Home | History | Annotate | Line # | Download | only in kern
sched_4bsd.c revision 1.20
      1  1.20     ad /*	$NetBSD: sched_4bsd.c,v 1.20 2008/04/24 18:39:24 ad Exp $	*/
      2   1.2   yamt 
      3   1.2   yamt /*-
      4  1.16     ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5   1.2   yamt  * All rights reserved.
      6   1.2   yamt  *
      7   1.2   yamt  * This code is derived from software contributed to The NetBSD Foundation
      8   1.2   yamt  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9   1.2   yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
     10   1.2   yamt  * Daniel Sieger.
     11   1.2   yamt  *
     12   1.2   yamt  * Redistribution and use in source and binary forms, with or without
     13   1.2   yamt  * modification, are permitted provided that the following conditions
     14   1.2   yamt  * are met:
     15   1.2   yamt  * 1. Redistributions of source code must retain the above copyright
     16   1.2   yamt  *    notice, this list of conditions and the following disclaimer.
     17   1.2   yamt  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.2   yamt  *    notice, this list of conditions and the following disclaimer in the
     19   1.2   yamt  *    documentation and/or other materials provided with the distribution.
     20   1.2   yamt  * 3. All advertising materials mentioning features or use of this software
     21   1.2   yamt  *    must display the following acknowledgement:
     22   1.2   yamt  *	This product includes software developed by the NetBSD
     23   1.2   yamt  *	Foundation, Inc. and its contributors.
     24   1.2   yamt  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25   1.2   yamt  *    contributors may be used to endorse or promote products derived
     26   1.2   yamt  *    from this software without specific prior written permission.
     27   1.2   yamt  *
     28   1.2   yamt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29   1.2   yamt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30   1.2   yamt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31   1.2   yamt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32   1.2   yamt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33   1.2   yamt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34   1.2   yamt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35   1.2   yamt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36   1.2   yamt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37   1.2   yamt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38   1.2   yamt  * POSSIBILITY OF SUCH DAMAGE.
     39   1.2   yamt  */
     40   1.2   yamt 
     41   1.2   yamt /*-
     42   1.2   yamt  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43   1.2   yamt  *	The Regents of the University of California.  All rights reserved.
     44   1.2   yamt  * (c) UNIX System Laboratories, Inc.
     45   1.2   yamt  * All or some portions of this file are derived from material licensed
     46   1.2   yamt  * to the University of California by American Telephone and Telegraph
     47   1.2   yamt  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48   1.2   yamt  * the permission of UNIX System Laboratories, Inc.
     49   1.2   yamt  *
     50   1.2   yamt  * Redistribution and use in source and binary forms, with or without
     51   1.2   yamt  * modification, are permitted provided that the following conditions
     52   1.2   yamt  * are met:
     53   1.2   yamt  * 1. Redistributions of source code must retain the above copyright
     54   1.2   yamt  *    notice, this list of conditions and the following disclaimer.
     55   1.2   yamt  * 2. Redistributions in binary form must reproduce the above copyright
     56   1.2   yamt  *    notice, this list of conditions and the following disclaimer in the
     57   1.2   yamt  *    documentation and/or other materials provided with the distribution.
     58   1.2   yamt  * 3. Neither the name of the University nor the names of its contributors
     59   1.2   yamt  *    may be used to endorse or promote products derived from this software
     60   1.2   yamt  *    without specific prior written permission.
     61   1.2   yamt  *
     62   1.2   yamt  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63   1.2   yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64   1.2   yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65   1.2   yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66   1.2   yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67   1.2   yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68   1.2   yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69   1.2   yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70   1.2   yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71   1.2   yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72   1.2   yamt  * SUCH DAMAGE.
     73   1.2   yamt  *
     74   1.2   yamt  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75   1.2   yamt  */
     76   1.2   yamt 
     77   1.2   yamt #include <sys/cdefs.h>
     78  1.20     ad __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.20 2008/04/24 18:39:24 ad Exp $");
     79   1.2   yamt 
     80   1.2   yamt #include "opt_ddb.h"
     81   1.2   yamt #include "opt_lockdebug.h"
     82   1.2   yamt #include "opt_perfctrs.h"
     83   1.2   yamt 
     84   1.2   yamt #include <sys/param.h>
     85   1.2   yamt #include <sys/systm.h>
     86   1.2   yamt #include <sys/callout.h>
     87   1.2   yamt #include <sys/cpu.h>
     88   1.2   yamt #include <sys/proc.h>
     89   1.2   yamt #include <sys/kernel.h>
     90   1.2   yamt #include <sys/signalvar.h>
     91   1.2   yamt #include <sys/resourcevar.h>
     92   1.2   yamt #include <sys/sched.h>
     93   1.2   yamt #include <sys/sysctl.h>
     94   1.2   yamt #include <sys/kauth.h>
     95   1.2   yamt #include <sys/lockdebug.h>
     96   1.2   yamt #include <sys/kmem.h>
     97   1.5     ad #include <sys/intr.h>
     98   1.2   yamt 
     99   1.2   yamt #include <uvm/uvm_extern.h>
    100   1.2   yamt 
    101   1.2   yamt static void updatepri(struct lwp *);
    102   1.2   yamt static void resetpriority(struct lwp *);
    103   1.2   yamt 
    104   1.2   yamt extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
    105   1.2   yamt 
    106   1.2   yamt /* Number of hardclock ticks per sched_tick() */
    107  1.12  rmind static int rrticks;
    108   1.2   yamt 
    109   1.2   yamt /*
    110   1.2   yamt  * Force switch among equal priority processes every 100ms.
    111   1.2   yamt  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    112   1.5     ad  *
    113   1.5     ad  * There's no need to lock anywhere in this routine, as it's
    114   1.5     ad  * CPU-local and runs at IPL_SCHED (called from clock interrupt).
    115   1.2   yamt  */
    116   1.2   yamt /* ARGSUSED */
    117   1.2   yamt void
    118   1.2   yamt sched_tick(struct cpu_info *ci)
    119   1.2   yamt {
    120   1.2   yamt 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    121   1.2   yamt 
    122   1.2   yamt 	spc->spc_ticks = rrticks;
    123   1.2   yamt 
    124  1.15     ad 	if (CURCPU_IDLE_P()) {
    125  1.15     ad 		cpu_need_resched(ci, 0);
    126   1.7  rmind 		return;
    127  1.15     ad 	}
    128  1.19   yamt 	if (curlwp->l_class == SCHED_FIFO) {
    129  1.19   yamt 		return;
    130  1.19   yamt 	}
    131   1.7  rmind 	if (spc->spc_flags & SPCF_SEENRR) {
    132   1.7  rmind 		/*
    133   1.7  rmind 		 * The process has already been through a roundrobin
    134   1.7  rmind 		 * without switching and may be hogging the CPU.
    135   1.7  rmind 		 * Indicate that the process should yield.
    136   1.7  rmind 		 */
    137   1.7  rmind 		spc->spc_flags |= SPCF_SHOULDYIELD;
    138  1.15     ad 		cpu_need_resched(ci, 0);
    139   1.7  rmind 	} else
    140   1.7  rmind 		spc->spc_flags |= SPCF_SEENRR;
    141   1.2   yamt }
    142   1.2   yamt 
    143   1.8     ad /*
    144   1.8     ad  * Why PRIO_MAX - 2? From setpriority(2):
    145   1.8     ad  *
    146   1.8     ad  *	prio is a value in the range -20 to 20.  The default priority is
    147   1.8     ad  *	0; lower priorities cause more favorable scheduling.  A value of
    148   1.8     ad  *	19 or 20 will schedule a process only when nothing at priority <=
    149   1.8     ad  *	0 is runnable.
    150   1.8     ad  *
    151   1.8     ad  * This gives estcpu influence over 18 priority levels, and leaves nice
    152   1.8     ad  * with 40 levels.  One way to think about it is that nice has 20 levels
    153   1.8     ad  * either side of estcpu's 18.
    154   1.8     ad  */
    155   1.2   yamt #define	ESTCPU_SHIFT	11
    156   1.8     ad #define	ESTCPU_MAX	((PRIO_MAX - 2) << ESTCPU_SHIFT)
    157   1.8     ad #define	ESTCPU_ACCUM	(1 << (ESTCPU_SHIFT - 1))
    158   1.2   yamt #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    159   1.2   yamt 
    160   1.2   yamt /*
    161   1.2   yamt  * Constants for digital decay and forget:
    162   1.8     ad  *	90% of (l_estcpu) usage in 5 * loadav time
    163   1.8     ad  *	95% of (l_pctcpu) usage in 60 seconds (load insensitive)
    164   1.2   yamt  *          Note that, as ps(1) mentions, this can let percentages
    165   1.2   yamt  *          total over 100% (I've seen 137.9% for 3 processes).
    166   1.2   yamt  *
    167   1.8     ad  * Note that hardclock updates l_estcpu and l_cpticks independently.
    168   1.2   yamt  *
    169   1.8     ad  * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds.
    170   1.2   yamt  * That is, the system wants to compute a value of decay such
    171   1.2   yamt  * that the following for loop:
    172   1.2   yamt  * 	for (i = 0; i < (5 * loadavg); i++)
    173   1.8     ad  * 		l_estcpu *= decay;
    174   1.2   yamt  * will compute
    175   1.8     ad  * 	l_estcpu *= 0.1;
    176   1.2   yamt  * for all values of loadavg:
    177   1.2   yamt  *
    178   1.2   yamt  * Mathematically this loop can be expressed by saying:
    179   1.2   yamt  * 	decay ** (5 * loadavg) ~= .1
    180   1.2   yamt  *
    181   1.2   yamt  * The system computes decay as:
    182   1.2   yamt  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    183   1.2   yamt  *
    184   1.2   yamt  * We wish to prove that the system's computation of decay
    185   1.2   yamt  * will always fulfill the equation:
    186   1.2   yamt  * 	decay ** (5 * loadavg) ~= .1
    187   1.2   yamt  *
    188   1.2   yamt  * If we compute b as:
    189   1.2   yamt  * 	b = 2 * loadavg
    190   1.2   yamt  * then
    191   1.2   yamt  * 	decay = b / (b + 1)
    192   1.2   yamt  *
    193   1.2   yamt  * We now need to prove two things:
    194   1.2   yamt  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    195   1.2   yamt  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    196   1.2   yamt  *
    197   1.2   yamt  * Facts:
    198   1.2   yamt  *         For x close to zero, exp(x) =~ 1 + x, since
    199   1.2   yamt  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    200   1.2   yamt  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    201   1.2   yamt  *         For x close to zero, ln(1+x) =~ x, since
    202   1.2   yamt  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    203   1.2   yamt  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    204   1.2   yamt  *         ln(.1) =~ -2.30
    205   1.2   yamt  *
    206   1.2   yamt  * Proof of (1):
    207   1.2   yamt  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    208   1.2   yamt  *	solving for factor,
    209   1.2   yamt  *      ln(factor) =~ (-2.30/5*loadav), or
    210   1.2   yamt  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    211   1.2   yamt  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    212   1.2   yamt  *
    213   1.2   yamt  * Proof of (2):
    214   1.2   yamt  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    215   1.2   yamt  *	solving for power,
    216   1.2   yamt  *      power*ln(b/(b+1)) =~ -2.30, or
    217   1.2   yamt  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    218   1.2   yamt  *
    219   1.2   yamt  * Actual power values for the implemented algorithm are as follows:
    220   1.2   yamt  *      loadav: 1       2       3       4
    221   1.2   yamt  *      power:  5.68    10.32   14.94   19.55
    222   1.2   yamt  */
    223   1.2   yamt 
    224   1.2   yamt /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    225   1.2   yamt #define	loadfactor(loadav)	(2 * (loadav))
    226   1.2   yamt 
    227  1.17   yamt static fixpt_t
    228   1.2   yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    229   1.2   yamt {
    230   1.2   yamt 
    231   1.2   yamt 	if (estcpu == 0) {
    232   1.2   yamt 		return 0;
    233   1.2   yamt 	}
    234   1.2   yamt 
    235   1.2   yamt #if !defined(_LP64)
    236   1.2   yamt 	/* avoid 64bit arithmetics. */
    237   1.2   yamt #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    238   1.2   yamt 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    239   1.2   yamt 		return estcpu * loadfac / (loadfac + FSCALE);
    240   1.2   yamt 	}
    241   1.2   yamt #endif /* !defined(_LP64) */
    242   1.2   yamt 
    243   1.2   yamt 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    244   1.2   yamt }
    245   1.2   yamt 
    246   1.2   yamt /*
    247   1.8     ad  * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
    248   1.8     ad  * sleeping for at least seven times the loadfactor will decay l_estcpu to
    249   1.2   yamt  * less than (1 << ESTCPU_SHIFT).
    250   1.2   yamt  *
    251   1.2   yamt  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    252   1.2   yamt  */
    253   1.2   yamt static fixpt_t
    254   1.2   yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    255   1.2   yamt {
    256   1.2   yamt 
    257   1.2   yamt 	if ((n << FSHIFT) >= 7 * loadfac) {
    258   1.2   yamt 		return 0;
    259   1.2   yamt 	}
    260   1.2   yamt 
    261   1.2   yamt 	while (estcpu != 0 && n > 1) {
    262   1.2   yamt 		estcpu = decay_cpu(loadfac, estcpu);
    263   1.2   yamt 		n--;
    264   1.2   yamt 	}
    265   1.2   yamt 
    266   1.2   yamt 	return estcpu;
    267   1.2   yamt }
    268   1.2   yamt 
    269   1.2   yamt /*
    270   1.2   yamt  * sched_pstats_hook:
    271   1.2   yamt  *
    272   1.2   yamt  * Periodically called from sched_pstats(); used to recalculate priorities.
    273   1.2   yamt  */
    274   1.2   yamt void
    275   1.6  rmind sched_pstats_hook(struct lwp *l)
    276   1.2   yamt {
    277   1.8     ad 	fixpt_t loadfac;
    278   1.8     ad 	int sleeptm;
    279   1.2   yamt 
    280   1.8     ad 	/*
    281   1.8     ad 	 * If the LWP has slept an entire second, stop recalculating
    282   1.8     ad 	 * its priority until it wakes up.
    283   1.8     ad 	 */
    284   1.8     ad 	if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    285   1.8     ad 	    l->l_stat == LSSUSPENDED) {
    286   1.8     ad 		l->l_slptime++;
    287   1.8     ad 		sleeptm = 1;
    288   1.8     ad 	} else {
    289   1.8     ad 		sleeptm = 0x7fffffff;
    290   1.8     ad 	}
    291   1.8     ad 
    292   1.8     ad 	if (l->l_slptime <= sleeptm) {
    293   1.8     ad 		loadfac = 2 * (averunnable.ldavg[0]);
    294   1.8     ad 		l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
    295   1.6  rmind 		resetpriority(l);
    296   1.8     ad 	}
    297   1.2   yamt }
    298   1.2   yamt 
    299   1.2   yamt /*
    300   1.2   yamt  * Recalculate the priority of a process after it has slept for a while.
    301   1.2   yamt  */
    302   1.2   yamt static void
    303   1.2   yamt updatepri(struct lwp *l)
    304   1.2   yamt {
    305   1.2   yamt 	fixpt_t loadfac;
    306   1.2   yamt 
    307   1.3     ad 	KASSERT(lwp_locked(l, NULL));
    308   1.2   yamt 	KASSERT(l->l_slptime > 1);
    309   1.2   yamt 
    310   1.2   yamt 	loadfac = loadfactor(averunnable.ldavg[0]);
    311   1.2   yamt 
    312   1.2   yamt 	l->l_slptime--; /* the first time was done in sched_pstats */
    313   1.8     ad 	l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
    314   1.2   yamt 	resetpriority(l);
    315   1.2   yamt }
    316   1.2   yamt 
    317   1.2   yamt void
    318  1.14   matt sched_rqinit(void)
    319   1.2   yamt {
    320   1.2   yamt 
    321   1.2   yamt }
    322   1.2   yamt 
    323   1.2   yamt void
    324   1.2   yamt sched_setrunnable(struct lwp *l)
    325   1.2   yamt {
    326   1.2   yamt 
    327   1.2   yamt  	if (l->l_slptime > 1)
    328   1.2   yamt  		updatepri(l);
    329   1.2   yamt }
    330   1.2   yamt 
    331   1.2   yamt void
    332   1.8     ad sched_nice(struct proc *p, int n)
    333   1.2   yamt {
    334   1.8     ad 	struct lwp *l;
    335   1.8     ad 
    336  1.20     ad 	KASSERT(mutex_owned(p->p_lock));
    337   1.2   yamt 
    338   1.8     ad 	p->p_nice = n;
    339   1.8     ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    340   1.8     ad 		lwp_lock(l);
    341   1.8     ad 		resetpriority(l);
    342   1.8     ad 		lwp_unlock(l);
    343   1.8     ad 	}
    344   1.2   yamt }
    345   1.2   yamt 
    346   1.2   yamt /*
    347   1.8     ad  * Recompute the priority of an LWP.  Arrange to reschedule if
    348   1.8     ad  * the resulting priority is better than that of the current LWP.
    349   1.2   yamt  */
    350   1.2   yamt static void
    351   1.2   yamt resetpriority(struct lwp *l)
    352   1.2   yamt {
    353   1.8     ad 	pri_t pri;
    354   1.2   yamt 	struct proc *p = l->l_proc;
    355   1.2   yamt 
    356   1.8     ad 	KASSERT(lwp_locked(l, NULL));
    357   1.2   yamt 
    358   1.8     ad 	if (l->l_class != SCHED_OTHER)
    359   1.2   yamt 		return;
    360   1.2   yamt 
    361   1.8     ad 	/* See comments above ESTCPU_SHIFT definition. */
    362   1.8     ad 	pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
    363   1.8     ad 	pri = imax(pri, 0);
    364   1.8     ad 	if (pri != l->l_priority)
    365   1.8     ad 		lwp_changepri(l, pri);
    366   1.2   yamt }
    367   1.2   yamt 
    368   1.2   yamt /*
    369   1.2   yamt  * We adjust the priority of the current process.  The priority of a process
    370   1.8     ad  * gets worse as it accumulates CPU time.  The CPU usage estimator (l_estcpu)
    371   1.2   yamt  * is increased here.  The formula for computing priorities (in kern_synch.c)
    372   1.8     ad  * will compute a different value each time l_estcpu increases. This can
    373   1.2   yamt  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    374   1.2   yamt  * queue will not change.  The CPU usage estimator ramps up quite quickly
    375   1.2   yamt  * when the process is running (linearly), and decays away exponentially, at
    376   1.2   yamt  * a rate which is proportionally slower when the system is busy.  The basic
    377   1.2   yamt  * principle is that the system will 90% forget that the process used a lot
    378   1.2   yamt  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    379   1.2   yamt  * processes which haven't run much recently, and to round-robin among other
    380   1.2   yamt  * processes.
    381   1.2   yamt  */
    382   1.2   yamt 
    383   1.2   yamt void
    384   1.2   yamt sched_schedclock(struct lwp *l)
    385   1.2   yamt {
    386   1.8     ad 
    387   1.8     ad 	if (l->l_class != SCHED_OTHER)
    388   1.8     ad 		return;
    389   1.2   yamt 
    390   1.2   yamt 	KASSERT(!CURCPU_IDLE_P());
    391   1.8     ad 	l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
    392   1.2   yamt 	lwp_lock(l);
    393   1.2   yamt 	resetpriority(l);
    394   1.2   yamt 	lwp_unlock(l);
    395   1.2   yamt }
    396   1.2   yamt 
    397   1.2   yamt /*
    398   1.2   yamt  * sched_proc_fork:
    399   1.2   yamt  *
    400   1.2   yamt  *	Inherit the parent's scheduler history.
    401   1.2   yamt  */
    402   1.2   yamt void
    403   1.2   yamt sched_proc_fork(struct proc *parent, struct proc *child)
    404   1.2   yamt {
    405   1.8     ad 	lwp_t *pl;
    406   1.2   yamt 
    407  1.20     ad 	KASSERT(mutex_owned(parent->p_lock));
    408   1.2   yamt 
    409   1.8     ad 	pl = LIST_FIRST(&parent->p_lwps);
    410   1.8     ad 	child->p_estcpu_inherited = pl->l_estcpu;
    411   1.2   yamt 	child->p_forktime = sched_pstats_ticks;
    412   1.2   yamt }
    413   1.2   yamt 
    414   1.2   yamt /*
    415   1.2   yamt  * sched_proc_exit:
    416   1.2   yamt  *
    417   1.2   yamt  *	Chargeback parents for the sins of their children.
    418   1.2   yamt  */
    419   1.2   yamt void
    420   1.2   yamt sched_proc_exit(struct proc *parent, struct proc *child)
    421   1.2   yamt {
    422   1.2   yamt 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    423   1.2   yamt 	fixpt_t estcpu;
    424   1.8     ad 	lwp_t *pl, *cl;
    425   1.2   yamt 
    426   1.2   yamt 	/* XXX Only if parent != init?? */
    427   1.2   yamt 
    428  1.20     ad 	mutex_enter(parent->p_lock);
    429   1.8     ad 	pl = LIST_FIRST(&parent->p_lwps);
    430   1.8     ad 	cl = LIST_FIRST(&child->p_lwps);
    431   1.2   yamt 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
    432   1.2   yamt 	    sched_pstats_ticks - child->p_forktime);
    433   1.8     ad 	if (cl->l_estcpu > estcpu) {
    434   1.8     ad 		lwp_lock(pl);
    435   1.8     ad 		pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
    436   1.8     ad 		lwp_unlock(pl);
    437   1.8     ad 	}
    438  1.20     ad 	mutex_exit(parent->p_lock);
    439   1.2   yamt }
    440   1.2   yamt 
    441   1.2   yamt void
    442   1.6  rmind sched_wakeup(struct lwp *l)
    443   1.6  rmind {
    444   1.6  rmind 
    445  1.16     ad 	l->l_cpu = sched_takecpu(l);
    446   1.6  rmind }
    447   1.6  rmind 
    448   1.6  rmind void
    449   1.6  rmind sched_slept(struct lwp *l)
    450   1.6  rmind {
    451   1.6  rmind 
    452   1.6  rmind }
    453   1.6  rmind 
    454   1.2   yamt void
    455   1.8     ad sched_lwp_fork(struct lwp *l1, struct lwp *l2)
    456   1.2   yamt {
    457   1.2   yamt 
    458   1.8     ad 	l2->l_estcpu = l1->l_estcpu;
    459   1.2   yamt }
    460   1.2   yamt 
    461   1.2   yamt void
    462   1.2   yamt sched_lwp_exit(struct lwp *l)
    463   1.2   yamt {
    464   1.2   yamt 
    465   1.2   yamt }
    466   1.2   yamt 
    467   1.8     ad void
    468   1.8     ad sched_lwp_collect(struct lwp *t)
    469   1.8     ad {
    470   1.8     ad 	lwp_t *l;
    471   1.8     ad 
    472   1.8     ad 	/* Absorb estcpu value of collected LWP. */
    473   1.8     ad 	l = curlwp;
    474   1.8     ad 	lwp_lock(l);
    475   1.8     ad 	l->l_estcpu += t->l_estcpu;
    476   1.8     ad 	lwp_unlock(l);
    477   1.8     ad }
    478   1.8     ad 
    479  1.16     ad void
    480  1.16     ad sched_oncpu(lwp_t *l)
    481  1.16     ad {
    482  1.16     ad 
    483  1.16     ad }
    484  1.16     ad 
    485  1.16     ad void
    486  1.16     ad sched_newts(lwp_t *l)
    487  1.16     ad {
    488  1.16     ad 
    489  1.16     ad }
    490  1.16     ad 
    491   1.5     ad /*
    492  1.12  rmind  * Sysctl nodes and initialization.
    493   1.5     ad  */
    494  1.12  rmind 
    495  1.12  rmind static int
    496  1.12  rmind sysctl_sched_rtts(SYSCTLFN_ARGS)
    497  1.12  rmind {
    498  1.12  rmind 	struct sysctlnode node;
    499  1.12  rmind 	int rttsms = hztoms(rrticks);
    500  1.12  rmind 
    501  1.12  rmind 	node = *rnode;
    502  1.12  rmind 	node.sysctl_data = &rttsms;
    503  1.12  rmind 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    504  1.12  rmind }
    505  1.12  rmind 
    506  1.16     ad SYSCTL_SETUP(sysctl_sched_4bsd_setup, "sysctl sched setup")
    507   1.2   yamt {
    508   1.2   yamt 	const struct sysctlnode *node = NULL;
    509   1.2   yamt 
    510   1.2   yamt 	sysctl_createv(clog, 0, NULL, NULL,
    511   1.2   yamt 		CTLFLAG_PERMANENT,
    512   1.2   yamt 		CTLTYPE_NODE, "kern", NULL,
    513   1.2   yamt 		NULL, 0, NULL, 0,
    514   1.2   yamt 		CTL_KERN, CTL_EOL);
    515   1.2   yamt 	sysctl_createv(clog, 0, NULL, &node,
    516   1.2   yamt 		CTLFLAG_PERMANENT,
    517   1.2   yamt 		CTLTYPE_NODE, "sched",
    518   1.2   yamt 		SYSCTL_DESCR("Scheduler options"),
    519   1.2   yamt 		NULL, 0, NULL, 0,
    520   1.2   yamt 		CTL_KERN, CTL_CREATE, CTL_EOL);
    521   1.2   yamt 
    522  1.16     ad 	if (node == NULL)
    523  1.16     ad 		return;
    524   1.5     ad 
    525  1.16     ad 	rrticks = hz / 10;
    526  1.16     ad 
    527  1.16     ad 	sysctl_createv(NULL, 0, &node, NULL,
    528   1.5     ad 		CTLFLAG_PERMANENT,
    529   1.5     ad 		CTLTYPE_STRING, "name", NULL,
    530   1.5     ad 		NULL, 0, __UNCONST("4.4BSD"), 0,
    531   1.5     ad 		CTL_CREATE, CTL_EOL);
    532  1.16     ad 	sysctl_createv(NULL, 0, &node, NULL,
    533  1.12  rmind 		CTLFLAG_PERMANENT,
    534  1.12  rmind 		CTLTYPE_INT, "rtts",
    535  1.12  rmind 		SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
    536  1.12  rmind 		sysctl_sched_rtts, 0, NULL, 0,
    537  1.12  rmind 		CTL_CREATE, CTL_EOL);
    538   1.2   yamt }
    539