6.9  ad 	pri = lwp_eprio(l);
    417  1.1.6.9  ad 	rq->rq_count++;
    418  1.1.6.9  ad 
    419  1.1.6.9  ad 	if (pri >= PRI_USER_RT) {
    420  1.1.6.9  ad 		TAILQ_FOREACH(l2, &rq->rq_rt, l_runq) {
    421  1.1.6.9  ad 			if (lwp_eprio(l2) < pri) {
    422  1.1.6.9  ad 				TAILQ_INSERT_BEFORE(l2, l, l_runq);
    423  1.1.6.9  ad 				return;
    424  1.1.6.9  ad 			}
    425  1.1.6.9  ad 		}
    426  1.1.6.9  ad 		TAILQ_INSERT_TAIL(&rq->rq_rt, l, l_runq);
    427  1.1.6.9  ad 		return;
    428  1.1.6.9  ad 	}
    429  1.1.6.9  ad 
    430  1.1.6.9  ad 	runqueue_check(rq, pri, NULL);
    431  1.1.6.9  ad 	rq->rq_bitmap[pri >> PPB_SHIFT] |=
    432  1.1.6.9  ad 	    (0x80000000 >> (pri & PPB_MASK));
    433  1.1.6.9  ad 	TAILQ_INSERT_TAIL(&rq->rq_queue[pri], l, l_runq);
    434  1.1.6.9  ad 	runqueue_check(rq, pri, l);
    435  1.1.6.1  ad }
    436  1.1.6.1  ad 
    437  1.1.6.1  ad static void
    438  1.1.6.1  ad runqueue_dequeue(runqueue_t *rq, struct lwp *l)
    439  1.1.6.1  ad {
    440  1.1.6.9  ad 	pri_t pri;
    441  1.1.6.1  ad 
    442  1.1.6.1  ad 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    443  1.1.6.1  ad 
    444  1.1.6.9  ad 	pri = lwp_eprio(l);
    445  1.1.6.9  ad 	rq->rq_count--;
    446  1.1.6.9  ad 
    447  1.1.6.9  ad 	if (pri >= PRI_USER_RT) {
    448  1.1.6.9  ad 		TAILQ_REMOVE(&rq->rq_rt, l, l_runq);
    449  1.1.6.9  ad 		return;
    450  1.1.6.9  ad 	}
    451  1.1.6.9  ad 
    452  1.1.6.9  ad 	runqueue_check(rq, pri, l);
    453  1.1.6.9  ad 	TAILQ_REMOVE(&rq->rq_queue[pri], l, l_runq);
    454  1.1.6.9  ad 	if (TAILQ_EMPTY(&rq->rq_queue[pri]))
    455  1.1.6.9  ad 		rq->rq_bitmap[pri >> PPB_SHIFT] &=
    456  1.1.6.9  ad 		    ~(0x80000000 >> (pri & PPB_MASK));
    457  1.1.6.9  ad 	runqueue_check(rq, pri, NULL);
    458  1.1.6.1  ad }
    459  1.1.6.1  ad 
    460  1.1.6.1  ad static struct lwp *
    461  1.1.6.1  ad runqueue_nextlwp(runqueue_t *rq)
    462  1.1.6.1  ad {
    463  1.1.6.9  ad 	pri_t pri;
    464  1.1.6.9  ad 	int i;
    465  1.1.6.9  ad 
    466  1.1.6.9  ad 	KASSERT(rq->rq_count != 0);
    467  1.1.6.9  ad 
    468  1.1.6.9  ad 	if (!TAILQ_EMPTY(&rq->rq_rt))
    469  1.1.6.9  ad 		return TAILQ_FIRST(&rq->rq_rt);
    470  1.1.6.1  ad 
    471  1.1.6.9  ad 	for (i = NUM_B - 1; i >= 0; i--) {
    472  1.1.6.9  ad 		if (rq->rq_bitmap[i] != 0) {
    473  1.1.6.9  ad 			pri = (32 - ffs(rq->rq_bitmap[i])) + i * NUM_PPB;
    474  1.1.6.9  ad 			return TAILQ_FIRST(&rq->rq_queue[pri]);
    475  1.1.6.9  ad 		}
    476  1.1.6.1  ad 	}
    477  1.1.6.9  ad 
    478  1.1.6.9  ad 	panic("runqueue_nextlwp");
    479  1.1.6.1  ad }
    480  1.1.6.1  ad 
    481  1.1.6.1  ad #if defined(DDB)
    482  1.1.6.1  ad static void
    483  1.1.6.1  ad runqueue_print(const runqueue_t *rq, void (*pr)(const char *, ...))
    484  1.1.6.1  ad {
    485  1.1.6.9  ad 	lwp_t *l;
    486  1.1.6.9  ad 	int i;
    487  1.1.6.1  ad 
    488  1.1.6.9  ad 	TAILQ_FOREACH(l, &rq->rq_rt, l_runq) {
    489  1.1.6.9  ad 		(*pr)("\t%d.%d (%s) pri=%d usrpri=%d\n",
    490  1.1.6.9  ad 		    l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
    491  1.1.6.9  ad 		    (int)l->l_priority, (int)l->l_usrpri);
    492  1.1.6.9  ad 	}
    493  1.1.6.9  ad 
    494  1.1.6.9  ad 	for (i = NUM_Q - 1; i >= 0; i--) {
    495  1.1.6.9  ad 		TAILQ_FOREACH(l, &rq->rq_queue[i], l_runq) {
    496  1.1.6.1  ad 			(*pr)("\t%d.%d (%s) pri=%d usrpri=%d\n",
    497  1.1.6.9  ad 			    l->l_proc->p_pid, l->l_lid, l->l_proc->p_comm,
    498  1.1.6.9  ad 			   (int)l->l_priority, (int)l->l_usrpri);
    499  1.1.6.1  ad 		}
    500  1.1.6.1  ad 	}
    501  1.1.6.1  ad }
    502  1.1.6.1  ad #endif /* defined(DDB) */
    503  1.1.6.1  ad 
    504  1.1.6.1  ad /*
    505  1.1.6.1  ad  * Initialize the (doubly-linked) run queues
    506  1.1.6.1  ad  * to be empty.
    507  1.1.6.1  ad  */
    508  1.1.6.1  ad void
    509  1.1.6.1  ad sched_rqinit()
    510  1.1.6.1  ad {
    511  1.1.6.1  ad 
    512  1.1.6.1  ad 	runqueue_init(&global_queue);
    513  1.1.6.1  ad 	mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
    514  1.1.6.1  ad 	/* Initialize the lock pointer for lwp0 */
    515  1.1.6.1  ad 	lwp0.l_mutex = &curcpu()->ci_schedstate.spc_lwplock;
    516  1.1.6.1  ad }
    517  1.1.6.1  ad 
    518  1.1.6.1  ad void
    519  1.1.6.1  ad sched_cpuattach(struct cpu_info *ci)
    520  1.1.6.1  ad {
    521  1.1.6.1  ad 	runqueue_t *rq;
    522  1.1.6.1  ad 
    523  1.1.6.1  ad 	ci->ci_schedstate.spc_mutex = &sched_mutex;
    524  1.1.6.1  ad 	rq = kmem_zalloc(sizeof(*rq), KM_NOSLEEP);
    525  1.1.6.1  ad 	runqueue_init(rq);
    526  1.1.6.1  ad 	ci->ci_schedstate.spc_sched_info = rq;
    527  1.1.6.1  ad }
    528  1.1.6.1  ad 
    529  1.1.6.1  ad void
    530  1.1.6.1  ad sched_setup()
    531  1.1.6.1  ad {
    532  1.1.6.1  ad 
    533  1.1.6.1  ad 	rrticks = hz / 10;
    534  1.1.6.1  ad }
    535  1.1.6.1  ad 
    536  1.1.6.1  ad void
    537  1.1.6.1  ad sched_setrunnable(struct lwp *l)
    538  1.1.6.1  ad {
    539  1.1.6.1  ad 
    540  1.1.6.1  ad  	if (l->l_slptime > 1)
    541  1.1.6.1  ad  		updatepri(l);
    542  1.1.6.1  ad }
    543  1.1.6.1  ad 
    544  1.1.6.1  ad bool
    545  1.1.6.1  ad sched_curcpu_runnable_p(void)
    546  1.1.6.1  ad {
    547  1.1.6.6  ad 	struct schedstate_percpu *spc;
    548  1.1.6.6  ad 	runqueue_t *rq;
    549  1.1.6.6  ad 
    550  1.1.6.6  ad 	spc = &curcpu()->ci_schedstate;
    551  1.1.6.6  ad 	rq = spc->spc_sched_info;
    552  1.1.6.1  ad 
    553  1.1.6.6  ad 	if (__predict_true((spc->spc_flags & SPCF_OFFLINE) == 0))
    554  1.1.6.9  ad 		return (global_queue.rq_count | rq->rq_count) != 0;
    555  1.1.6.9  ad 	return rq->rq_count != 0;
    556  1.1.6.1  ad }
    557  1.1.6.1  ad 
    558  1.1.6.1  ad void
    559  1.1.6.1  ad sched_nice(struct proc *chgp, int n)
    560  1.1.6.1  ad {
    561  1.1.6.1  ad 
    562  1.1.6.1  ad 	chgp->p_nice = n;
    563  1.1.6.1  ad 	(void)resetprocpriority(chgp);
    564  1.1.6.1  ad }
    565  1.1.6.1  ad 
    566  1.1.6.1  ad /*
    567  1.1.6.1  ad  * Compute the priority of a process when running in user mode.
    568  1.1.6.1  ad  * Arrange to reschedule if the resulting priority is better
    569  1.1.6.1  ad  * than that of the current process.
    570  1.1.6.1  ad  */
    571  1.1.6.1  ad static void
    572  1.1.6.1  ad resetpriority(struct lwp *l)
    573  1.1.6.1  ad {
    574  1.1.6.1  ad 	unsigned int newpriority;
    575  1.1.6.1  ad 	struct proc *p = l->l_proc;
    576  1.1.6.1  ad 
    577  1.1.6.1  ad 	/* XXXSMP KASSERT(mutex_owned(&p->p_stmutex)); */
    578  1.1.6.1  ad 	KASSERT(lwp_locked(l, NULL));
    579  1.1.6.1  ad 
    580  1.1.6.1  ad 	if ((l->l_flag & LW_SYSTEM) != 0)
    581  1.1.6.1  ad 		return;
    582  1.1.6.1  ad 
    583  1.1.6.2  ad 	newpriority = PRI_KERNEL - 1 - (p->p_estcpu >> ESTCPU_SHIFT) -
    584  1.1.6.1  ad 	    NICE_WEIGHT * (p->p_nice - NZERO);
    585  1.1.6.2  ad 	newpriority = max(newpriority, 0);
    586  1.1.6.1  ad 	lwp_changepri(l, newpriority);
    587  1.1.6.1  ad }
    588  1.1.6.1  ad 
    589  1.1.6.1  ad /*
    590  1.1.6.1  ad  * Recompute priority for all LWPs in a process.
    591  1.1.6.1  ad  */
    592  1.1.6.1  ad static void
    593  1.1.6.1  ad resetprocpriority(struct proc *p)
    594  1.1.6.1  ad {
    595  1.1.6.1  ad 	struct lwp *l;
    596  1.1.6.1  ad 
    597  1.1.6.1  ad 	KASSERT(mutex_owned(&p->p_stmutex));
    598  1.1.6.1  ad 
    599  1.1.6.1  ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    600  1.1.6.1  ad 		lwp_lock(l);
    601  1.1.6.1  ad 		resetpriority(l);
    602  1.1.6.1  ad 		lwp_unlock(l);
    603  1.1.6.1  ad 	}
    604  1.1.6.1  ad }
    605  1.1.6.1  ad 
    606  1.1.6.1  ad /*
    607  1.1.6.1  ad  * We adjust the priority of the current process.  The priority of a process
    608  1.1.6.1  ad  * gets worse as it accumulates CPU time.  The CPU usage estimator (p_estcpu)
    609  1.1.6.1  ad  * is increased here.  The formula for computing priorities (in kern_synch.c)
    610  1.1.6.1  ad  * will compute a different value each time p_estcpu increases. This can
    611  1.1.6.1  ad  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    612  1.1.6.1  ad  * queue will not change.  The CPU usage estimator ramps up quite quickly
    613  1.1.6.1  ad  * when the process is running (linearly), and decays away exponentially, at
    614  1.1.6.1  ad  * a rate which is proportionally slower when the system is busy.  The basic
    615  1.1.6.1  ad  * principle is that the system will 90% forget that the process used a lot
    616  1.1.6.1  ad  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    617  1.1.6.1  ad  * processes which haven't run much recently, and to round-robin among other
    618  1.1.6.1  ad  * processes.
    619  1.1.6.1  ad  */
    620  1.1.6.1  ad 
    621  1.1.6.1  ad void
    622  1.1.6.1  ad sched_schedclock(struct lwp *l)
    623  1.1.6.1  ad {
    624  1.1.6.1  ad 	struct proc *p = l->l_proc;
    625  1.1.6.1  ad 
    626  1.1.6.1  ad 	KASSERT(!CURCPU_IDLE_P());
    627  1.1.6.1  ad 	mutex_spin_enter(&p->p_stmutex);
    628  1.1.6.1  ad 	p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
    629  1.1.6.1  ad 	lwp_lock(l);
    630  1.1.6.1  ad 	resetpriority(l);
    631  1.1.6.1  ad 	mutex_spin_exit(&p->p_stmutex);
    632  1.1.6.2  ad 	if ((l->l_flag & LW_SYSTEM) == 0 && l->l_priority < PRI_KERNEL)
    633  1.1.6.1  ad 		l->l_priority = l->l_usrpri;
    634  1.1.6.1  ad 	lwp_unlock(l);
    635  1.1.6.1  ad }
    636  1.1.6.1  ad 
    637  1.1.6.1  ad /*
    638  1.1.6.1  ad  * sched_proc_fork:
    639  1.1.6.1  ad  *
    640  1.1.6.1  ad  *	Inherit the parent's scheduler history.
    641  1.1.6.1  ad  */
    642  1.1.6.1  ad void
    643  1.1.6.1  ad sched_proc_fork(struct proc *parent, struct proc *child)
    644  1.1.6.1  ad {
    645  1.1.6.1  ad 
    646  1.1.6.1  ad 	KASSERT(mutex_owned(&parent->p_smutex));
    647  1.1.6.1  ad 
    648  1.1.6.1  ad 	child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
    649  1.1.6.1  ad 	child->p_forktime = sched_pstats_ticks;
    650  1.1.6.1  ad }
    651  1.1.6.1  ad 
    652  1.1.6.1  ad /*
    653  1.1.6.1  ad  * sched_proc_exit:
    654  1.1.6.1  ad  *
    655  1.1.6.1  ad  *	Chargeback parents for the sins of their children.
    656  1.1.6.1  ad  */
    657  1.1.6.1  ad void
    658  1.1.6.1  ad sched_proc_exit(struct proc *parent, struct proc *child)
    659  1.1.6.1  ad {
    660  1.1.6.1  ad 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    661  1.1.6.1  ad 	fixpt_t estcpu;
    662  1.1.6.1  ad 
    663  1.1.6.1  ad 	/* XXX Only if parent != init?? */
    664  1.1.6.1  ad 
    665  1.1.6.1  ad 	mutex_spin_enter(&parent->p_stmutex);
    666  1.1.6.1  ad 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
    667  1.1.6.1  ad 	    sched_pstats_ticks - child->p_forktime);
    668  1.1.6.1  ad 	if (child->p_estcpu > estcpu)
    669  1.1.6.1  ad 		parent->p_estcpu =
    670  1.1.6.1  ad 		    ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
    671  1.1.6.1  ad 	mutex_spin_exit(&parent->p_stmutex);
    672  1.1.6.1  ad }
    673  1.1.6.1  ad 
    674  1.1.6.1  ad void
    675  1.1.6.1  ad sched_enqueue(struct lwp *l, bool ctxswitch)
    676  1.1.6.1  ad {
    677  1.1.6.1  ad 
    678  1.1.6.1  ad 	if ((l->l_flag & LW_BOUND) != 0)
    679  1.1.6.1  ad 		runqueue_enqueue(l->l_cpu->ci_schedstate.spc_sched_info, l);
    680  1.1.6.1  ad 	else
    681  1.1.6.1  ad 		runqueue_enqueue(&global_queue, l);
    682  1.1.6.1  ad }
    683  1.1.6.1  ad 
    684  1.1.6.1  ad /*
    685  1.1.6.1  ad  * XXXSMP When LWP dispatch (cpu_switch()) is changed to use sched_dequeue(),
    686  1.1.6.1  ad  * drop of the effective priority level from kernel to user needs to be
    687  1.1.6.1  ad  * moved here from userret().  The assignment in userret() is currently
    688  1.1.6.1  ad  * done unlocked.
    689  1.1.6.1  ad  */
    690  1.1.6.1  ad void
    691  1.1.6.1  ad sched_dequeue(struct lwp *l)
    692  1.1.6.1  ad {
    693  1.1.6.1  ad 
    694  1.1.6.1  ad 	if ((l->l_flag & LW_BOUND) != 0)
    695  1.1.6.1  ad 		runqueue_dequeue(l->l_cpu->ci_schedstate.spc_sched_info, l);
    696  1.1.6.1  ad 	else
    697  1.1.6.1  ad 		runqueue_dequeue(&global_queue, l);
    698  1.1.6.1  ad }
    699  1.1.6.1  ad 
    700  1.1.6.1  ad struct lwp *
    701  1.1.6.1  ad sched_nextlwp(void)
    702  1.1.6.1  ad {
    703  1.1.6.6  ad 	struct schedstate_percpu *spc;
    704  1.1.6.9  ad 	runqueue_t *rq;
    705  1.1.6.1  ad 	lwp_t *l1, *l2;
    706  1.1.6.1  ad 
    707  1.1.6.6  ad 	spc = &curcpu()->ci_schedstate;
    708  1.1.6.6  ad 
    709  1.1.6.1  ad 	/* For now, just pick the highest priority LWP. */
    710  1.1.6.9  ad 	rq = spc->spc_sched_info;
    711  1.1.6.9  ad 	l1 = NULL;
    712  1.1.6.9  ad 	if (rq->rq_count != 0)
    713  1.1.6.9  ad 		l1 = runqueue_nextlwp(rq);
    714  1.1.6.9  ad 
    715  1.1.6.9  ad 	rq = &global_queue;
    716  1.1.6.9  ad 	if (__predict_false((spc->spc_flags & SPCF_OFFLINE) != 0) ||
    717  1.1.6.9  ad 	    rq->rq_count == 0)
    718  1.1.6.6  ad 		return l1;
    719  1.1.6.9  ad 	l2 = runqueue_nextlwp(rq);
    720  1.1.6.1  ad 
    721  1.1.6.1  ad 	if (l1 == NULL)
    722  1.1.6.1  ad 		return l2;
    723  1.1.6.1  ad 	if (l2 == NULL)
    724  1.1.6.1  ad 		return l1;
    725  1.1.6.2  ad 	if (lwp_eprio(l2) > lwp_eprio(l1))
    726  1.1.6.1  ad 		return l2;
    727  1.1.6.1  ad 	else
    728  1.1.6.1  ad 		return l1;
    729  1.1.6.1  ad }
    730  1.1.6.1  ad 
    731  1.1.6.1  ad void
    732  1.1.6.1  ad sched_lwp_fork(struct lwp *l)
    733  1.1.6.1  ad {
    734  1.1.6.1  ad 
    735  1.1.6.1  ad }
    736  1.1.6.1  ad 
    737  1.1.6.1  ad void
    738  1.1.6.1  ad sched_lwp_exit(struct lwp *l)
    739  1.1.6.1  ad {
    740  1.1.6.1  ad 
    741  1.1.6.1  ad }
    742  1.1.6.1  ad 
    743  1.1.6.5  ad /*
    744  1.1.6.5  ad  * sysctl setup.  XXX This should be split with kern_synch.c.
    745  1.1.6.5  ad  */
    746  1.1.6.1  ad SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
    747  1.1.6.1  ad {
    748  1.1.6.1  ad 	const struct sysctlnode *node = NULL;
    749  1.1.6.1  ad 
    750  1.1.6.1  ad 	sysctl_createv(clog, 0, NULL, NULL,
    751  1.1.6.1  ad 		CTLFLAG_PERMANENT,
    752  1.1.6.1  ad 		CTLTYPE_NODE, "kern", NULL,
    753  1.1.6.1  ad 		NULL, 0, NULL, 0,
    754  1.1.6.1  ad 		CTL_KERN, CTL_EOL);
    755  1.1.6.1  ad 	sysctl_createv(clog, 0, NULL, &node,
    756  1.1.6.1  ad 		CTLFLAG_PERMANENT,
    757  1.1.6.1  ad 		CTLTYPE_NODE, "sched",
    758  1.1.6.1  ad 		SYSCTL_DESCR("Scheduler options"),
    759  1.1.6.1  ad 		NULL, 0, NULL, 0,
    760  1.1.6.1  ad 		CTL_KERN, CTL_CREATE, CTL_EOL);
    761  1.1.6.1  ad 
    762  1.1.6.5  ad 	KASSERT(node != NULL);
    763  1.1.6.5  ad 
    764  1.1.6.5  ad 	sysctl_createv(clog, 0, &node, NULL,
    765  1.1.6.5  ad 		CTLFLAG_PERMANENT,
    766  1.1.6.5  ad 		CTLTYPE_STRING, "name", NULL,
    767  1.1.6.5  ad 		NULL, 0, __UNCONST("4.4BSD"), 0,
    768  1.1.6.5  ad 		CTL_CREATE, CTL_EOL);
    769  1.1.6.5  ad 	sysctl_createv(clog, 0, &node, NULL,
    770  1.1.6.5  ad 		CTLFLAG_READWRITE,
    771  1.1.6.5  ad 		CTLTYPE_INT, "timesoftints",
    772  1.1.6.5  ad 		SYSCTL_DESCR("Track CPU time for soft interrupts"),
    773  1.1.6.5  ad 		NULL, 0, &softint_timing, 0,
    774  1.1.6.5  ad 		CTL_CREATE, CTL_EOL);
    775  1.1.6.1  ad }
    776  1.1.6.1  ad 
    777  1.1.6.1  ad #if defined(DDB)
    778  1.1.6.1  ad void
    779  1.1.6.1  ad sched_print_runqueue(void (*pr)(const char *, ...))
    780  1.1.6.1  ad {
    781  1.1.6.1  ad 
    782  1.1.6.1  ad 	runqueue_print(&global_queue, pr);
    783  1.1.6.1  ad }
    784  1.1.6.1  ad #endif /* defined(DDB) */
    785