Home | History | Annotate | Line # | Download | only in kern
sched_4bsd.c revision 1.10
      1  1.10     ad /*	$NetBSD: sched_4bsd.c,v 1.10 2007/12/15 03:31:36 ad Exp $	*/
      2   1.2   yamt 
      3   1.2   yamt /*-
      4   1.2   yamt  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5   1.2   yamt  * All rights reserved.
      6   1.2   yamt  *
      7   1.2   yamt  * This code is derived from software contributed to The NetBSD Foundation
      8   1.2   yamt  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9   1.2   yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
     10   1.2   yamt  * Daniel Sieger.
     11   1.2   yamt  *
     12   1.2   yamt  * Redistribution and use in source and binary forms, with or without
     13   1.2   yamt  * modification, are permitted provided that the following conditions
     14   1.2   yamt  * are met:
     15   1.2   yamt  * 1. Redistributions of source code must retain the above copyright
     16   1.2   yamt  *    notice, this list of conditions and the following disclaimer.
     17   1.2   yamt  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.2   yamt  *    notice, this list of conditions and the following disclaimer in the
     19   1.2   yamt  *    documentation and/or other materials provided with the distribution.
     20   1.2   yamt  * 3. All advertising materials mentioning features or use of this software
     21   1.2   yamt  *    must display the following acknowledgement:
     22   1.2   yamt  *	This product includes software developed by the NetBSD
     23   1.2   yamt  *	Foundation, Inc. and its contributors.
     24   1.2   yamt  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25   1.2   yamt  *    contributors may be used to endorse or promote products derived
     26   1.2   yamt  *    from this software without specific prior written permission.
     27   1.2   yamt  *
     28   1.2   yamt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29   1.2   yamt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30   1.2   yamt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31   1.2   yamt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32   1.2   yamt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33   1.2   yamt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34   1.2   yamt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35   1.2   yamt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36   1.2   yamt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37   1.2   yamt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38   1.2   yamt  * POSSIBILITY OF SUCH DAMAGE.
     39   1.2   yamt  */
     40   1.2   yamt 
     41   1.2   yamt /*-
     42   1.2   yamt  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43   1.2   yamt  *	The Regents of the University of California.  All rights reserved.
     44   1.2   yamt  * (c) UNIX System Laboratories, Inc.
     45   1.2   yamt  * All or some portions of this file are derived from material licensed
     46   1.2   yamt  * to the University of California by American Telephone and Telegraph
     47   1.2   yamt  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48   1.2   yamt  * the permission of UNIX System Laboratories, Inc.
     49   1.2   yamt  *
     50   1.2   yamt  * Redistribution and use in source and binary forms, with or without
     51   1.2   yamt  * modification, are permitted provided that the following conditions
     52   1.2   yamt  * are met:
     53   1.2   yamt  * 1. Redistributions of source code must retain the above copyright
     54   1.2   yamt  *    notice, this list of conditions and the following disclaimer.
     55   1.2   yamt  * 2. Redistributions in binary form must reproduce the above copyright
     56   1.2   yamt  *    notice, this list of conditions and the following disclaimer in the
     57   1.2   yamt  *    documentation and/or other materials provided with the distribution.
     58   1.2   yamt  * 3. Neither the name of the University nor the names of its contributors
     59   1.2   yamt  *    may be used to endorse or promote products derived from this software
     60   1.2   yamt  *    without specific prior written permission.
     61   1.2   yamt  *
     62   1.2   yamt  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63   1.2   yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64   1.2   yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65   1.2   yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66   1.2   yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67   1.2   yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68   1.2   yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69   1.2   yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70   1.2   yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71   1.2   yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72   1.2   yamt  * SUCH DAMAGE.
     73   1.2   yamt  *
     74   1.2   yamt  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75   1.2   yamt  */
     76   1.2   yamt 
     77   1.2   yamt #include <sys/cdefs.h>
     78  1.10     ad __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.10 2007/12/15 03:31:36 ad Exp $");
     79   1.2   yamt 
     80   1.2   yamt #include "opt_ddb.h"
     81   1.2   yamt #include "opt_lockdebug.h"
     82   1.2   yamt #include "opt_perfctrs.h"
     83   1.2   yamt 
     84   1.2   yamt #define	__MUTEX_PRIVATE
     85   1.2   yamt 
     86   1.2   yamt #include <sys/param.h>
     87   1.2   yamt #include <sys/systm.h>
     88   1.2   yamt #include <sys/callout.h>
     89   1.2   yamt #include <sys/cpu.h>
     90   1.2   yamt #include <sys/proc.h>
     91   1.2   yamt #include <sys/kernel.h>
     92   1.2   yamt #include <sys/signalvar.h>
     93   1.2   yamt #include <sys/resourcevar.h>
     94   1.2   yamt #include <sys/sched.h>
     95   1.2   yamt #include <sys/sysctl.h>
     96   1.2   yamt #include <sys/kauth.h>
     97   1.2   yamt #include <sys/lockdebug.h>
     98   1.2   yamt #include <sys/kmem.h>
     99   1.5     ad #include <sys/intr.h>
    100   1.2   yamt 
    101   1.2   yamt #include <uvm/uvm_extern.h>
    102   1.2   yamt 
    103   1.2   yamt /*
    104   1.2   yamt  * Run queues.
    105   1.2   yamt  *
    106   1.8     ad  * We maintain bitmasks of non-empty queues in order speed up finding
    107   1.8     ad  * the first runnable process.  Since there can be (by definition) few
    108   1.8     ad  * real time LWPs in the the system, we maintain them on a linked list,
    109   1.8     ad  * sorted by priority.
    110   1.2   yamt  */
    111   1.2   yamt 
    112   1.8     ad #define	PPB_SHIFT	5
    113   1.8     ad #define	PPB_MASK	31
    114   1.8     ad 
    115   1.8     ad #define	NUM_Q		(NPRI_KERNEL + NPRI_USER)
    116   1.8     ad #define	NUM_PPB		(1 << PPB_SHIFT)
    117   1.8     ad #define	NUM_B		(NUM_Q / NUM_PPB)
    118   1.8     ad 
    119   1.2   yamt typedef struct runqueue {
    120   1.8     ad 	TAILQ_HEAD(, lwp) rq_fixedpri;		/* realtime, kthread */
    121   1.8     ad 	u_int		rq_count;		/* total # jobs */
    122   1.8     ad 	uint32_t	rq_bitmap[NUM_B];	/* bitmap of queues */
    123   1.8     ad 	TAILQ_HEAD(, lwp) rq_queue[NUM_Q];	/* user+kernel */
    124   1.2   yamt } runqueue_t;
    125   1.8     ad 
    126   1.2   yamt static runqueue_t global_queue;
    127   1.2   yamt 
    128   1.2   yamt static void updatepri(struct lwp *);
    129   1.2   yamt static void resetpriority(struct lwp *);
    130   1.2   yamt 
    131   1.6  rmind fixpt_t decay_cpu(fixpt_t, fixpt_t);
    132   1.6  rmind 
    133   1.2   yamt extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
    134   1.2   yamt 
    135   1.2   yamt /* The global scheduler state */
    136  1.10     ad kmutex_t runqueue_lock;
    137   1.2   yamt 
    138   1.2   yamt /* Number of hardclock ticks per sched_tick() */
    139   1.2   yamt int rrticks;
    140   1.2   yamt 
    141   1.8     ad const int schedppq = 1;
    142   1.8     ad 
    143   1.2   yamt /*
    144   1.2   yamt  * Force switch among equal priority processes every 100ms.
    145   1.2   yamt  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    146   1.5     ad  *
    147   1.5     ad  * There's no need to lock anywhere in this routine, as it's
    148   1.5     ad  * CPU-local and runs at IPL_SCHED (called from clock interrupt).
    149   1.2   yamt  */
    150   1.2   yamt /* ARGSUSED */
    151   1.2   yamt void
    152   1.2   yamt sched_tick(struct cpu_info *ci)
    153   1.2   yamt {
    154   1.2   yamt 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    155   1.2   yamt 
    156   1.2   yamt 	spc->spc_ticks = rrticks;
    157   1.2   yamt 
    158   1.7  rmind 	if (CURCPU_IDLE_P())
    159   1.7  rmind 		return;
    160   1.7  rmind 
    161   1.7  rmind 	if (spc->spc_flags & SPCF_SEENRR) {
    162   1.7  rmind 		/*
    163   1.7  rmind 		 * The process has already been through a roundrobin
    164   1.7  rmind 		 * without switching and may be hogging the CPU.
    165   1.7  rmind 		 * Indicate that the process should yield.
    166   1.7  rmind 		 */
    167   1.7  rmind 		spc->spc_flags |= SPCF_SHOULDYIELD;
    168   1.7  rmind 	} else
    169   1.7  rmind 		spc->spc_flags |= SPCF_SEENRR;
    170   1.7  rmind 
    171   1.7  rmind 	cpu_need_resched(ci, 0);
    172   1.2   yamt }
    173   1.2   yamt 
    174   1.8     ad /*
    175   1.8     ad  * Why PRIO_MAX - 2? From setpriority(2):
    176   1.8     ad  *
    177   1.8     ad  *	prio is a value in the range -20 to 20.  The default priority is
    178   1.8     ad  *	0; lower priorities cause more favorable scheduling.  A value of
    179   1.8     ad  *	19 or 20 will schedule a process only when nothing at priority <=
    180   1.8     ad  *	0 is runnable.
    181   1.8     ad  *
    182   1.8     ad  * This gives estcpu influence over 18 priority levels, and leaves nice
    183   1.8     ad  * with 40 levels.  One way to think about it is that nice has 20 levels
    184   1.8     ad  * either side of estcpu's 18.
    185   1.8     ad  */
    186   1.2   yamt #define	ESTCPU_SHIFT	11
    187   1.8     ad #define	ESTCPU_MAX	((PRIO_MAX - 2) << ESTCPU_SHIFT)
    188   1.8     ad #define	ESTCPU_ACCUM	(1 << (ESTCPU_SHIFT - 1))
    189   1.2   yamt #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    190   1.2   yamt 
    191   1.2   yamt /*
    192   1.2   yamt  * Constants for digital decay and forget:
    193   1.8     ad  *	90% of (l_estcpu) usage in 5 * loadav time
    194   1.8     ad  *	95% of (l_pctcpu) usage in 60 seconds (load insensitive)
    195   1.2   yamt  *          Note that, as ps(1) mentions, this can let percentages
    196   1.2   yamt  *          total over 100% (I've seen 137.9% for 3 processes).
    197   1.2   yamt  *
    198   1.8     ad  * Note that hardclock updates l_estcpu and l_cpticks independently.
    199   1.2   yamt  *
    200   1.8     ad  * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds.
    201   1.2   yamt  * That is, the system wants to compute a value of decay such
    202   1.2   yamt  * that the following for loop:
    203   1.2   yamt  * 	for (i = 0; i < (5 * loadavg); i++)
    204   1.8     ad  * 		l_estcpu *= decay;
    205   1.2   yamt  * will compute
    206   1.8     ad  * 	l_estcpu *= 0.1;
    207   1.2   yamt  * for all values of loadavg:
    208   1.2   yamt  *
    209   1.2   yamt  * Mathematically this loop can be expressed by saying:
    210   1.2   yamt  * 	decay ** (5 * loadavg) ~= .1
    211   1.2   yamt  *
    212   1.2   yamt  * The system computes decay as:
    213   1.2   yamt  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    214   1.2   yamt  *
    215   1.2   yamt  * We wish to prove that the system's computation of decay
    216   1.2   yamt  * will always fulfill the equation:
    217   1.2   yamt  * 	decay ** (5 * loadavg) ~= .1
    218   1.2   yamt  *
    219   1.2   yamt  * If we compute b as:
    220   1.2   yamt  * 	b = 2 * loadavg
    221   1.2   yamt  * then
    222   1.2   yamt  * 	decay = b / (b + 1)
    223   1.2   yamt  *
    224   1.2   yamt  * We now need to prove two things:
    225   1.2   yamt  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    226   1.2   yamt  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    227   1.2   yamt  *
    228   1.2   yamt  * Facts:
    229   1.2   yamt  *         For x close to zero, exp(x) =~ 1 + x, since
    230   1.2   yamt  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    231   1.2   yamt  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    232   1.2   yamt  *         For x close to zero, ln(1+x) =~ x, since
    233   1.2   yamt  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    234   1.2   yamt  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    235   1.2   yamt  *         ln(.1) =~ -2.30
    236   1.2   yamt  *
    237   1.2   yamt  * Proof of (1):
    238   1.2   yamt  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    239   1.2   yamt  *	solving for factor,
    240   1.2   yamt  *      ln(factor) =~ (-2.30/5*loadav), or
    241   1.2   yamt  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    242   1.2   yamt  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    243   1.2   yamt  *
    244   1.2   yamt  * Proof of (2):
    245   1.2   yamt  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    246   1.2   yamt  *	solving for power,
    247   1.2   yamt  *      power*ln(b/(b+1)) =~ -2.30, or
    248   1.2   yamt  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    249   1.2   yamt  *
    250   1.2   yamt  * Actual power values for the implemented algorithm are as follows:
    251   1.2   yamt  *      loadav: 1       2       3       4
    252   1.2   yamt  *      power:  5.68    10.32   14.94   19.55
    253   1.2   yamt  */
    254   1.2   yamt 
    255   1.2   yamt /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    256   1.2   yamt #define	loadfactor(loadav)	(2 * (loadav))
    257   1.2   yamt 
    258   1.6  rmind fixpt_t
    259   1.2   yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    260   1.2   yamt {
    261   1.2   yamt 
    262   1.2   yamt 	if (estcpu == 0) {
    263   1.2   yamt 		return 0;
    264   1.2   yamt 	}
    265   1.2   yamt 
    266   1.2   yamt #if !defined(_LP64)
    267   1.2   yamt 	/* avoid 64bit arithmetics. */
    268   1.2   yamt #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    269   1.2   yamt 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    270   1.2   yamt 		return estcpu * loadfac / (loadfac + FSCALE);
    271   1.2   yamt 	}
    272   1.2   yamt #endif /* !defined(_LP64) */
    273   1.2   yamt 
    274   1.2   yamt 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    275   1.2   yamt }
    276   1.2   yamt 
    277   1.2   yamt /*
    278   1.8     ad  * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
    279   1.8     ad  * sleeping for at least seven times the loadfactor will decay l_estcpu to
    280   1.2   yamt  * less than (1 << ESTCPU_SHIFT).
    281   1.2   yamt  *
    282   1.2   yamt  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    283   1.2   yamt  */
    284   1.2   yamt static fixpt_t
    285   1.2   yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    286   1.2   yamt {
    287   1.2   yamt 
    288   1.2   yamt 	if ((n << FSHIFT) >= 7 * loadfac) {
    289   1.2   yamt 		return 0;
    290   1.2   yamt 	}
    291   1.2   yamt 
    292   1.2   yamt 	while (estcpu != 0 && n > 1) {
    293   1.2   yamt 		estcpu = decay_cpu(loadfac, estcpu);
    294   1.2   yamt 		n--;
    295   1.2   yamt 	}
    296   1.2   yamt 
    297   1.2   yamt 	return estcpu;
    298   1.2   yamt }
    299   1.2   yamt 
    300   1.2   yamt /*
    301   1.2   yamt  * sched_pstats_hook:
    302   1.2   yamt  *
    303   1.2   yamt  * Periodically called from sched_pstats(); used to recalculate priorities.
    304   1.2   yamt  */
    305   1.2   yamt void
    306   1.6  rmind sched_pstats_hook(struct lwp *l)
    307   1.2   yamt {
    308   1.8     ad 	fixpt_t loadfac;
    309   1.8     ad 	int sleeptm;
    310   1.2   yamt 
    311   1.8     ad 	/*
    312   1.8     ad 	 * If the LWP has slept an entire second, stop recalculating
    313   1.8     ad 	 * its priority until it wakes up.
    314   1.8     ad 	 */
    315   1.8     ad 	if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    316   1.8     ad 	    l->l_stat == LSSUSPENDED) {
    317   1.8     ad 		l->l_slptime++;
    318   1.8     ad 		sleeptm = 1;
    319   1.8     ad 	} else {
    320   1.8     ad 		sleeptm = 0x7fffffff;
    321   1.8     ad 	}
    322   1.8     ad 
    323   1.8     ad 	if (l->l_slptime <= sleeptm) {
    324   1.8     ad 		loadfac = 2 * (averunnable.ldavg[0]);
    325   1.8     ad 		l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
    326   1.6  rmind 		resetpriority(l);
    327   1.8     ad 	}
    328   1.2   yamt }
    329   1.2   yamt 
    330   1.2   yamt /*
    331   1.2   yamt  * Recalculate the priority of a process after it has slept for a while.
    332   1.2   yamt  */
    333   1.2   yamt static void
    334   1.2   yamt updatepri(struct lwp *l)
    335   1.2   yamt {
    336   1.2   yamt 	fixpt_t loadfac;
    337   1.2   yamt 
    338   1.3     ad 	KASSERT(lwp_locked(l, NULL));
    339   1.2   yamt 	KASSERT(l->l_slptime > 1);
    340   1.2   yamt 
    341   1.2   yamt 	loadfac = loadfactor(averunnable.ldavg[0]);
    342   1.2   yamt 
    343   1.2   yamt 	l->l_slptime--; /* the first time was done in sched_pstats */
    344   1.8     ad 	l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
    345   1.2   yamt 	resetpriority(l);
    346   1.2   yamt }
    347   1.2   yamt 
    348   1.2   yamt static void
    349   1.2   yamt runqueue_init(runqueue_t *rq)
    350   1.2   yamt {
    351   1.2   yamt 	int i;
    352   1.2   yamt 
    353   1.8     ad 	for (i = 0; i < NUM_Q; i++)
    354   1.8     ad 		TAILQ_INIT(&rq->rq_queue[i]);
    355   1.8     ad 	for (i = 0; i < NUM_B; i++)
    356   1.8     ad 		rq->rq_bitmap[i] = 0;
    357   1.8     ad 	TAILQ_INIT(&rq->rq_fixedpri);
    358   1.8     ad 	rq->rq_count = 0;
    359   1.2   yamt }
    360   1.2   yamt 
    361   1.2   yamt static void
    362   1.2   yamt runqueue_enqueue(runqueue_t *rq, struct lwp *l)
    363   1.2   yamt {
    364   1.8     ad 	pri_t pri;
    365   1.8     ad 	lwp_t *l2;
    366   1.2   yamt 
    367   1.2   yamt 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    368   1.2   yamt 
    369   1.8     ad 	pri = lwp_eprio(l);
    370   1.8     ad 	rq->rq_count++;
    371   1.8     ad 
    372   1.8     ad 	if (pri >= PRI_KTHREAD) {
    373   1.8     ad 		TAILQ_FOREACH(l2, &rq->rq_fixedpri, l_runq) {
    374   1.8     ad 			if (lwp_eprio(l2) < pri) {
    375   1.8     ad 				TAILQ_INSERT_BEFORE(l2, l, l_runq);
    376   1.8     ad 				return;
    377   1.8     ad 			}
    378   1.8     ad 		}
    379   1.8     ad 		TAILQ_INSERT_TAIL(&rq->rq_fixedpri, l, l_runq);
    380   1.8     ad 		return;
    381   1.8     ad 	}
    382   1.8     ad 
    383   1.8     ad 	rq->rq_bitmap[pri >> PPB_SHIFT] |=
    384   1.8     ad 	    (0x80000000U >> (pri & PPB_MASK));
    385   1.8     ad 	TAILQ_INSERT_TAIL(&rq->rq_queue[pri], l, l_runq);
    386   1.2   yamt }
    387   1.2   yamt 
    388   1.2   yamt static void
    389   1.2   yamt runqueue_dequeue(runqueue_t *rq, struct lwp *l)
    390   1.2   yamt {
    391   1.8     ad 	pri_t pri;
    392   1.2   yamt 
    393   1.2   yamt 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    394   1.2   yamt 
    395   1.8     ad 	pri = lwp_eprio(l);
    396   1.8     ad 	rq->rq_count--;
    397   1.8     ad 
    398   1.8     ad 	if (pri >= PRI_KTHREAD) {
    399   1.8     ad 		TAILQ_REMOVE(&rq->rq_fixedpri, l, l_runq);
    400   1.8     ad 		return;
    401   1.8     ad 	}
    402   1.8     ad 
    403   1.8     ad 	TAILQ_REMOVE(&rq->rq_queue[pri], l, l_runq);
    404   1.8     ad 	if (TAILQ_EMPTY(&rq->rq_queue[pri]))
    405   1.8     ad 		rq->rq_bitmap[pri >> PPB_SHIFT] ^=
    406   1.8     ad 		    (0x80000000U >> (pri & PPB_MASK));
    407   1.2   yamt }
    408   1.2   yamt 
    409   1.8     ad #if (NUM_B != 3) || (NUM_Q != 96)
    410   1.8     ad #error adjust runqueue_nextlwp
    411   1.8     ad #endif
    412   1.8     ad 
    413   1.2   yamt static struct lwp *
    414   1.2   yamt runqueue_nextlwp(runqueue_t *rq)
    415   1.2   yamt {
    416   1.8     ad 	pri_t pri;
    417   1.8     ad 
    418   1.8     ad 	KASSERT(rq->rq_count != 0);
    419   1.2   yamt 
    420   1.8     ad 	if (!TAILQ_EMPTY(&rq->rq_fixedpri))
    421   1.8     ad 		return TAILQ_FIRST(&rq->rq_fixedpri);
    422   1.8     ad 
    423   1.8     ad 	if (rq->rq_bitmap[2] != 0)
    424   1.8     ad 		pri = 96 - ffs(rq->rq_bitmap[2]);
    425   1.8     ad 	else if (rq->rq_bitmap[1] != 0)
    426   1.8     ad 		pri = 64 - ffs(rq->rq_bitmap[1]);
    427   1.8     ad 	else
    428   1.8     ad 		pri = 32 - ffs(rq->rq_bitmap[0]);
    429   1.8     ad 	return TAILQ_FIRST(&rq->rq_queue[pri]);
    430   1.2   yamt }
    431   1.2   yamt 
    432   1.2   yamt #if defined(DDB)
    433   1.2   yamt static void
    434   1.2   yamt runqueue_print(const runqueue_t *rq, void (*pr)(const char *, ...))
    435   1.2   yamt {
    436   1.8     ad 	CPU_INFO_ITERATOR cii;
    437   1.8     ad 	struct cpu_info *ci;
    438   1.8     ad 	lwp_t *l;
    439   1.8     ad 	int i;
    440   1.8     ad 
    441   1.8     ad 	printf("PID\tLID\tPRI\tIPRI\tEPRI\tLWP\t\t NAME\n");
    442   1.8     ad 
    443   1.8     ad 	TAILQ_FOREACH(l, &rq->rq_fixedpri, l_runq) {
    444   1.8     ad 		(*pr)("%d\t%d\%d\t%d\t%d\t%016lx %s\n",
    445   1.8     ad 		    l->l_proc->p_pid, l->l_lid, (int)l->l_priority,
    446   1.8     ad 		    (int)l->l_inheritedprio, lwp_eprio(l),
    447   1.8     ad 		    (long)l, l->l_proc->p_comm);
    448   1.8     ad 	}
    449   1.2   yamt 
    450   1.8     ad 	for (i = NUM_Q - 1; i >= 0; i--) {
    451   1.8     ad 		TAILQ_FOREACH(l, &rq->rq_queue[i], l_runq) {
    452   1.8     ad 			(*pr)("%d\t%d\t%d\t%d\t%d\t%016lx %s\n",
    453   1.8     ad 			    l->l_proc->p_pid, l->l_lid, (int)l->l_priority,
    454   1.8     ad 			    (int)l->l_inheritedprio, lwp_eprio(l),
    455   1.8     ad 			    (long)l, l->l_proc->p_comm);
    456   1.2   yamt 		}
    457   1.2   yamt 	}
    458   1.8     ad 
    459   1.8     ad 	printf("CPUIDX\tRESCHED\tCURPRI\tFLAGS\n");
    460   1.8     ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    461   1.8     ad 		printf("%d\t%d\t%d\t%04x\n", (int)ci->ci_index,
    462   1.8     ad 		    (int)ci->ci_want_resched,
    463   1.8     ad 		    (int)ci->ci_schedstate.spc_curpriority,
    464   1.8     ad 		    (int)ci->ci_schedstate.spc_flags);
    465   1.8     ad 	}
    466   1.8     ad 
    467   1.8     ad 	printf("NEXTLWP\n%016lx\n", (long)sched_nextlwp());
    468   1.2   yamt }
    469   1.2   yamt #endif /* defined(DDB) */
    470   1.2   yamt 
    471   1.2   yamt /*
    472   1.2   yamt  * Initialize the (doubly-linked) run queues
    473   1.2   yamt  * to be empty.
    474   1.2   yamt  */
    475   1.2   yamt void
    476   1.2   yamt sched_rqinit()
    477   1.2   yamt {
    478   1.2   yamt 
    479   1.2   yamt 	runqueue_init(&global_queue);
    480  1.10     ad 	mutex_init(&runqueue_lock, MUTEX_DEFAULT, IPL_SCHED);
    481   1.2   yamt 	/* Initialize the lock pointer for lwp0 */
    482   1.2   yamt 	lwp0.l_mutex = &curcpu()->ci_schedstate.spc_lwplock;
    483   1.2   yamt }
    484   1.2   yamt 
    485   1.2   yamt void
    486   1.2   yamt sched_cpuattach(struct cpu_info *ci)
    487   1.2   yamt {
    488   1.2   yamt 	runqueue_t *rq;
    489   1.2   yamt 
    490  1.10     ad 	ci->ci_schedstate.spc_mutex = &runqueue_lock;
    491   1.2   yamt 	rq = kmem_zalloc(sizeof(*rq), KM_NOSLEEP);
    492   1.2   yamt 	runqueue_init(rq);
    493   1.2   yamt 	ci->ci_schedstate.spc_sched_info = rq;
    494   1.2   yamt }
    495   1.2   yamt 
    496   1.2   yamt void
    497   1.2   yamt sched_setup()
    498   1.2   yamt {
    499   1.2   yamt 
    500   1.2   yamt 	rrticks = hz / 10;
    501   1.2   yamt }
    502   1.2   yamt 
    503   1.2   yamt void
    504   1.2   yamt sched_setrunnable(struct lwp *l)
    505   1.2   yamt {
    506   1.2   yamt 
    507   1.2   yamt  	if (l->l_slptime > 1)
    508   1.2   yamt  		updatepri(l);
    509   1.2   yamt }
    510   1.2   yamt 
    511   1.2   yamt bool
    512   1.2   yamt sched_curcpu_runnable_p(void)
    513   1.2   yamt {
    514   1.4     ad 	struct schedstate_percpu *spc;
    515   1.8     ad 	struct cpu_info *ci;
    516   1.8     ad 	int bits;
    517   1.2   yamt 
    518   1.8     ad 	ci = curcpu();
    519   1.8     ad 	spc = &ci->ci_schedstate;
    520   1.8     ad #ifndef __HAVE_FAST_SOFTINTS
    521   1.8     ad 	bits = ci->ci_data.cpu_softints;
    522   1.8     ad 	bits |= ((runqueue_t *)spc->spc_sched_info)->rq_count;
    523   1.8     ad #else
    524   1.8     ad 	bits = ((runqueue_t *)spc->spc_sched_info)->rq_count;
    525   1.8     ad #endif
    526   1.4     ad 	if (__predict_true((spc->spc_flags & SPCF_OFFLINE) == 0))
    527   1.8     ad 		bits |= global_queue.rq_count;
    528   1.8     ad 	return bits != 0;
    529   1.2   yamt }
    530   1.2   yamt 
    531   1.2   yamt void
    532   1.8     ad sched_nice(struct proc *p, int n)
    533   1.2   yamt {
    534   1.8     ad 	struct lwp *l;
    535   1.8     ad 
    536   1.8     ad 	KASSERT(mutex_owned(&p->p_smutex));
    537   1.2   yamt 
    538   1.8     ad 	p->p_nice = n;
    539   1.8     ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    540   1.8     ad 		lwp_lock(l);
    541   1.8     ad 		resetpriority(l);
    542   1.8     ad 		lwp_unlock(l);
    543   1.8     ad 	}
    544   1.2   yamt }
    545   1.2   yamt 
    546   1.2   yamt /*
    547   1.8     ad  * Recompute the priority of an LWP.  Arrange to reschedule if
    548   1.8     ad  * the resulting priority is better than that of the current LWP.
    549   1.2   yamt  */
    550   1.2   yamt static void
    551   1.2   yamt resetpriority(struct lwp *l)
    552   1.2   yamt {
    553   1.8     ad 	pri_t pri;
    554   1.2   yamt 	struct proc *p = l->l_proc;
    555   1.2   yamt 
    556   1.8     ad 	KASSERT(lwp_locked(l, NULL));
    557   1.2   yamt 
    558   1.8     ad 	if (l->l_class != SCHED_OTHER)
    559   1.2   yamt 		return;
    560   1.2   yamt 
    561   1.8     ad 	/* See comments above ESTCPU_SHIFT definition. */
    562   1.8     ad 	pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
    563   1.8     ad 	pri = imax(pri, 0);
    564   1.8     ad 	if (pri != l->l_priority)
    565   1.8     ad 		lwp_changepri(l, pri);
    566   1.2   yamt }
    567   1.2   yamt 
    568   1.2   yamt /*
    569   1.2   yamt  * We adjust the priority of the current process.  The priority of a process
    570   1.8     ad  * gets worse as it accumulates CPU time.  The CPU usage estimator (l_estcpu)
    571   1.2   yamt  * is increased here.  The formula for computing priorities (in kern_synch.c)
    572   1.8     ad  * will compute a different value each time l_estcpu increases. This can
    573   1.2   yamt  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    574   1.2   yamt  * queue will not change.  The CPU usage estimator ramps up quite quickly
    575   1.2   yamt  * when the process is running (linearly), and decays away exponentially, at
    576   1.2   yamt  * a rate which is proportionally slower when the system is busy.  The basic
    577   1.2   yamt  * principle is that the system will 90% forget that the process used a lot
    578   1.2   yamt  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    579   1.2   yamt  * processes which haven't run much recently, and to round-robin among other
    580   1.2   yamt  * processes.
    581   1.2   yamt  */
    582   1.2   yamt 
    583   1.2   yamt void
    584   1.2   yamt sched_schedclock(struct lwp *l)
    585   1.2   yamt {
    586   1.8     ad 
    587   1.8     ad 	if (l->l_class != SCHED_OTHER)
    588   1.8     ad 		return;
    589   1.2   yamt 
    590   1.2   yamt 	KASSERT(!CURCPU_IDLE_P());
    591   1.8     ad 	l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
    592   1.2   yamt 	lwp_lock(l);
    593   1.2   yamt 	resetpriority(l);
    594   1.2   yamt 	lwp_unlock(l);
    595   1.2   yamt }
    596   1.2   yamt 
    597   1.2   yamt /*
    598   1.2   yamt  * sched_proc_fork:
    599   1.2   yamt  *
    600   1.2   yamt  *	Inherit the parent's scheduler history.
    601   1.2   yamt  */
    602   1.2   yamt void
    603   1.2   yamt sched_proc_fork(struct proc *parent, struct proc *child)
    604   1.2   yamt {
    605   1.8     ad 	lwp_t *pl;
    606   1.2   yamt 
    607   1.3     ad 	KASSERT(mutex_owned(&parent->p_smutex));
    608   1.2   yamt 
    609   1.8     ad 	pl = LIST_FIRST(&parent->p_lwps);
    610   1.8     ad 	child->p_estcpu_inherited = pl->l_estcpu;
    611   1.2   yamt 	child->p_forktime = sched_pstats_ticks;
    612   1.2   yamt }
    613   1.2   yamt 
    614   1.2   yamt /*
    615   1.2   yamt  * sched_proc_exit:
    616   1.2   yamt  *
    617   1.2   yamt  *	Chargeback parents for the sins of their children.
    618   1.2   yamt  */
    619   1.2   yamt void
    620   1.2   yamt sched_proc_exit(struct proc *parent, struct proc *child)
    621   1.2   yamt {
    622   1.2   yamt 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    623   1.2   yamt 	fixpt_t estcpu;
    624   1.8     ad 	lwp_t *pl, *cl;
    625   1.2   yamt 
    626   1.2   yamt 	/* XXX Only if parent != init?? */
    627   1.2   yamt 
    628   1.8     ad 	mutex_enter(&parent->p_smutex);
    629   1.8     ad 	pl = LIST_FIRST(&parent->p_lwps);
    630   1.8     ad 	cl = LIST_FIRST(&child->p_lwps);
    631   1.2   yamt 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
    632   1.2   yamt 	    sched_pstats_ticks - child->p_forktime);
    633   1.8     ad 	if (cl->l_estcpu > estcpu) {
    634   1.8     ad 		lwp_lock(pl);
    635   1.8     ad 		pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
    636   1.8     ad 		lwp_unlock(pl);
    637   1.8     ad 	}
    638   1.8     ad 	mutex_exit(&parent->p_smutex);
    639   1.2   yamt }
    640   1.2   yamt 
    641   1.2   yamt void
    642   1.2   yamt sched_enqueue(struct lwp *l, bool ctxswitch)
    643   1.2   yamt {
    644   1.2   yamt 
    645   1.2   yamt 	if ((l->l_flag & LW_BOUND) != 0)
    646   1.2   yamt 		runqueue_enqueue(l->l_cpu->ci_schedstate.spc_sched_info, l);
    647   1.2   yamt 	else
    648   1.2   yamt 		runqueue_enqueue(&global_queue, l);
    649   1.2   yamt }
    650   1.2   yamt 
    651   1.2   yamt /*
    652   1.2   yamt  * XXXSMP When LWP dispatch (cpu_switch()) is changed to use sched_dequeue(),
    653   1.2   yamt  * drop of the effective priority level from kernel to user needs to be
    654   1.2   yamt  * moved here from userret().  The assignment in userret() is currently
    655   1.2   yamt  * done unlocked.
    656   1.2   yamt  */
    657   1.2   yamt void
    658   1.2   yamt sched_dequeue(struct lwp *l)
    659   1.2   yamt {
    660   1.2   yamt 
    661   1.2   yamt 	if ((l->l_flag & LW_BOUND) != 0)
    662   1.2   yamt 		runqueue_dequeue(l->l_cpu->ci_schedstate.spc_sched_info, l);
    663   1.2   yamt 	else
    664   1.2   yamt 		runqueue_dequeue(&global_queue, l);
    665   1.2   yamt }
    666   1.2   yamt 
    667   1.2   yamt struct lwp *
    668   1.2   yamt sched_nextlwp(void)
    669   1.2   yamt {
    670   1.4     ad 	struct schedstate_percpu *spc;
    671   1.8     ad 	runqueue_t *rq;
    672   1.2   yamt 	lwp_t *l1, *l2;
    673   1.2   yamt 
    674   1.4     ad 	spc = &curcpu()->ci_schedstate;
    675   1.4     ad 
    676   1.2   yamt 	/* For now, just pick the highest priority LWP. */
    677   1.8     ad 	rq = spc->spc_sched_info;
    678   1.8     ad 	l1 = NULL;
    679   1.8     ad 	if (rq->rq_count != 0)
    680   1.8     ad 		l1 = runqueue_nextlwp(rq);
    681   1.8     ad 
    682   1.8     ad 	rq = &global_queue;
    683   1.8     ad 	if (__predict_false((spc->spc_flags & SPCF_OFFLINE) != 0) ||
    684   1.8     ad 	    rq->rq_count == 0)
    685   1.4     ad 		return l1;
    686   1.8     ad 	l2 = runqueue_nextlwp(rq);
    687   1.2   yamt 
    688   1.2   yamt 	if (l1 == NULL)
    689   1.2   yamt 		return l2;
    690   1.2   yamt 	if (l2 == NULL)
    691   1.2   yamt 		return l1;
    692   1.8     ad 	if (lwp_eprio(l2) > lwp_eprio(l1))
    693   1.2   yamt 		return l2;
    694   1.2   yamt 	else
    695   1.2   yamt 		return l1;
    696   1.2   yamt }
    697   1.2   yamt 
    698   1.6  rmind struct cpu_info *
    699   1.6  rmind sched_takecpu(struct lwp *l)
    700   1.6  rmind {
    701   1.6  rmind 
    702   1.6  rmind 	return l->l_cpu;
    703   1.6  rmind }
    704   1.6  rmind 
    705   1.6  rmind void
    706   1.6  rmind sched_wakeup(struct lwp *l)
    707   1.6  rmind {
    708   1.6  rmind 
    709   1.6  rmind }
    710   1.6  rmind 
    711   1.6  rmind void
    712   1.6  rmind sched_slept(struct lwp *l)
    713   1.6  rmind {
    714   1.6  rmind 
    715   1.6  rmind }
    716   1.6  rmind 
    717   1.2   yamt void
    718   1.8     ad sched_lwp_fork(struct lwp *l1, struct lwp *l2)
    719   1.2   yamt {
    720   1.2   yamt 
    721   1.8     ad 	l2->l_estcpu = l1->l_estcpu;
    722   1.2   yamt }
    723   1.2   yamt 
    724   1.2   yamt void
    725   1.2   yamt sched_lwp_exit(struct lwp *l)
    726   1.2   yamt {
    727   1.2   yamt 
    728   1.2   yamt }
    729   1.2   yamt 
    730   1.8     ad void
    731   1.8     ad sched_lwp_collect(struct lwp *t)
    732   1.8     ad {
    733   1.8     ad 	lwp_t *l;
    734   1.8     ad 
    735   1.8     ad 	/* Absorb estcpu value of collected LWP. */
    736   1.8     ad 	l = curlwp;
    737   1.8     ad 	lwp_lock(l);
    738   1.8     ad 	l->l_estcpu += t->l_estcpu;
    739   1.8     ad 	lwp_unlock(l);
    740   1.8     ad }
    741   1.8     ad 
    742   1.5     ad /*
    743   1.5     ad  * sysctl setup.  XXX This should be split with kern_synch.c.
    744   1.5     ad  */
    745   1.2   yamt SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
    746   1.2   yamt {
    747   1.2   yamt 	const struct sysctlnode *node = NULL;
    748   1.2   yamt 
    749   1.2   yamt 	sysctl_createv(clog, 0, NULL, NULL,
    750   1.2   yamt 		CTLFLAG_PERMANENT,
    751   1.2   yamt 		CTLTYPE_NODE, "kern", NULL,
    752   1.2   yamt 		NULL, 0, NULL, 0,
    753   1.2   yamt 		CTL_KERN, CTL_EOL);
    754   1.2   yamt 	sysctl_createv(clog, 0, NULL, &node,
    755   1.2   yamt 		CTLFLAG_PERMANENT,
    756   1.2   yamt 		CTLTYPE_NODE, "sched",
    757   1.2   yamt 		SYSCTL_DESCR("Scheduler options"),
    758   1.2   yamt 		NULL, 0, NULL, 0,
    759   1.2   yamt 		CTL_KERN, CTL_CREATE, CTL_EOL);
    760   1.2   yamt 
    761   1.5     ad 	KASSERT(node != NULL);
    762   1.5     ad 
    763   1.5     ad 	sysctl_createv(clog, 0, &node, NULL,
    764   1.5     ad 		CTLFLAG_PERMANENT,
    765   1.5     ad 		CTLTYPE_STRING, "name", NULL,
    766   1.5     ad 		NULL, 0, __UNCONST("4.4BSD"), 0,
    767   1.5     ad 		CTL_CREATE, CTL_EOL);
    768   1.5     ad 	sysctl_createv(clog, 0, &node, NULL,
    769   1.5     ad 		CTLFLAG_READWRITE,
    770   1.5     ad 		CTLTYPE_INT, "timesoftints",
    771   1.5     ad 		SYSCTL_DESCR("Track CPU time for soft interrupts"),
    772   1.5     ad 		NULL, 0, &softint_timing, 0,
    773   1.5     ad 		CTL_CREATE, CTL_EOL);
    774   1.2   yamt }
    775   1.2   yamt 
    776   1.2   yamt #if defined(DDB)
    777   1.2   yamt void
    778   1.2   yamt sched_print_runqueue(void (*pr)(const char *, ...))
    779   1.2   yamt {
    780   1.2   yamt 
    781   1.2   yamt 	runqueue_print(&global_queue, pr);
    782   1.2   yamt }
    783   1.2   yamt #endif /* defined(DDB) */
    784