Home | History | Annotate | Line # | Download | only in kern
sched_4bsd.c revision 1.13.2.1
      1  1.13.2.1  keiichi /*	$NetBSD: sched_4bsd.c,v 1.13.2.1 2008/03/24 07:16:14 keiichi Exp $	*/
      2       1.2     yamt 
      3       1.2     yamt /*-
      4       1.2     yamt  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5       1.2     yamt  * All rights reserved.
      6       1.2     yamt  *
      7       1.2     yamt  * This code is derived from software contributed to The NetBSD Foundation
      8       1.2     yamt  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9       1.2     yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
     10       1.2     yamt  * Daniel Sieger.
     11       1.2     yamt  *
     12       1.2     yamt  * Redistribution and use in source and binary forms, with or without
     13       1.2     yamt  * modification, are permitted provided that the following conditions
     14       1.2     yamt  * are met:
     15       1.2     yamt  * 1. Redistributions of source code must retain the above copyright
     16       1.2     yamt  *    notice, this list of conditions and the following disclaimer.
     17       1.2     yamt  * 2. Redistributions in binary form must reproduce the above copyright
     18       1.2     yamt  *    notice, this list of conditions and the following disclaimer in the
     19       1.2     yamt  *    documentation and/or other materials provided with the distribution.
     20       1.2     yamt  * 3. All advertising materials mentioning features or use of this software
     21       1.2     yamt  *    must display the following acknowledgement:
     22       1.2     yamt  *	This product includes software developed by the NetBSD
     23       1.2     yamt  *	Foundation, Inc. and its contributors.
     24       1.2     yamt  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25       1.2     yamt  *    contributors may be used to endorse or promote products derived
     26       1.2     yamt  *    from this software without specific prior written permission.
     27       1.2     yamt  *
     28       1.2     yamt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29       1.2     yamt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30       1.2     yamt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31       1.2     yamt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32       1.2     yamt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33       1.2     yamt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34       1.2     yamt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35       1.2     yamt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36       1.2     yamt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37       1.2     yamt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38       1.2     yamt  * POSSIBILITY OF SUCH DAMAGE.
     39       1.2     yamt  */
     40       1.2     yamt 
     41       1.2     yamt /*-
     42       1.2     yamt  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43       1.2     yamt  *	The Regents of the University of California.  All rights reserved.
     44       1.2     yamt  * (c) UNIX System Laboratories, Inc.
     45       1.2     yamt  * All or some portions of this file are derived from material licensed
     46       1.2     yamt  * to the University of California by American Telephone and Telegraph
     47       1.2     yamt  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48       1.2     yamt  * the permission of UNIX System Laboratories, Inc.
     49       1.2     yamt  *
     50       1.2     yamt  * Redistribution and use in source and binary forms, with or without
     51       1.2     yamt  * modification, are permitted provided that the following conditions
     52       1.2     yamt  * are met:
     53       1.2     yamt  * 1. Redistributions of source code must retain the above copyright
     54       1.2     yamt  *    notice, this list of conditions and the following disclaimer.
     55       1.2     yamt  * 2. Redistributions in binary form must reproduce the above copyright
     56       1.2     yamt  *    notice, this list of conditions and the following disclaimer in the
     57       1.2     yamt  *    documentation and/or other materials provided with the distribution.
     58       1.2     yamt  * 3. Neither the name of the University nor the names of its contributors
     59       1.2     yamt  *    may be used to endorse or promote products derived from this software
     60       1.2     yamt  *    without specific prior written permission.
     61       1.2     yamt  *
     62       1.2     yamt  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63       1.2     yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64       1.2     yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65       1.2     yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66       1.2     yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67       1.2     yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68       1.2     yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69       1.2     yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70       1.2     yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71       1.2     yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72       1.2     yamt  * SUCH DAMAGE.
     73       1.2     yamt  *
     74       1.2     yamt  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75       1.2     yamt  */
     76       1.2     yamt 
     77       1.2     yamt #include <sys/cdefs.h>
     78  1.13.2.1  keiichi __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.13.2.1 2008/03/24 07:16:14 keiichi Exp $");
     79       1.2     yamt 
     80       1.2     yamt #include "opt_ddb.h"
     81       1.2     yamt #include "opt_lockdebug.h"
     82       1.2     yamt #include "opt_perfctrs.h"
     83       1.2     yamt 
     84       1.2     yamt #define	__MUTEX_PRIVATE
     85       1.2     yamt 
     86       1.2     yamt #include <sys/param.h>
     87       1.2     yamt #include <sys/systm.h>
     88       1.2     yamt #include <sys/callout.h>
     89       1.2     yamt #include <sys/cpu.h>
     90       1.2     yamt #include <sys/proc.h>
     91       1.2     yamt #include <sys/kernel.h>
     92       1.2     yamt #include <sys/signalvar.h>
     93       1.2     yamt #include <sys/resourcevar.h>
     94       1.2     yamt #include <sys/sched.h>
     95       1.2     yamt #include <sys/sysctl.h>
     96       1.2     yamt #include <sys/kauth.h>
     97       1.2     yamt #include <sys/lockdebug.h>
     98       1.2     yamt #include <sys/kmem.h>
     99       1.5       ad #include <sys/intr.h>
    100       1.2     yamt 
    101       1.2     yamt #include <uvm/uvm_extern.h>
    102       1.2     yamt 
    103       1.2     yamt /*
    104       1.2     yamt  * Run queues.
    105       1.2     yamt  *
    106       1.8       ad  * We maintain bitmasks of non-empty queues in order speed up finding
    107       1.8       ad  * the first runnable process.  Since there can be (by definition) few
    108       1.8       ad  * real time LWPs in the the system, we maintain them on a linked list,
    109       1.8       ad  * sorted by priority.
    110       1.2     yamt  */
    111       1.2     yamt 
    112       1.8       ad #define	PPB_SHIFT	5
    113       1.8       ad #define	PPB_MASK	31
    114       1.8       ad 
    115       1.8       ad #define	NUM_Q		(NPRI_KERNEL + NPRI_USER)
    116       1.8       ad #define	NUM_PPB		(1 << PPB_SHIFT)
    117       1.8       ad #define	NUM_B		(NUM_Q / NUM_PPB)
    118       1.8       ad 
    119       1.2     yamt typedef struct runqueue {
    120       1.8       ad 	TAILQ_HEAD(, lwp) rq_fixedpri;		/* realtime, kthread */
    121       1.8       ad 	u_int		rq_count;		/* total # jobs */
    122       1.8       ad 	uint32_t	rq_bitmap[NUM_B];	/* bitmap of queues */
    123       1.8       ad 	TAILQ_HEAD(, lwp) rq_queue[NUM_Q];	/* user+kernel */
    124       1.2     yamt } runqueue_t;
    125       1.8       ad 
    126       1.2     yamt static runqueue_t global_queue;
    127       1.2     yamt 
    128       1.2     yamt static void updatepri(struct lwp *);
    129       1.2     yamt static void resetpriority(struct lwp *);
    130       1.2     yamt 
    131       1.6    rmind fixpt_t decay_cpu(fixpt_t, fixpt_t);
    132       1.6    rmind 
    133       1.2     yamt extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
    134       1.2     yamt 
    135       1.2     yamt /* The global scheduler state */
    136      1.10       ad kmutex_t runqueue_lock;
    137       1.2     yamt 
    138       1.2     yamt /* Number of hardclock ticks per sched_tick() */
    139      1.12    rmind static int rrticks;
    140       1.2     yamt 
    141       1.8       ad const int schedppq = 1;
    142       1.8       ad 
    143       1.2     yamt /*
    144       1.2     yamt  * Force switch among equal priority processes every 100ms.
    145       1.2     yamt  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    146       1.5       ad  *
    147       1.5       ad  * There's no need to lock anywhere in this routine, as it's
    148       1.5       ad  * CPU-local and runs at IPL_SCHED (called from clock interrupt).
    149       1.2     yamt  */
    150       1.2     yamt /* ARGSUSED */
    151       1.2     yamt void
    152       1.2     yamt sched_tick(struct cpu_info *ci)
    153       1.2     yamt {
    154       1.2     yamt 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    155       1.2     yamt 
    156       1.2     yamt 	spc->spc_ticks = rrticks;
    157       1.2     yamt 
    158       1.7    rmind 	if (CURCPU_IDLE_P())
    159       1.7    rmind 		return;
    160       1.7    rmind 
    161       1.7    rmind 	if (spc->spc_flags & SPCF_SEENRR) {
    162       1.7    rmind 		/*
    163       1.7    rmind 		 * The process has already been through a roundrobin
    164       1.7    rmind 		 * without switching and may be hogging the CPU.
    165       1.7    rmind 		 * Indicate that the process should yield.
    166       1.7    rmind 		 */
    167       1.7    rmind 		spc->spc_flags |= SPCF_SHOULDYIELD;
    168       1.7    rmind 	} else
    169       1.7    rmind 		spc->spc_flags |= SPCF_SEENRR;
    170       1.7    rmind 
    171       1.7    rmind 	cpu_need_resched(ci, 0);
    172       1.2     yamt }
    173       1.2     yamt 
    174       1.8       ad /*
    175       1.8       ad  * Why PRIO_MAX - 2? From setpriority(2):
    176       1.8       ad  *
    177       1.8       ad  *	prio is a value in the range -20 to 20.  The default priority is
    178       1.8       ad  *	0; lower priorities cause more favorable scheduling.  A value of
    179       1.8       ad  *	19 or 20 will schedule a process only when nothing at priority <=
    180       1.8       ad  *	0 is runnable.
    181       1.8       ad  *
    182       1.8       ad  * This gives estcpu influence over 18 priority levels, and leaves nice
    183       1.8       ad  * with 40 levels.  One way to think about it is that nice has 20 levels
    184       1.8       ad  * either side of estcpu's 18.
    185       1.8       ad  */
    186       1.2     yamt #define	ESTCPU_SHIFT	11
    187       1.8       ad #define	ESTCPU_MAX	((PRIO_MAX - 2) << ESTCPU_SHIFT)
    188       1.8       ad #define	ESTCPU_ACCUM	(1 << (ESTCPU_SHIFT - 1))
    189       1.2     yamt #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    190       1.2     yamt 
    191       1.2     yamt /*
    192       1.2     yamt  * Constants for digital decay and forget:
    193       1.8       ad  *	90% of (l_estcpu) usage in 5 * loadav time
    194       1.8       ad  *	95% of (l_pctcpu) usage in 60 seconds (load insensitive)
    195       1.2     yamt  *          Note that, as ps(1) mentions, this can let percentages
    196       1.2     yamt  *          total over 100% (I've seen 137.9% for 3 processes).
    197       1.2     yamt  *
    198       1.8       ad  * Note that hardclock updates l_estcpu and l_cpticks independently.
    199       1.2     yamt  *
    200       1.8       ad  * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds.
    201       1.2     yamt  * That is, the system wants to compute a value of decay such
    202       1.2     yamt  * that the following for loop:
    203       1.2     yamt  * 	for (i = 0; i < (5 * loadavg); i++)
    204       1.8       ad  * 		l_estcpu *= decay;
    205       1.2     yamt  * will compute
    206       1.8       ad  * 	l_estcpu *= 0.1;
    207       1.2     yamt  * for all values of loadavg:
    208       1.2     yamt  *
    209       1.2     yamt  * Mathematically this loop can be expressed by saying:
    210       1.2     yamt  * 	decay ** (5 * loadavg) ~= .1
    211       1.2     yamt  *
    212       1.2     yamt  * The system computes decay as:
    213       1.2     yamt  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    214       1.2     yamt  *
    215       1.2     yamt  * We wish to prove that the system's computation of decay
    216       1.2     yamt  * will always fulfill the equation:
    217       1.2     yamt  * 	decay ** (5 * loadavg) ~= .1
    218       1.2     yamt  *
    219       1.2     yamt  * If we compute b as:
    220       1.2     yamt  * 	b = 2 * loadavg
    221       1.2     yamt  * then
    222       1.2     yamt  * 	decay = b / (b + 1)
    223       1.2     yamt  *
    224       1.2     yamt  * We now need to prove two things:
    225       1.2     yamt  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    226       1.2     yamt  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    227       1.2     yamt  *
    228       1.2     yamt  * Facts:
    229       1.2     yamt  *         For x close to zero, exp(x) =~ 1 + x, since
    230       1.2     yamt  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    231       1.2     yamt  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    232       1.2     yamt  *         For x close to zero, ln(1+x) =~ x, since
    233       1.2     yamt  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    234       1.2     yamt  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    235       1.2     yamt  *         ln(.1) =~ -2.30
    236       1.2     yamt  *
    237       1.2     yamt  * Proof of (1):
    238       1.2     yamt  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    239       1.2     yamt  *	solving for factor,
    240       1.2     yamt  *      ln(factor) =~ (-2.30/5*loadav), or
    241       1.2     yamt  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    242       1.2     yamt  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    243       1.2     yamt  *
    244       1.2     yamt  * Proof of (2):
    245       1.2     yamt  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    246       1.2     yamt  *	solving for power,
    247       1.2     yamt  *      power*ln(b/(b+1)) =~ -2.30, or
    248       1.2     yamt  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    249       1.2     yamt  *
    250       1.2     yamt  * Actual power values for the implemented algorithm are as follows:
    251       1.2     yamt  *      loadav: 1       2       3       4
    252       1.2     yamt  *      power:  5.68    10.32   14.94   19.55
    253       1.2     yamt  */
    254       1.2     yamt 
    255       1.2     yamt /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    256       1.2     yamt #define	loadfactor(loadav)	(2 * (loadav))
    257       1.2     yamt 
    258       1.6    rmind fixpt_t
    259       1.2     yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    260       1.2     yamt {
    261       1.2     yamt 
    262       1.2     yamt 	if (estcpu == 0) {
    263       1.2     yamt 		return 0;
    264       1.2     yamt 	}
    265       1.2     yamt 
    266       1.2     yamt #if !defined(_LP64)
    267       1.2     yamt 	/* avoid 64bit arithmetics. */
    268       1.2     yamt #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    269       1.2     yamt 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    270       1.2     yamt 		return estcpu * loadfac / (loadfac + FSCALE);
    271       1.2     yamt 	}
    272       1.2     yamt #endif /* !defined(_LP64) */
    273       1.2     yamt 
    274       1.2     yamt 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    275       1.2     yamt }
    276       1.2     yamt 
    277       1.2     yamt /*
    278       1.8       ad  * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
    279       1.8       ad  * sleeping for at least seven times the loadfactor will decay l_estcpu to
    280       1.2     yamt  * less than (1 << ESTCPU_SHIFT).
    281       1.2     yamt  *
    282       1.2     yamt  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    283       1.2     yamt  */
    284       1.2     yamt static fixpt_t
    285       1.2     yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    286       1.2     yamt {
    287       1.2     yamt 
    288       1.2     yamt 	if ((n << FSHIFT) >= 7 * loadfac) {
    289       1.2     yamt 		return 0;
    290       1.2     yamt 	}
    291       1.2     yamt 
    292       1.2     yamt 	while (estcpu != 0 && n > 1) {
    293       1.2     yamt 		estcpu = decay_cpu(loadfac, estcpu);
    294       1.2     yamt 		n--;
    295       1.2     yamt 	}
    296       1.2     yamt 
    297       1.2     yamt 	return estcpu;
    298       1.2     yamt }
    299       1.2     yamt 
    300       1.2     yamt /*
    301       1.2     yamt  * sched_pstats_hook:
    302       1.2     yamt  *
    303       1.2     yamt  * Periodically called from sched_pstats(); used to recalculate priorities.
    304       1.2     yamt  */
    305       1.2     yamt void
    306       1.6    rmind sched_pstats_hook(struct lwp *l)
    307       1.2     yamt {
    308       1.8       ad 	fixpt_t loadfac;
    309       1.8       ad 	int sleeptm;
    310       1.2     yamt 
    311       1.8       ad 	/*
    312       1.8       ad 	 * If the LWP has slept an entire second, stop recalculating
    313       1.8       ad 	 * its priority until it wakes up.
    314       1.8       ad 	 */
    315       1.8       ad 	if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    316       1.8       ad 	    l->l_stat == LSSUSPENDED) {
    317       1.8       ad 		l->l_slptime++;
    318       1.8       ad 		sleeptm = 1;
    319       1.8       ad 	} else {
    320       1.8       ad 		sleeptm = 0x7fffffff;
    321       1.8       ad 	}
    322       1.8       ad 
    323       1.8       ad 	if (l->l_slptime <= sleeptm) {
    324       1.8       ad 		loadfac = 2 * (averunnable.ldavg[0]);
    325       1.8       ad 		l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
    326       1.6    rmind 		resetpriority(l);
    327       1.8       ad 	}
    328       1.2     yamt }
    329       1.2     yamt 
    330       1.2     yamt /*
    331       1.2     yamt  * Recalculate the priority of a process after it has slept for a while.
    332       1.2     yamt  */
    333       1.2     yamt static void
    334       1.2     yamt updatepri(struct lwp *l)
    335       1.2     yamt {
    336       1.2     yamt 	fixpt_t loadfac;
    337       1.2     yamt 
    338       1.3       ad 	KASSERT(lwp_locked(l, NULL));
    339       1.2     yamt 	KASSERT(l->l_slptime > 1);
    340       1.2     yamt 
    341       1.2     yamt 	loadfac = loadfactor(averunnable.ldavg[0]);
    342       1.2     yamt 
    343       1.2     yamt 	l->l_slptime--; /* the first time was done in sched_pstats */
    344       1.8       ad 	l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
    345       1.2     yamt 	resetpriority(l);
    346       1.2     yamt }
    347       1.2     yamt 
    348       1.2     yamt static void
    349       1.2     yamt runqueue_init(runqueue_t *rq)
    350       1.2     yamt {
    351       1.2     yamt 	int i;
    352       1.2     yamt 
    353       1.8       ad 	for (i = 0; i < NUM_Q; i++)
    354       1.8       ad 		TAILQ_INIT(&rq->rq_queue[i]);
    355       1.8       ad 	for (i = 0; i < NUM_B; i++)
    356       1.8       ad 		rq->rq_bitmap[i] = 0;
    357       1.8       ad 	TAILQ_INIT(&rq->rq_fixedpri);
    358       1.8       ad 	rq->rq_count = 0;
    359       1.2     yamt }
    360       1.2     yamt 
    361       1.2     yamt static void
    362       1.2     yamt runqueue_enqueue(runqueue_t *rq, struct lwp *l)
    363       1.2     yamt {
    364       1.8       ad 	pri_t pri;
    365       1.8       ad 	lwp_t *l2;
    366       1.2     yamt 
    367       1.2     yamt 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    368       1.2     yamt 
    369       1.8       ad 	pri = lwp_eprio(l);
    370       1.8       ad 	rq->rq_count++;
    371       1.8       ad 
    372       1.8       ad 	if (pri >= PRI_KTHREAD) {
    373       1.8       ad 		TAILQ_FOREACH(l2, &rq->rq_fixedpri, l_runq) {
    374       1.8       ad 			if (lwp_eprio(l2) < pri) {
    375       1.8       ad 				TAILQ_INSERT_BEFORE(l2, l, l_runq);
    376       1.8       ad 				return;
    377       1.8       ad 			}
    378       1.8       ad 		}
    379       1.8       ad 		TAILQ_INSERT_TAIL(&rq->rq_fixedpri, l, l_runq);
    380       1.8       ad 		return;
    381       1.8       ad 	}
    382       1.8       ad 
    383       1.8       ad 	rq->rq_bitmap[pri >> PPB_SHIFT] |=
    384       1.8       ad 	    (0x80000000U >> (pri & PPB_MASK));
    385       1.8       ad 	TAILQ_INSERT_TAIL(&rq->rq_queue[pri], l, l_runq);
    386       1.2     yamt }
    387       1.2     yamt 
    388       1.2     yamt static void
    389       1.2     yamt runqueue_dequeue(runqueue_t *rq, struct lwp *l)
    390       1.2     yamt {
    391       1.8       ad 	pri_t pri;
    392       1.2     yamt 
    393       1.2     yamt 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    394       1.2     yamt 
    395       1.8       ad 	pri = lwp_eprio(l);
    396       1.8       ad 	rq->rq_count--;
    397       1.8       ad 
    398       1.8       ad 	if (pri >= PRI_KTHREAD) {
    399       1.8       ad 		TAILQ_REMOVE(&rq->rq_fixedpri, l, l_runq);
    400       1.8       ad 		return;
    401       1.8       ad 	}
    402       1.8       ad 
    403       1.8       ad 	TAILQ_REMOVE(&rq->rq_queue[pri], l, l_runq);
    404       1.8       ad 	if (TAILQ_EMPTY(&rq->rq_queue[pri]))
    405       1.8       ad 		rq->rq_bitmap[pri >> PPB_SHIFT] ^=
    406       1.8       ad 		    (0x80000000U >> (pri & PPB_MASK));
    407       1.2     yamt }
    408       1.2     yamt 
    409       1.8       ad #if (NUM_B != 3) || (NUM_Q != 96)
    410       1.8       ad #error adjust runqueue_nextlwp
    411       1.8       ad #endif
    412       1.8       ad 
    413       1.2     yamt static struct lwp *
    414       1.2     yamt runqueue_nextlwp(runqueue_t *rq)
    415       1.2     yamt {
    416       1.8       ad 	pri_t pri;
    417       1.8       ad 
    418       1.8       ad 	KASSERT(rq->rq_count != 0);
    419       1.2     yamt 
    420       1.8       ad 	if (!TAILQ_EMPTY(&rq->rq_fixedpri))
    421       1.8       ad 		return TAILQ_FIRST(&rq->rq_fixedpri);
    422       1.8       ad 
    423       1.8       ad 	if (rq->rq_bitmap[2] != 0)
    424       1.8       ad 		pri = 96 - ffs(rq->rq_bitmap[2]);
    425       1.8       ad 	else if (rq->rq_bitmap[1] != 0)
    426       1.8       ad 		pri = 64 - ffs(rq->rq_bitmap[1]);
    427       1.8       ad 	else
    428       1.8       ad 		pri = 32 - ffs(rq->rq_bitmap[0]);
    429       1.8       ad 	return TAILQ_FIRST(&rq->rq_queue[pri]);
    430       1.2     yamt }
    431       1.2     yamt 
    432       1.2     yamt #if defined(DDB)
    433       1.2     yamt static void
    434       1.2     yamt runqueue_print(const runqueue_t *rq, void (*pr)(const char *, ...))
    435       1.2     yamt {
    436       1.8       ad 	CPU_INFO_ITERATOR cii;
    437       1.8       ad 	struct cpu_info *ci;
    438       1.8       ad 	lwp_t *l;
    439       1.8       ad 	int i;
    440       1.8       ad 
    441       1.8       ad 	printf("PID\tLID\tPRI\tIPRI\tEPRI\tLWP\t\t NAME\n");
    442       1.8       ad 
    443       1.8       ad 	TAILQ_FOREACH(l, &rq->rq_fixedpri, l_runq) {
    444       1.8       ad 		(*pr)("%d\t%d\%d\t%d\t%d\t%016lx %s\n",
    445       1.8       ad 		    l->l_proc->p_pid, l->l_lid, (int)l->l_priority,
    446       1.8       ad 		    (int)l->l_inheritedprio, lwp_eprio(l),
    447       1.8       ad 		    (long)l, l->l_proc->p_comm);
    448       1.8       ad 	}
    449       1.2     yamt 
    450       1.8       ad 	for (i = NUM_Q - 1; i >= 0; i--) {
    451       1.8       ad 		TAILQ_FOREACH(l, &rq->rq_queue[i], l_runq) {
    452       1.8       ad 			(*pr)("%d\t%d\t%d\t%d\t%d\t%016lx %s\n",
    453       1.8       ad 			    l->l_proc->p_pid, l->l_lid, (int)l->l_priority,
    454       1.8       ad 			    (int)l->l_inheritedprio, lwp_eprio(l),
    455       1.8       ad 			    (long)l, l->l_proc->p_comm);
    456       1.2     yamt 		}
    457       1.2     yamt 	}
    458       1.8       ad 
    459       1.8       ad 	printf("CPUIDX\tRESCHED\tCURPRI\tFLAGS\n");
    460       1.8       ad 	for (CPU_INFO_FOREACH(cii, ci)) {
    461       1.8       ad 		printf("%d\t%d\t%d\t%04x\n", (int)ci->ci_index,
    462       1.8       ad 		    (int)ci->ci_want_resched,
    463       1.8       ad 		    (int)ci->ci_schedstate.spc_curpriority,
    464       1.8       ad 		    (int)ci->ci_schedstate.spc_flags);
    465       1.8       ad 	}
    466       1.8       ad 
    467       1.8       ad 	printf("NEXTLWP\n%016lx\n", (long)sched_nextlwp());
    468       1.2     yamt }
    469       1.2     yamt #endif /* defined(DDB) */
    470       1.2     yamt 
    471       1.2     yamt /*
    472       1.2     yamt  * Initialize the (doubly-linked) run queues
    473       1.2     yamt  * to be empty.
    474       1.2     yamt  */
    475       1.2     yamt void
    476  1.13.2.1  keiichi sched_rqinit(void)
    477       1.2     yamt {
    478       1.2     yamt 
    479       1.2     yamt 	runqueue_init(&global_queue);
    480      1.10       ad 	mutex_init(&runqueue_lock, MUTEX_DEFAULT, IPL_SCHED);
    481       1.2     yamt }
    482       1.2     yamt 
    483       1.2     yamt void
    484       1.2     yamt sched_cpuattach(struct cpu_info *ci)
    485       1.2     yamt {
    486       1.2     yamt 	runqueue_t *rq;
    487       1.2     yamt 
    488      1.13       ad 	if (lwp0.l_cpu == ci) {
    489      1.13       ad 		/* Initialize the lock pointer for lwp0 */
    490      1.13       ad 		lwp0.l_mutex = curcpu()->ci_schedstate.spc_lwplock;
    491      1.13       ad 	}
    492      1.13       ad 
    493      1.10       ad 	ci->ci_schedstate.spc_mutex = &runqueue_lock;
    494      1.11       ad 	rq = kmem_zalloc(sizeof(*rq), KM_SLEEP);
    495       1.2     yamt 	runqueue_init(rq);
    496       1.2     yamt 	ci->ci_schedstate.spc_sched_info = rq;
    497       1.2     yamt }
    498       1.2     yamt 
    499       1.2     yamt void
    500  1.13.2.1  keiichi sched_setup(void)
    501       1.2     yamt {
    502       1.2     yamt 
    503       1.2     yamt 	rrticks = hz / 10;
    504       1.2     yamt }
    505       1.2     yamt 
    506       1.2     yamt void
    507       1.2     yamt sched_setrunnable(struct lwp *l)
    508       1.2     yamt {
    509       1.2     yamt 
    510       1.2     yamt  	if (l->l_slptime > 1)
    511       1.2     yamt  		updatepri(l);
    512       1.2     yamt }
    513       1.2     yamt 
    514       1.2     yamt bool
    515       1.2     yamt sched_curcpu_runnable_p(void)
    516       1.2     yamt {
    517       1.4       ad 	struct schedstate_percpu *spc;
    518       1.8       ad 	struct cpu_info *ci;
    519       1.8       ad 	int bits;
    520       1.2     yamt 
    521       1.8       ad 	ci = curcpu();
    522       1.8       ad 	spc = &ci->ci_schedstate;
    523       1.8       ad #ifndef __HAVE_FAST_SOFTINTS
    524       1.8       ad 	bits = ci->ci_data.cpu_softints;
    525       1.8       ad 	bits |= ((runqueue_t *)spc->spc_sched_info)->rq_count;
    526       1.8       ad #else
    527       1.8       ad 	bits = ((runqueue_t *)spc->spc_sched_info)->rq_count;
    528       1.8       ad #endif
    529       1.4       ad 	if (__predict_true((spc->spc_flags & SPCF_OFFLINE) == 0))
    530       1.8       ad 		bits |= global_queue.rq_count;
    531       1.8       ad 	return bits != 0;
    532       1.2     yamt }
    533       1.2     yamt 
    534       1.2     yamt void
    535       1.8       ad sched_nice(struct proc *p, int n)
    536       1.2     yamt {
    537       1.8       ad 	struct lwp *l;
    538       1.8       ad 
    539       1.8       ad 	KASSERT(mutex_owned(&p->p_smutex));
    540       1.2     yamt 
    541       1.8       ad 	p->p_nice = n;
    542       1.8       ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    543       1.8       ad 		lwp_lock(l);
    544       1.8       ad 		resetpriority(l);
    545       1.8       ad 		lwp_unlock(l);
    546       1.8       ad 	}
    547       1.2     yamt }
    548       1.2     yamt 
    549       1.2     yamt /*
    550       1.8       ad  * Recompute the priority of an LWP.  Arrange to reschedule if
    551       1.8       ad  * the resulting priority is better than that of the current LWP.
    552       1.2     yamt  */
    553       1.2     yamt static void
    554       1.2     yamt resetpriority(struct lwp *l)
    555       1.2     yamt {
    556       1.8       ad 	pri_t pri;
    557       1.2     yamt 	struct proc *p = l->l_proc;
    558       1.2     yamt 
    559       1.8       ad 	KASSERT(lwp_locked(l, NULL));
    560       1.2     yamt 
    561       1.8       ad 	if (l->l_class != SCHED_OTHER)
    562       1.2     yamt 		return;
    563       1.2     yamt 
    564       1.8       ad 	/* See comments above ESTCPU_SHIFT definition. */
    565       1.8       ad 	pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
    566       1.8       ad 	pri = imax(pri, 0);
    567       1.8       ad 	if (pri != l->l_priority)
    568       1.8       ad 		lwp_changepri(l, pri);
    569       1.2     yamt }
    570       1.2     yamt 
    571       1.2     yamt /*
    572       1.2     yamt  * We adjust the priority of the current process.  The priority of a process
    573       1.8       ad  * gets worse as it accumulates CPU time.  The CPU usage estimator (l_estcpu)
    574       1.2     yamt  * is increased here.  The formula for computing priorities (in kern_synch.c)
    575       1.8       ad  * will compute a different value each time l_estcpu increases. This can
    576       1.2     yamt  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    577       1.2     yamt  * queue will not change.  The CPU usage estimator ramps up quite quickly
    578       1.2     yamt  * when the process is running (linearly), and decays away exponentially, at
    579       1.2     yamt  * a rate which is proportionally slower when the system is busy.  The basic
    580       1.2     yamt  * principle is that the system will 90% forget that the process used a lot
    581       1.2     yamt  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    582       1.2     yamt  * processes which haven't run much recently, and to round-robin among other
    583       1.2     yamt  * processes.
    584       1.2     yamt  */
    585       1.2     yamt 
    586       1.2     yamt void
    587       1.2     yamt sched_schedclock(struct lwp *l)
    588       1.2     yamt {
    589       1.8       ad 
    590       1.8       ad 	if (l->l_class != SCHED_OTHER)
    591       1.8       ad 		return;
    592       1.2     yamt 
    593       1.2     yamt 	KASSERT(!CURCPU_IDLE_P());
    594       1.8       ad 	l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
    595       1.2     yamt 	lwp_lock(l);
    596       1.2     yamt 	resetpriority(l);
    597       1.2     yamt 	lwp_unlock(l);
    598       1.2     yamt }
    599       1.2     yamt 
    600       1.2     yamt /*
    601       1.2     yamt  * sched_proc_fork:
    602       1.2     yamt  *
    603       1.2     yamt  *	Inherit the parent's scheduler history.
    604       1.2     yamt  */
    605       1.2     yamt void
    606       1.2     yamt sched_proc_fork(struct proc *parent, struct proc *child)
    607       1.2     yamt {
    608       1.8       ad 	lwp_t *pl;
    609       1.2     yamt 
    610       1.3       ad 	KASSERT(mutex_owned(&parent->p_smutex));
    611       1.2     yamt 
    612       1.8       ad 	pl = LIST_FIRST(&parent->p_lwps);
    613       1.8       ad 	child->p_estcpu_inherited = pl->l_estcpu;
    614       1.2     yamt 	child->p_forktime = sched_pstats_ticks;
    615       1.2     yamt }
    616       1.2     yamt 
    617       1.2     yamt /*
    618       1.2     yamt  * sched_proc_exit:
    619       1.2     yamt  *
    620       1.2     yamt  *	Chargeback parents for the sins of their children.
    621       1.2     yamt  */
    622       1.2     yamt void
    623       1.2     yamt sched_proc_exit(struct proc *parent, struct proc *child)
    624       1.2     yamt {
    625       1.2     yamt 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    626       1.2     yamt 	fixpt_t estcpu;
    627       1.8       ad 	lwp_t *pl, *cl;
    628       1.2     yamt 
    629       1.2     yamt 	/* XXX Only if parent != init?? */
    630       1.2     yamt 
    631       1.8       ad 	mutex_enter(&parent->p_smutex);
    632       1.8       ad 	pl = LIST_FIRST(&parent->p_lwps);
    633       1.8       ad 	cl = LIST_FIRST(&child->p_lwps);
    634       1.2     yamt 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
    635       1.2     yamt 	    sched_pstats_ticks - child->p_forktime);
    636       1.8       ad 	if (cl->l_estcpu > estcpu) {
    637       1.8       ad 		lwp_lock(pl);
    638       1.8       ad 		pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
    639       1.8       ad 		lwp_unlock(pl);
    640       1.8       ad 	}
    641       1.8       ad 	mutex_exit(&parent->p_smutex);
    642       1.2     yamt }
    643       1.2     yamt 
    644       1.2     yamt void
    645       1.2     yamt sched_enqueue(struct lwp *l, bool ctxswitch)
    646       1.2     yamt {
    647       1.2     yamt 
    648      1.12    rmind 	if (__predict_false(l->l_target_cpu != NULL)) {
    649      1.12    rmind 		/* Global mutex is used - just change the CPU */
    650      1.12    rmind 		l->l_cpu = l->l_target_cpu;
    651      1.12    rmind 		l->l_target_cpu = NULL;
    652      1.12    rmind 	}
    653      1.12    rmind 
    654       1.2     yamt 	if ((l->l_flag & LW_BOUND) != 0)
    655       1.2     yamt 		runqueue_enqueue(l->l_cpu->ci_schedstate.spc_sched_info, l);
    656       1.2     yamt 	else
    657       1.2     yamt 		runqueue_enqueue(&global_queue, l);
    658       1.2     yamt }
    659       1.2     yamt 
    660       1.2     yamt /*
    661       1.2     yamt  * XXXSMP When LWP dispatch (cpu_switch()) is changed to use sched_dequeue(),
    662       1.2     yamt  * drop of the effective priority level from kernel to user needs to be
    663       1.2     yamt  * moved here from userret().  The assignment in userret() is currently
    664       1.2     yamt  * done unlocked.
    665       1.2     yamt  */
    666       1.2     yamt void
    667       1.2     yamt sched_dequeue(struct lwp *l)
    668       1.2     yamt {
    669       1.2     yamt 
    670       1.2     yamt 	if ((l->l_flag & LW_BOUND) != 0)
    671       1.2     yamt 		runqueue_dequeue(l->l_cpu->ci_schedstate.spc_sched_info, l);
    672       1.2     yamt 	else
    673       1.2     yamt 		runqueue_dequeue(&global_queue, l);
    674       1.2     yamt }
    675       1.2     yamt 
    676       1.2     yamt struct lwp *
    677       1.2     yamt sched_nextlwp(void)
    678       1.2     yamt {
    679       1.4       ad 	struct schedstate_percpu *spc;
    680       1.8       ad 	runqueue_t *rq;
    681       1.2     yamt 	lwp_t *l1, *l2;
    682       1.2     yamt 
    683       1.4       ad 	spc = &curcpu()->ci_schedstate;
    684       1.4       ad 
    685       1.2     yamt 	/* For now, just pick the highest priority LWP. */
    686       1.8       ad 	rq = spc->spc_sched_info;
    687       1.8       ad 	l1 = NULL;
    688       1.8       ad 	if (rq->rq_count != 0)
    689       1.8       ad 		l1 = runqueue_nextlwp(rq);
    690       1.8       ad 
    691       1.8       ad 	rq = &global_queue;
    692       1.8       ad 	if (__predict_false((spc->spc_flags & SPCF_OFFLINE) != 0) ||
    693       1.8       ad 	    rq->rq_count == 0)
    694       1.4       ad 		return l1;
    695       1.8       ad 	l2 = runqueue_nextlwp(rq);
    696       1.2     yamt 
    697       1.2     yamt 	if (l1 == NULL)
    698       1.2     yamt 		return l2;
    699       1.2     yamt 	if (l2 == NULL)
    700       1.2     yamt 		return l1;
    701       1.8       ad 	if (lwp_eprio(l2) > lwp_eprio(l1))
    702       1.2     yamt 		return l2;
    703       1.2     yamt 	else
    704       1.2     yamt 		return l1;
    705       1.2     yamt }
    706       1.2     yamt 
    707       1.6    rmind struct cpu_info *
    708       1.6    rmind sched_takecpu(struct lwp *l)
    709       1.6    rmind {
    710       1.6    rmind 
    711       1.6    rmind 	return l->l_cpu;
    712       1.6    rmind }
    713       1.6    rmind 
    714       1.6    rmind void
    715       1.6    rmind sched_wakeup(struct lwp *l)
    716       1.6    rmind {
    717       1.6    rmind 
    718       1.6    rmind }
    719       1.6    rmind 
    720       1.6    rmind void
    721       1.6    rmind sched_slept(struct lwp *l)
    722       1.6    rmind {
    723       1.6    rmind 
    724       1.6    rmind }
    725       1.6    rmind 
    726       1.2     yamt void
    727       1.8       ad sched_lwp_fork(struct lwp *l1, struct lwp *l2)
    728       1.2     yamt {
    729       1.2     yamt 
    730       1.8       ad 	l2->l_estcpu = l1->l_estcpu;
    731       1.2     yamt }
    732       1.2     yamt 
    733       1.2     yamt void
    734       1.2     yamt sched_lwp_exit(struct lwp *l)
    735       1.2     yamt {
    736       1.2     yamt 
    737       1.2     yamt }
    738       1.2     yamt 
    739       1.8       ad void
    740       1.8       ad sched_lwp_collect(struct lwp *t)
    741       1.8       ad {
    742       1.8       ad 	lwp_t *l;
    743       1.8       ad 
    744       1.8       ad 	/* Absorb estcpu value of collected LWP. */
    745       1.8       ad 	l = curlwp;
    746       1.8       ad 	lwp_lock(l);
    747       1.8       ad 	l->l_estcpu += t->l_estcpu;
    748       1.8       ad 	lwp_unlock(l);
    749       1.8       ad }
    750       1.8       ad 
    751       1.5       ad /*
    752      1.12    rmind  * Sysctl nodes and initialization.
    753       1.5       ad  */
    754      1.12    rmind 
    755      1.12    rmind static int
    756      1.12    rmind sysctl_sched_rtts(SYSCTLFN_ARGS)
    757      1.12    rmind {
    758      1.12    rmind 	struct sysctlnode node;
    759      1.12    rmind 	int rttsms = hztoms(rrticks);
    760      1.12    rmind 
    761      1.12    rmind 	node = *rnode;
    762      1.12    rmind 	node.sysctl_data = &rttsms;
    763      1.12    rmind 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    764      1.12    rmind }
    765      1.12    rmind 
    766       1.2     yamt SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
    767       1.2     yamt {
    768       1.2     yamt 	const struct sysctlnode *node = NULL;
    769       1.2     yamt 
    770       1.2     yamt 	sysctl_createv(clog, 0, NULL, NULL,
    771       1.2     yamt 		CTLFLAG_PERMANENT,
    772       1.2     yamt 		CTLTYPE_NODE, "kern", NULL,
    773       1.2     yamt 		NULL, 0, NULL, 0,
    774       1.2     yamt 		CTL_KERN, CTL_EOL);
    775       1.2     yamt 	sysctl_createv(clog, 0, NULL, &node,
    776       1.2     yamt 		CTLFLAG_PERMANENT,
    777       1.2     yamt 		CTLTYPE_NODE, "sched",
    778       1.2     yamt 		SYSCTL_DESCR("Scheduler options"),
    779       1.2     yamt 		NULL, 0, NULL, 0,
    780       1.2     yamt 		CTL_KERN, CTL_CREATE, CTL_EOL);
    781       1.2     yamt 
    782       1.5       ad 	KASSERT(node != NULL);
    783       1.5       ad 
    784       1.5       ad 	sysctl_createv(clog, 0, &node, NULL,
    785       1.5       ad 		CTLFLAG_PERMANENT,
    786       1.5       ad 		CTLTYPE_STRING, "name", NULL,
    787       1.5       ad 		NULL, 0, __UNCONST("4.4BSD"), 0,
    788       1.5       ad 		CTL_CREATE, CTL_EOL);
    789       1.5       ad 	sysctl_createv(clog, 0, &node, NULL,
    790      1.12    rmind 		CTLFLAG_PERMANENT,
    791      1.12    rmind 		CTLTYPE_INT, "rtts",
    792      1.12    rmind 		SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
    793      1.12    rmind 		sysctl_sched_rtts, 0, NULL, 0,
    794      1.12    rmind 		CTL_CREATE, CTL_EOL);
    795      1.12    rmind 	sysctl_createv(clog, 0, &node, NULL,
    796       1.5       ad 		CTLFLAG_READWRITE,
    797       1.5       ad 		CTLTYPE_INT, "timesoftints",
    798       1.5       ad 		SYSCTL_DESCR("Track CPU time for soft interrupts"),
    799       1.5       ad 		NULL, 0, &softint_timing, 0,
    800       1.5       ad 		CTL_CREATE, CTL_EOL);
    801       1.2     yamt }
    802       1.2     yamt 
    803       1.2     yamt #if defined(DDB)
    804       1.2     yamt void
    805       1.2     yamt sched_print_runqueue(void (*pr)(const char *, ...))
    806       1.2     yamt {
    807       1.2     yamt 
    808       1.2     yamt 	runqueue_print(&global_queue, pr);
    809       1.2     yamt }
    810       1.2     yamt #endif /* defined(DDB) */
    811