sched_4bsd.c revision 1.15 1 1.15 ad /* $NetBSD: sched_4bsd.c,v 1.15 2008/04/02 17:40:15 ad Exp $ */
2 1.2 yamt
3 1.2 yamt /*-
4 1.2 yamt * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
5 1.2 yamt * All rights reserved.
6 1.2 yamt *
7 1.2 yamt * This code is derived from software contributed to The NetBSD Foundation
8 1.2 yamt * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.2 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
10 1.2 yamt * Daniel Sieger.
11 1.2 yamt *
12 1.2 yamt * Redistribution and use in source and binary forms, with or without
13 1.2 yamt * modification, are permitted provided that the following conditions
14 1.2 yamt * are met:
15 1.2 yamt * 1. Redistributions of source code must retain the above copyright
16 1.2 yamt * notice, this list of conditions and the following disclaimer.
17 1.2 yamt * 2. Redistributions in binary form must reproduce the above copyright
18 1.2 yamt * notice, this list of conditions and the following disclaimer in the
19 1.2 yamt * documentation and/or other materials provided with the distribution.
20 1.2 yamt * 3. All advertising materials mentioning features or use of this software
21 1.2 yamt * must display the following acknowledgement:
22 1.2 yamt * This product includes software developed by the NetBSD
23 1.2 yamt * Foundation, Inc. and its contributors.
24 1.2 yamt * 4. Neither the name of The NetBSD Foundation nor the names of its
25 1.2 yamt * contributors may be used to endorse or promote products derived
26 1.2 yamt * from this software without specific prior written permission.
27 1.2 yamt *
28 1.2 yamt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
29 1.2 yamt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
30 1.2 yamt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
31 1.2 yamt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
32 1.2 yamt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 1.2 yamt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
34 1.2 yamt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
35 1.2 yamt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
36 1.2 yamt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
37 1.2 yamt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 1.2 yamt * POSSIBILITY OF SUCH DAMAGE.
39 1.2 yamt */
40 1.2 yamt
41 1.2 yamt /*-
42 1.2 yamt * Copyright (c) 1982, 1986, 1990, 1991, 1993
43 1.2 yamt * The Regents of the University of California. All rights reserved.
44 1.2 yamt * (c) UNIX System Laboratories, Inc.
45 1.2 yamt * All or some portions of this file are derived from material licensed
46 1.2 yamt * to the University of California by American Telephone and Telegraph
47 1.2 yamt * Co. or Unix System Laboratories, Inc. and are reproduced herein with
48 1.2 yamt * the permission of UNIX System Laboratories, Inc.
49 1.2 yamt *
50 1.2 yamt * Redistribution and use in source and binary forms, with or without
51 1.2 yamt * modification, are permitted provided that the following conditions
52 1.2 yamt * are met:
53 1.2 yamt * 1. Redistributions of source code must retain the above copyright
54 1.2 yamt * notice, this list of conditions and the following disclaimer.
55 1.2 yamt * 2. Redistributions in binary form must reproduce the above copyright
56 1.2 yamt * notice, this list of conditions and the following disclaimer in the
57 1.2 yamt * documentation and/or other materials provided with the distribution.
58 1.2 yamt * 3. Neither the name of the University nor the names of its contributors
59 1.2 yamt * may be used to endorse or promote products derived from this software
60 1.2 yamt * without specific prior written permission.
61 1.2 yamt *
62 1.2 yamt * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63 1.2 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64 1.2 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65 1.2 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66 1.2 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67 1.2 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68 1.2 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69 1.2 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70 1.2 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71 1.2 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72 1.2 yamt * SUCH DAMAGE.
73 1.2 yamt *
74 1.2 yamt * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
75 1.2 yamt */
76 1.2 yamt
77 1.2 yamt #include <sys/cdefs.h>
78 1.15 ad __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.15 2008/04/02 17:40:15 ad Exp $");
79 1.2 yamt
80 1.2 yamt #include "opt_ddb.h"
81 1.2 yamt #include "opt_lockdebug.h"
82 1.2 yamt #include "opt_perfctrs.h"
83 1.2 yamt
84 1.2 yamt #define __MUTEX_PRIVATE
85 1.2 yamt
86 1.2 yamt #include <sys/param.h>
87 1.2 yamt #include <sys/systm.h>
88 1.2 yamt #include <sys/callout.h>
89 1.2 yamt #include <sys/cpu.h>
90 1.2 yamt #include <sys/proc.h>
91 1.2 yamt #include <sys/kernel.h>
92 1.2 yamt #include <sys/signalvar.h>
93 1.2 yamt #include <sys/resourcevar.h>
94 1.2 yamt #include <sys/sched.h>
95 1.2 yamt #include <sys/sysctl.h>
96 1.2 yamt #include <sys/kauth.h>
97 1.2 yamt #include <sys/lockdebug.h>
98 1.2 yamt #include <sys/kmem.h>
99 1.5 ad #include <sys/intr.h>
100 1.2 yamt
101 1.2 yamt #include <uvm/uvm_extern.h>
102 1.2 yamt
103 1.2 yamt /*
104 1.2 yamt * Run queues.
105 1.2 yamt *
106 1.8 ad * We maintain bitmasks of non-empty queues in order speed up finding
107 1.8 ad * the first runnable process. Since there can be (by definition) few
108 1.8 ad * real time LWPs in the the system, we maintain them on a linked list,
109 1.8 ad * sorted by priority.
110 1.2 yamt */
111 1.2 yamt
112 1.8 ad #define PPB_SHIFT 5
113 1.8 ad #define PPB_MASK 31
114 1.8 ad
115 1.8 ad #define NUM_Q (NPRI_KERNEL + NPRI_USER)
116 1.8 ad #define NUM_PPB (1 << PPB_SHIFT)
117 1.8 ad #define NUM_B (NUM_Q / NUM_PPB)
118 1.8 ad
119 1.2 yamt typedef struct runqueue {
120 1.8 ad TAILQ_HEAD(, lwp) rq_fixedpri; /* realtime, kthread */
121 1.8 ad u_int rq_count; /* total # jobs */
122 1.8 ad uint32_t rq_bitmap[NUM_B]; /* bitmap of queues */
123 1.8 ad TAILQ_HEAD(, lwp) rq_queue[NUM_Q]; /* user+kernel */
124 1.2 yamt } runqueue_t;
125 1.8 ad
126 1.2 yamt static runqueue_t global_queue;
127 1.2 yamt
128 1.2 yamt static void updatepri(struct lwp *);
129 1.2 yamt static void resetpriority(struct lwp *);
130 1.2 yamt
131 1.6 rmind fixpt_t decay_cpu(fixpt_t, fixpt_t);
132 1.6 rmind
133 1.2 yamt extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
134 1.2 yamt
135 1.2 yamt /* The global scheduler state */
136 1.10 ad kmutex_t runqueue_lock;
137 1.2 yamt
138 1.2 yamt /* Number of hardclock ticks per sched_tick() */
139 1.12 rmind static int rrticks;
140 1.2 yamt
141 1.8 ad const int schedppq = 1;
142 1.8 ad
143 1.2 yamt /*
144 1.2 yamt * Force switch among equal priority processes every 100ms.
145 1.2 yamt * Called from hardclock every hz/10 == rrticks hardclock ticks.
146 1.5 ad *
147 1.5 ad * There's no need to lock anywhere in this routine, as it's
148 1.5 ad * CPU-local and runs at IPL_SCHED (called from clock interrupt).
149 1.2 yamt */
150 1.2 yamt /* ARGSUSED */
151 1.2 yamt void
152 1.2 yamt sched_tick(struct cpu_info *ci)
153 1.2 yamt {
154 1.2 yamt struct schedstate_percpu *spc = &ci->ci_schedstate;
155 1.2 yamt
156 1.2 yamt spc->spc_ticks = rrticks;
157 1.2 yamt
158 1.15 ad if (CURCPU_IDLE_P()) {
159 1.15 ad cpu_need_resched(ci, 0);
160 1.7 rmind return;
161 1.15 ad }
162 1.7 rmind
163 1.7 rmind if (spc->spc_flags & SPCF_SEENRR) {
164 1.7 rmind /*
165 1.7 rmind * The process has already been through a roundrobin
166 1.7 rmind * without switching and may be hogging the CPU.
167 1.7 rmind * Indicate that the process should yield.
168 1.7 rmind */
169 1.7 rmind spc->spc_flags |= SPCF_SHOULDYIELD;
170 1.15 ad cpu_need_resched(ci, 0);
171 1.7 rmind } else
172 1.7 rmind spc->spc_flags |= SPCF_SEENRR;
173 1.2 yamt }
174 1.2 yamt
175 1.8 ad /*
176 1.8 ad * Why PRIO_MAX - 2? From setpriority(2):
177 1.8 ad *
178 1.8 ad * prio is a value in the range -20 to 20. The default priority is
179 1.8 ad * 0; lower priorities cause more favorable scheduling. A value of
180 1.8 ad * 19 or 20 will schedule a process only when nothing at priority <=
181 1.8 ad * 0 is runnable.
182 1.8 ad *
183 1.8 ad * This gives estcpu influence over 18 priority levels, and leaves nice
184 1.8 ad * with 40 levels. One way to think about it is that nice has 20 levels
185 1.8 ad * either side of estcpu's 18.
186 1.8 ad */
187 1.2 yamt #define ESTCPU_SHIFT 11
188 1.8 ad #define ESTCPU_MAX ((PRIO_MAX - 2) << ESTCPU_SHIFT)
189 1.8 ad #define ESTCPU_ACCUM (1 << (ESTCPU_SHIFT - 1))
190 1.2 yamt #define ESTCPULIM(e) min((e), ESTCPU_MAX)
191 1.2 yamt
192 1.2 yamt /*
193 1.2 yamt * Constants for digital decay and forget:
194 1.8 ad * 90% of (l_estcpu) usage in 5 * loadav time
195 1.8 ad * 95% of (l_pctcpu) usage in 60 seconds (load insensitive)
196 1.2 yamt * Note that, as ps(1) mentions, this can let percentages
197 1.2 yamt * total over 100% (I've seen 137.9% for 3 processes).
198 1.2 yamt *
199 1.8 ad * Note that hardclock updates l_estcpu and l_cpticks independently.
200 1.2 yamt *
201 1.8 ad * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds.
202 1.2 yamt * That is, the system wants to compute a value of decay such
203 1.2 yamt * that the following for loop:
204 1.2 yamt * for (i = 0; i < (5 * loadavg); i++)
205 1.8 ad * l_estcpu *= decay;
206 1.2 yamt * will compute
207 1.8 ad * l_estcpu *= 0.1;
208 1.2 yamt * for all values of loadavg:
209 1.2 yamt *
210 1.2 yamt * Mathematically this loop can be expressed by saying:
211 1.2 yamt * decay ** (5 * loadavg) ~= .1
212 1.2 yamt *
213 1.2 yamt * The system computes decay as:
214 1.2 yamt * decay = (2 * loadavg) / (2 * loadavg + 1)
215 1.2 yamt *
216 1.2 yamt * We wish to prove that the system's computation of decay
217 1.2 yamt * will always fulfill the equation:
218 1.2 yamt * decay ** (5 * loadavg) ~= .1
219 1.2 yamt *
220 1.2 yamt * If we compute b as:
221 1.2 yamt * b = 2 * loadavg
222 1.2 yamt * then
223 1.2 yamt * decay = b / (b + 1)
224 1.2 yamt *
225 1.2 yamt * We now need to prove two things:
226 1.2 yamt * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
227 1.2 yamt * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
228 1.2 yamt *
229 1.2 yamt * Facts:
230 1.2 yamt * For x close to zero, exp(x) =~ 1 + x, since
231 1.2 yamt * exp(x) = 0! + x**1/1! + x**2/2! + ... .
232 1.2 yamt * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
233 1.2 yamt * For x close to zero, ln(1+x) =~ x, since
234 1.2 yamt * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
235 1.2 yamt * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
236 1.2 yamt * ln(.1) =~ -2.30
237 1.2 yamt *
238 1.2 yamt * Proof of (1):
239 1.2 yamt * Solve (factor)**(power) =~ .1 given power (5*loadav):
240 1.2 yamt * solving for factor,
241 1.2 yamt * ln(factor) =~ (-2.30/5*loadav), or
242 1.2 yamt * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
243 1.2 yamt * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
244 1.2 yamt *
245 1.2 yamt * Proof of (2):
246 1.2 yamt * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
247 1.2 yamt * solving for power,
248 1.2 yamt * power*ln(b/(b+1)) =~ -2.30, or
249 1.2 yamt * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
250 1.2 yamt *
251 1.2 yamt * Actual power values for the implemented algorithm are as follows:
252 1.2 yamt * loadav: 1 2 3 4
253 1.2 yamt * power: 5.68 10.32 14.94 19.55
254 1.2 yamt */
255 1.2 yamt
256 1.2 yamt /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
257 1.2 yamt #define loadfactor(loadav) (2 * (loadav))
258 1.2 yamt
259 1.6 rmind fixpt_t
260 1.2 yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
261 1.2 yamt {
262 1.2 yamt
263 1.2 yamt if (estcpu == 0) {
264 1.2 yamt return 0;
265 1.2 yamt }
266 1.2 yamt
267 1.2 yamt #if !defined(_LP64)
268 1.2 yamt /* avoid 64bit arithmetics. */
269 1.2 yamt #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
270 1.2 yamt if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
271 1.2 yamt return estcpu * loadfac / (loadfac + FSCALE);
272 1.2 yamt }
273 1.2 yamt #endif /* !defined(_LP64) */
274 1.2 yamt
275 1.2 yamt return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
276 1.2 yamt }
277 1.2 yamt
278 1.2 yamt /*
279 1.8 ad * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
280 1.8 ad * sleeping for at least seven times the loadfactor will decay l_estcpu to
281 1.2 yamt * less than (1 << ESTCPU_SHIFT).
282 1.2 yamt *
283 1.2 yamt * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
284 1.2 yamt */
285 1.2 yamt static fixpt_t
286 1.2 yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
287 1.2 yamt {
288 1.2 yamt
289 1.2 yamt if ((n << FSHIFT) >= 7 * loadfac) {
290 1.2 yamt return 0;
291 1.2 yamt }
292 1.2 yamt
293 1.2 yamt while (estcpu != 0 && n > 1) {
294 1.2 yamt estcpu = decay_cpu(loadfac, estcpu);
295 1.2 yamt n--;
296 1.2 yamt }
297 1.2 yamt
298 1.2 yamt return estcpu;
299 1.2 yamt }
300 1.2 yamt
301 1.2 yamt /*
302 1.2 yamt * sched_pstats_hook:
303 1.2 yamt *
304 1.2 yamt * Periodically called from sched_pstats(); used to recalculate priorities.
305 1.2 yamt */
306 1.2 yamt void
307 1.6 rmind sched_pstats_hook(struct lwp *l)
308 1.2 yamt {
309 1.8 ad fixpt_t loadfac;
310 1.8 ad int sleeptm;
311 1.2 yamt
312 1.8 ad /*
313 1.8 ad * If the LWP has slept an entire second, stop recalculating
314 1.8 ad * its priority until it wakes up.
315 1.8 ad */
316 1.8 ad if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
317 1.8 ad l->l_stat == LSSUSPENDED) {
318 1.8 ad l->l_slptime++;
319 1.8 ad sleeptm = 1;
320 1.8 ad } else {
321 1.8 ad sleeptm = 0x7fffffff;
322 1.8 ad }
323 1.8 ad
324 1.8 ad if (l->l_slptime <= sleeptm) {
325 1.8 ad loadfac = 2 * (averunnable.ldavg[0]);
326 1.8 ad l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
327 1.6 rmind resetpriority(l);
328 1.8 ad }
329 1.2 yamt }
330 1.2 yamt
331 1.2 yamt /*
332 1.2 yamt * Recalculate the priority of a process after it has slept for a while.
333 1.2 yamt */
334 1.2 yamt static void
335 1.2 yamt updatepri(struct lwp *l)
336 1.2 yamt {
337 1.2 yamt fixpt_t loadfac;
338 1.2 yamt
339 1.3 ad KASSERT(lwp_locked(l, NULL));
340 1.2 yamt KASSERT(l->l_slptime > 1);
341 1.2 yamt
342 1.2 yamt loadfac = loadfactor(averunnable.ldavg[0]);
343 1.2 yamt
344 1.2 yamt l->l_slptime--; /* the first time was done in sched_pstats */
345 1.8 ad l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
346 1.2 yamt resetpriority(l);
347 1.2 yamt }
348 1.2 yamt
349 1.2 yamt static void
350 1.2 yamt runqueue_init(runqueue_t *rq)
351 1.2 yamt {
352 1.2 yamt int i;
353 1.2 yamt
354 1.8 ad for (i = 0; i < NUM_Q; i++)
355 1.8 ad TAILQ_INIT(&rq->rq_queue[i]);
356 1.8 ad for (i = 0; i < NUM_B; i++)
357 1.8 ad rq->rq_bitmap[i] = 0;
358 1.8 ad TAILQ_INIT(&rq->rq_fixedpri);
359 1.8 ad rq->rq_count = 0;
360 1.2 yamt }
361 1.2 yamt
362 1.2 yamt static void
363 1.2 yamt runqueue_enqueue(runqueue_t *rq, struct lwp *l)
364 1.2 yamt {
365 1.8 ad pri_t pri;
366 1.8 ad lwp_t *l2;
367 1.2 yamt
368 1.2 yamt KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
369 1.2 yamt
370 1.8 ad pri = lwp_eprio(l);
371 1.8 ad rq->rq_count++;
372 1.8 ad
373 1.8 ad if (pri >= PRI_KTHREAD) {
374 1.8 ad TAILQ_FOREACH(l2, &rq->rq_fixedpri, l_runq) {
375 1.8 ad if (lwp_eprio(l2) < pri) {
376 1.8 ad TAILQ_INSERT_BEFORE(l2, l, l_runq);
377 1.8 ad return;
378 1.8 ad }
379 1.8 ad }
380 1.8 ad TAILQ_INSERT_TAIL(&rq->rq_fixedpri, l, l_runq);
381 1.8 ad return;
382 1.8 ad }
383 1.8 ad
384 1.8 ad rq->rq_bitmap[pri >> PPB_SHIFT] |=
385 1.8 ad (0x80000000U >> (pri & PPB_MASK));
386 1.8 ad TAILQ_INSERT_TAIL(&rq->rq_queue[pri], l, l_runq);
387 1.2 yamt }
388 1.2 yamt
389 1.2 yamt static void
390 1.2 yamt runqueue_dequeue(runqueue_t *rq, struct lwp *l)
391 1.2 yamt {
392 1.8 ad pri_t pri;
393 1.2 yamt
394 1.2 yamt KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
395 1.2 yamt
396 1.8 ad pri = lwp_eprio(l);
397 1.8 ad rq->rq_count--;
398 1.8 ad
399 1.8 ad if (pri >= PRI_KTHREAD) {
400 1.8 ad TAILQ_REMOVE(&rq->rq_fixedpri, l, l_runq);
401 1.8 ad return;
402 1.8 ad }
403 1.8 ad
404 1.8 ad TAILQ_REMOVE(&rq->rq_queue[pri], l, l_runq);
405 1.8 ad if (TAILQ_EMPTY(&rq->rq_queue[pri]))
406 1.8 ad rq->rq_bitmap[pri >> PPB_SHIFT] ^=
407 1.8 ad (0x80000000U >> (pri & PPB_MASK));
408 1.2 yamt }
409 1.2 yamt
410 1.8 ad #if (NUM_B != 3) || (NUM_Q != 96)
411 1.8 ad #error adjust runqueue_nextlwp
412 1.8 ad #endif
413 1.8 ad
414 1.2 yamt static struct lwp *
415 1.2 yamt runqueue_nextlwp(runqueue_t *rq)
416 1.2 yamt {
417 1.8 ad pri_t pri;
418 1.8 ad
419 1.8 ad KASSERT(rq->rq_count != 0);
420 1.2 yamt
421 1.8 ad if (!TAILQ_EMPTY(&rq->rq_fixedpri))
422 1.8 ad return TAILQ_FIRST(&rq->rq_fixedpri);
423 1.8 ad
424 1.8 ad if (rq->rq_bitmap[2] != 0)
425 1.8 ad pri = 96 - ffs(rq->rq_bitmap[2]);
426 1.8 ad else if (rq->rq_bitmap[1] != 0)
427 1.8 ad pri = 64 - ffs(rq->rq_bitmap[1]);
428 1.8 ad else
429 1.8 ad pri = 32 - ffs(rq->rq_bitmap[0]);
430 1.8 ad return TAILQ_FIRST(&rq->rq_queue[pri]);
431 1.2 yamt }
432 1.2 yamt
433 1.2 yamt #if defined(DDB)
434 1.2 yamt static void
435 1.2 yamt runqueue_print(const runqueue_t *rq, void (*pr)(const char *, ...))
436 1.2 yamt {
437 1.8 ad CPU_INFO_ITERATOR cii;
438 1.8 ad struct cpu_info *ci;
439 1.8 ad lwp_t *l;
440 1.8 ad int i;
441 1.8 ad
442 1.8 ad printf("PID\tLID\tPRI\tIPRI\tEPRI\tLWP\t\t NAME\n");
443 1.8 ad
444 1.8 ad TAILQ_FOREACH(l, &rq->rq_fixedpri, l_runq) {
445 1.8 ad (*pr)("%d\t%d\%d\t%d\t%d\t%016lx %s\n",
446 1.8 ad l->l_proc->p_pid, l->l_lid, (int)l->l_priority,
447 1.8 ad (int)l->l_inheritedprio, lwp_eprio(l),
448 1.8 ad (long)l, l->l_proc->p_comm);
449 1.8 ad }
450 1.2 yamt
451 1.8 ad for (i = NUM_Q - 1; i >= 0; i--) {
452 1.8 ad TAILQ_FOREACH(l, &rq->rq_queue[i], l_runq) {
453 1.8 ad (*pr)("%d\t%d\t%d\t%d\t%d\t%016lx %s\n",
454 1.8 ad l->l_proc->p_pid, l->l_lid, (int)l->l_priority,
455 1.8 ad (int)l->l_inheritedprio, lwp_eprio(l),
456 1.8 ad (long)l, l->l_proc->p_comm);
457 1.2 yamt }
458 1.2 yamt }
459 1.8 ad
460 1.8 ad printf("CPUIDX\tRESCHED\tCURPRI\tFLAGS\n");
461 1.8 ad for (CPU_INFO_FOREACH(cii, ci)) {
462 1.8 ad printf("%d\t%d\t%d\t%04x\n", (int)ci->ci_index,
463 1.8 ad (int)ci->ci_want_resched,
464 1.8 ad (int)ci->ci_schedstate.spc_curpriority,
465 1.8 ad (int)ci->ci_schedstate.spc_flags);
466 1.8 ad }
467 1.8 ad
468 1.8 ad printf("NEXTLWP\n%016lx\n", (long)sched_nextlwp());
469 1.2 yamt }
470 1.2 yamt #endif /* defined(DDB) */
471 1.2 yamt
472 1.2 yamt /*
473 1.2 yamt * Initialize the (doubly-linked) run queues
474 1.2 yamt * to be empty.
475 1.2 yamt */
476 1.2 yamt void
477 1.14 matt sched_rqinit(void)
478 1.2 yamt {
479 1.2 yamt
480 1.2 yamt runqueue_init(&global_queue);
481 1.10 ad mutex_init(&runqueue_lock, MUTEX_DEFAULT, IPL_SCHED);
482 1.2 yamt }
483 1.2 yamt
484 1.2 yamt void
485 1.2 yamt sched_cpuattach(struct cpu_info *ci)
486 1.2 yamt {
487 1.2 yamt runqueue_t *rq;
488 1.2 yamt
489 1.13 ad if (lwp0.l_cpu == ci) {
490 1.13 ad /* Initialize the lock pointer for lwp0 */
491 1.13 ad lwp0.l_mutex = curcpu()->ci_schedstate.spc_lwplock;
492 1.13 ad }
493 1.13 ad
494 1.10 ad ci->ci_schedstate.spc_mutex = &runqueue_lock;
495 1.11 ad rq = kmem_zalloc(sizeof(*rq), KM_SLEEP);
496 1.2 yamt runqueue_init(rq);
497 1.2 yamt ci->ci_schedstate.spc_sched_info = rq;
498 1.2 yamt }
499 1.2 yamt
500 1.2 yamt void
501 1.14 matt sched_setup(void)
502 1.2 yamt {
503 1.2 yamt
504 1.2 yamt rrticks = hz / 10;
505 1.2 yamt }
506 1.2 yamt
507 1.2 yamt void
508 1.2 yamt sched_setrunnable(struct lwp *l)
509 1.2 yamt {
510 1.2 yamt
511 1.2 yamt if (l->l_slptime > 1)
512 1.2 yamt updatepri(l);
513 1.2 yamt }
514 1.2 yamt
515 1.2 yamt bool
516 1.2 yamt sched_curcpu_runnable_p(void)
517 1.2 yamt {
518 1.4 ad struct schedstate_percpu *spc;
519 1.8 ad struct cpu_info *ci;
520 1.8 ad int bits;
521 1.2 yamt
522 1.8 ad ci = curcpu();
523 1.8 ad spc = &ci->ci_schedstate;
524 1.8 ad #ifndef __HAVE_FAST_SOFTINTS
525 1.8 ad bits = ci->ci_data.cpu_softints;
526 1.8 ad bits |= ((runqueue_t *)spc->spc_sched_info)->rq_count;
527 1.8 ad #else
528 1.8 ad bits = ((runqueue_t *)spc->spc_sched_info)->rq_count;
529 1.8 ad #endif
530 1.4 ad if (__predict_true((spc->spc_flags & SPCF_OFFLINE) == 0))
531 1.8 ad bits |= global_queue.rq_count;
532 1.8 ad return bits != 0;
533 1.2 yamt }
534 1.2 yamt
535 1.2 yamt void
536 1.8 ad sched_nice(struct proc *p, int n)
537 1.2 yamt {
538 1.8 ad struct lwp *l;
539 1.8 ad
540 1.8 ad KASSERT(mutex_owned(&p->p_smutex));
541 1.2 yamt
542 1.8 ad p->p_nice = n;
543 1.8 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
544 1.8 ad lwp_lock(l);
545 1.8 ad resetpriority(l);
546 1.8 ad lwp_unlock(l);
547 1.8 ad }
548 1.2 yamt }
549 1.2 yamt
550 1.2 yamt /*
551 1.8 ad * Recompute the priority of an LWP. Arrange to reschedule if
552 1.8 ad * the resulting priority is better than that of the current LWP.
553 1.2 yamt */
554 1.2 yamt static void
555 1.2 yamt resetpriority(struct lwp *l)
556 1.2 yamt {
557 1.8 ad pri_t pri;
558 1.2 yamt struct proc *p = l->l_proc;
559 1.2 yamt
560 1.8 ad KASSERT(lwp_locked(l, NULL));
561 1.2 yamt
562 1.8 ad if (l->l_class != SCHED_OTHER)
563 1.2 yamt return;
564 1.2 yamt
565 1.8 ad /* See comments above ESTCPU_SHIFT definition. */
566 1.8 ad pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
567 1.8 ad pri = imax(pri, 0);
568 1.8 ad if (pri != l->l_priority)
569 1.8 ad lwp_changepri(l, pri);
570 1.2 yamt }
571 1.2 yamt
572 1.2 yamt /*
573 1.2 yamt * We adjust the priority of the current process. The priority of a process
574 1.8 ad * gets worse as it accumulates CPU time. The CPU usage estimator (l_estcpu)
575 1.2 yamt * is increased here. The formula for computing priorities (in kern_synch.c)
576 1.8 ad * will compute a different value each time l_estcpu increases. This can
577 1.2 yamt * cause a switch, but unless the priority crosses a PPQ boundary the actual
578 1.2 yamt * queue will not change. The CPU usage estimator ramps up quite quickly
579 1.2 yamt * when the process is running (linearly), and decays away exponentially, at
580 1.2 yamt * a rate which is proportionally slower when the system is busy. The basic
581 1.2 yamt * principle is that the system will 90% forget that the process used a lot
582 1.2 yamt * of CPU time in 5 * loadav seconds. This causes the system to favor
583 1.2 yamt * processes which haven't run much recently, and to round-robin among other
584 1.2 yamt * processes.
585 1.2 yamt */
586 1.2 yamt
587 1.2 yamt void
588 1.2 yamt sched_schedclock(struct lwp *l)
589 1.2 yamt {
590 1.8 ad
591 1.8 ad if (l->l_class != SCHED_OTHER)
592 1.8 ad return;
593 1.2 yamt
594 1.2 yamt KASSERT(!CURCPU_IDLE_P());
595 1.8 ad l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
596 1.2 yamt lwp_lock(l);
597 1.2 yamt resetpriority(l);
598 1.2 yamt lwp_unlock(l);
599 1.2 yamt }
600 1.2 yamt
601 1.2 yamt /*
602 1.2 yamt * sched_proc_fork:
603 1.2 yamt *
604 1.2 yamt * Inherit the parent's scheduler history.
605 1.2 yamt */
606 1.2 yamt void
607 1.2 yamt sched_proc_fork(struct proc *parent, struct proc *child)
608 1.2 yamt {
609 1.8 ad lwp_t *pl;
610 1.2 yamt
611 1.3 ad KASSERT(mutex_owned(&parent->p_smutex));
612 1.2 yamt
613 1.8 ad pl = LIST_FIRST(&parent->p_lwps);
614 1.8 ad child->p_estcpu_inherited = pl->l_estcpu;
615 1.2 yamt child->p_forktime = sched_pstats_ticks;
616 1.2 yamt }
617 1.2 yamt
618 1.2 yamt /*
619 1.2 yamt * sched_proc_exit:
620 1.2 yamt *
621 1.2 yamt * Chargeback parents for the sins of their children.
622 1.2 yamt */
623 1.2 yamt void
624 1.2 yamt sched_proc_exit(struct proc *parent, struct proc *child)
625 1.2 yamt {
626 1.2 yamt fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
627 1.2 yamt fixpt_t estcpu;
628 1.8 ad lwp_t *pl, *cl;
629 1.2 yamt
630 1.2 yamt /* XXX Only if parent != init?? */
631 1.2 yamt
632 1.8 ad mutex_enter(&parent->p_smutex);
633 1.8 ad pl = LIST_FIRST(&parent->p_lwps);
634 1.8 ad cl = LIST_FIRST(&child->p_lwps);
635 1.2 yamt estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
636 1.2 yamt sched_pstats_ticks - child->p_forktime);
637 1.8 ad if (cl->l_estcpu > estcpu) {
638 1.8 ad lwp_lock(pl);
639 1.8 ad pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
640 1.8 ad lwp_unlock(pl);
641 1.8 ad }
642 1.8 ad mutex_exit(&parent->p_smutex);
643 1.2 yamt }
644 1.2 yamt
645 1.2 yamt void
646 1.2 yamt sched_enqueue(struct lwp *l, bool ctxswitch)
647 1.2 yamt {
648 1.2 yamt
649 1.12 rmind if (__predict_false(l->l_target_cpu != NULL)) {
650 1.12 rmind /* Global mutex is used - just change the CPU */
651 1.12 rmind l->l_cpu = l->l_target_cpu;
652 1.12 rmind l->l_target_cpu = NULL;
653 1.12 rmind }
654 1.12 rmind
655 1.2 yamt if ((l->l_flag & LW_BOUND) != 0)
656 1.2 yamt runqueue_enqueue(l->l_cpu->ci_schedstate.spc_sched_info, l);
657 1.2 yamt else
658 1.2 yamt runqueue_enqueue(&global_queue, l);
659 1.2 yamt }
660 1.2 yamt
661 1.2 yamt /*
662 1.2 yamt * XXXSMP When LWP dispatch (cpu_switch()) is changed to use sched_dequeue(),
663 1.2 yamt * drop of the effective priority level from kernel to user needs to be
664 1.2 yamt * moved here from userret(). The assignment in userret() is currently
665 1.2 yamt * done unlocked.
666 1.2 yamt */
667 1.2 yamt void
668 1.2 yamt sched_dequeue(struct lwp *l)
669 1.2 yamt {
670 1.2 yamt
671 1.2 yamt if ((l->l_flag & LW_BOUND) != 0)
672 1.2 yamt runqueue_dequeue(l->l_cpu->ci_schedstate.spc_sched_info, l);
673 1.2 yamt else
674 1.2 yamt runqueue_dequeue(&global_queue, l);
675 1.2 yamt }
676 1.2 yamt
677 1.2 yamt struct lwp *
678 1.2 yamt sched_nextlwp(void)
679 1.2 yamt {
680 1.4 ad struct schedstate_percpu *spc;
681 1.8 ad runqueue_t *rq;
682 1.2 yamt lwp_t *l1, *l2;
683 1.2 yamt
684 1.4 ad spc = &curcpu()->ci_schedstate;
685 1.4 ad
686 1.2 yamt /* For now, just pick the highest priority LWP. */
687 1.8 ad rq = spc->spc_sched_info;
688 1.8 ad l1 = NULL;
689 1.8 ad if (rq->rq_count != 0)
690 1.8 ad l1 = runqueue_nextlwp(rq);
691 1.8 ad
692 1.8 ad rq = &global_queue;
693 1.8 ad if (__predict_false((spc->spc_flags & SPCF_OFFLINE) != 0) ||
694 1.8 ad rq->rq_count == 0)
695 1.4 ad return l1;
696 1.8 ad l2 = runqueue_nextlwp(rq);
697 1.2 yamt
698 1.2 yamt if (l1 == NULL)
699 1.2 yamt return l2;
700 1.2 yamt if (l2 == NULL)
701 1.2 yamt return l1;
702 1.8 ad if (lwp_eprio(l2) > lwp_eprio(l1))
703 1.2 yamt return l2;
704 1.2 yamt else
705 1.2 yamt return l1;
706 1.2 yamt }
707 1.2 yamt
708 1.6 rmind struct cpu_info *
709 1.6 rmind sched_takecpu(struct lwp *l)
710 1.6 rmind {
711 1.6 rmind
712 1.6 rmind return l->l_cpu;
713 1.6 rmind }
714 1.6 rmind
715 1.6 rmind void
716 1.6 rmind sched_wakeup(struct lwp *l)
717 1.6 rmind {
718 1.6 rmind
719 1.6 rmind }
720 1.6 rmind
721 1.6 rmind void
722 1.6 rmind sched_slept(struct lwp *l)
723 1.6 rmind {
724 1.6 rmind
725 1.6 rmind }
726 1.6 rmind
727 1.2 yamt void
728 1.8 ad sched_lwp_fork(struct lwp *l1, struct lwp *l2)
729 1.2 yamt {
730 1.2 yamt
731 1.8 ad l2->l_estcpu = l1->l_estcpu;
732 1.2 yamt }
733 1.2 yamt
734 1.2 yamt void
735 1.2 yamt sched_lwp_exit(struct lwp *l)
736 1.2 yamt {
737 1.2 yamt
738 1.2 yamt }
739 1.2 yamt
740 1.8 ad void
741 1.8 ad sched_lwp_collect(struct lwp *t)
742 1.8 ad {
743 1.8 ad lwp_t *l;
744 1.8 ad
745 1.8 ad /* Absorb estcpu value of collected LWP. */
746 1.8 ad l = curlwp;
747 1.8 ad lwp_lock(l);
748 1.8 ad l->l_estcpu += t->l_estcpu;
749 1.8 ad lwp_unlock(l);
750 1.8 ad }
751 1.8 ad
752 1.5 ad /*
753 1.12 rmind * Sysctl nodes and initialization.
754 1.5 ad */
755 1.12 rmind
756 1.12 rmind static int
757 1.12 rmind sysctl_sched_rtts(SYSCTLFN_ARGS)
758 1.12 rmind {
759 1.12 rmind struct sysctlnode node;
760 1.12 rmind int rttsms = hztoms(rrticks);
761 1.12 rmind
762 1.12 rmind node = *rnode;
763 1.12 rmind node.sysctl_data = &rttsms;
764 1.12 rmind return sysctl_lookup(SYSCTLFN_CALL(&node));
765 1.12 rmind }
766 1.12 rmind
767 1.2 yamt SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
768 1.2 yamt {
769 1.2 yamt const struct sysctlnode *node = NULL;
770 1.2 yamt
771 1.2 yamt sysctl_createv(clog, 0, NULL, NULL,
772 1.2 yamt CTLFLAG_PERMANENT,
773 1.2 yamt CTLTYPE_NODE, "kern", NULL,
774 1.2 yamt NULL, 0, NULL, 0,
775 1.2 yamt CTL_KERN, CTL_EOL);
776 1.2 yamt sysctl_createv(clog, 0, NULL, &node,
777 1.2 yamt CTLFLAG_PERMANENT,
778 1.2 yamt CTLTYPE_NODE, "sched",
779 1.2 yamt SYSCTL_DESCR("Scheduler options"),
780 1.2 yamt NULL, 0, NULL, 0,
781 1.2 yamt CTL_KERN, CTL_CREATE, CTL_EOL);
782 1.2 yamt
783 1.5 ad KASSERT(node != NULL);
784 1.5 ad
785 1.5 ad sysctl_createv(clog, 0, &node, NULL,
786 1.5 ad CTLFLAG_PERMANENT,
787 1.5 ad CTLTYPE_STRING, "name", NULL,
788 1.5 ad NULL, 0, __UNCONST("4.4BSD"), 0,
789 1.5 ad CTL_CREATE, CTL_EOL);
790 1.5 ad sysctl_createv(clog, 0, &node, NULL,
791 1.12 rmind CTLFLAG_PERMANENT,
792 1.12 rmind CTLTYPE_INT, "rtts",
793 1.12 rmind SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
794 1.12 rmind sysctl_sched_rtts, 0, NULL, 0,
795 1.12 rmind CTL_CREATE, CTL_EOL);
796 1.12 rmind sysctl_createv(clog, 0, &node, NULL,
797 1.5 ad CTLFLAG_READWRITE,
798 1.5 ad CTLTYPE_INT, "timesoftints",
799 1.5 ad SYSCTL_DESCR("Track CPU time for soft interrupts"),
800 1.5 ad NULL, 0, &softint_timing, 0,
801 1.5 ad CTL_CREATE, CTL_EOL);
802 1.2 yamt }
803 1.2 yamt
804 1.2 yamt #if defined(DDB)
805 1.2 yamt void
806 1.2 yamt sched_print_runqueue(void (*pr)(const char *, ...))
807 1.2 yamt {
808 1.2 yamt
809 1.2 yamt runqueue_print(&global_queue, pr);
810 1.2 yamt }
811 1.2 yamt #endif /* defined(DDB) */
812