Home | History | Annotate | Line # | Download | only in kern
sched_4bsd.c revision 1.22
      1  1.22  rmind /*	$NetBSD: sched_4bsd.c,v 1.22 2008/05/19 12:48:54 rmind Exp $	*/
      2   1.2   yamt 
      3   1.2   yamt /*-
      4  1.16     ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5   1.2   yamt  * All rights reserved.
      6   1.2   yamt  *
      7   1.2   yamt  * This code is derived from software contributed to The NetBSD Foundation
      8   1.2   yamt  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9   1.2   yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
     10   1.2   yamt  * Daniel Sieger.
     11   1.2   yamt  *
     12   1.2   yamt  * Redistribution and use in source and binary forms, with or without
     13   1.2   yamt  * modification, are permitted provided that the following conditions
     14   1.2   yamt  * are met:
     15   1.2   yamt  * 1. Redistributions of source code must retain the above copyright
     16   1.2   yamt  *    notice, this list of conditions and the following disclaimer.
     17   1.2   yamt  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.2   yamt  *    notice, this list of conditions and the following disclaimer in the
     19   1.2   yamt  *    documentation and/or other materials provided with the distribution.
     20   1.2   yamt  *
     21   1.2   yamt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22   1.2   yamt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23   1.2   yamt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24   1.2   yamt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25   1.2   yamt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26   1.2   yamt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27   1.2   yamt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28   1.2   yamt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29   1.2   yamt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30   1.2   yamt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31   1.2   yamt  * POSSIBILITY OF SUCH DAMAGE.
     32   1.2   yamt  */
     33   1.2   yamt 
     34   1.2   yamt /*-
     35   1.2   yamt  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     36   1.2   yamt  *	The Regents of the University of California.  All rights reserved.
     37   1.2   yamt  * (c) UNIX System Laboratories, Inc.
     38   1.2   yamt  * All or some portions of this file are derived from material licensed
     39   1.2   yamt  * to the University of California by American Telephone and Telegraph
     40   1.2   yamt  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     41   1.2   yamt  * the permission of UNIX System Laboratories, Inc.
     42   1.2   yamt  *
     43   1.2   yamt  * Redistribution and use in source and binary forms, with or without
     44   1.2   yamt  * modification, are permitted provided that the following conditions
     45   1.2   yamt  * are met:
     46   1.2   yamt  * 1. Redistributions of source code must retain the above copyright
     47   1.2   yamt  *    notice, this list of conditions and the following disclaimer.
     48   1.2   yamt  * 2. Redistributions in binary form must reproduce the above copyright
     49   1.2   yamt  *    notice, this list of conditions and the following disclaimer in the
     50   1.2   yamt  *    documentation and/or other materials provided with the distribution.
     51   1.2   yamt  * 3. Neither the name of the University nor the names of its contributors
     52   1.2   yamt  *    may be used to endorse or promote products derived from this software
     53   1.2   yamt  *    without specific prior written permission.
     54   1.2   yamt  *
     55   1.2   yamt  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56   1.2   yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57   1.2   yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58   1.2   yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59   1.2   yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60   1.2   yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61   1.2   yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62   1.2   yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63   1.2   yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64   1.2   yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65   1.2   yamt  * SUCH DAMAGE.
     66   1.2   yamt  *
     67   1.2   yamt  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     68   1.2   yamt  */
     69   1.2   yamt 
     70   1.2   yamt #include <sys/cdefs.h>
     71  1.22  rmind __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.22 2008/05/19 12:48:54 rmind Exp $");
     72   1.2   yamt 
     73   1.2   yamt #include "opt_ddb.h"
     74   1.2   yamt #include "opt_lockdebug.h"
     75   1.2   yamt #include "opt_perfctrs.h"
     76   1.2   yamt 
     77   1.2   yamt #include <sys/param.h>
     78   1.2   yamt #include <sys/systm.h>
     79   1.2   yamt #include <sys/callout.h>
     80   1.2   yamt #include <sys/cpu.h>
     81   1.2   yamt #include <sys/proc.h>
     82   1.2   yamt #include <sys/kernel.h>
     83   1.2   yamt #include <sys/signalvar.h>
     84   1.2   yamt #include <sys/resourcevar.h>
     85   1.2   yamt #include <sys/sched.h>
     86   1.2   yamt #include <sys/sysctl.h>
     87   1.2   yamt #include <sys/kauth.h>
     88   1.2   yamt #include <sys/lockdebug.h>
     89   1.2   yamt #include <sys/kmem.h>
     90   1.5     ad #include <sys/intr.h>
     91   1.2   yamt 
     92   1.2   yamt #include <uvm/uvm_extern.h>
     93   1.2   yamt 
     94   1.2   yamt static void updatepri(struct lwp *);
     95   1.2   yamt static void resetpriority(struct lwp *);
     96   1.2   yamt 
     97   1.2   yamt extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
     98   1.2   yamt 
     99   1.2   yamt /* Number of hardclock ticks per sched_tick() */
    100  1.12  rmind static int rrticks;
    101   1.2   yamt 
    102   1.2   yamt /*
    103   1.2   yamt  * Force switch among equal priority processes every 100ms.
    104   1.2   yamt  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    105   1.5     ad  *
    106   1.5     ad  * There's no need to lock anywhere in this routine, as it's
    107   1.5     ad  * CPU-local and runs at IPL_SCHED (called from clock interrupt).
    108   1.2   yamt  */
    109   1.2   yamt /* ARGSUSED */
    110   1.2   yamt void
    111   1.2   yamt sched_tick(struct cpu_info *ci)
    112   1.2   yamt {
    113   1.2   yamt 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    114   1.2   yamt 
    115   1.2   yamt 	spc->spc_ticks = rrticks;
    116   1.2   yamt 
    117  1.15     ad 	if (CURCPU_IDLE_P()) {
    118  1.15     ad 		cpu_need_resched(ci, 0);
    119   1.7  rmind 		return;
    120  1.15     ad 	}
    121  1.19   yamt 	if (curlwp->l_class == SCHED_FIFO) {
    122  1.19   yamt 		return;
    123  1.19   yamt 	}
    124   1.7  rmind 	if (spc->spc_flags & SPCF_SEENRR) {
    125   1.7  rmind 		/*
    126   1.7  rmind 		 * The process has already been through a roundrobin
    127   1.7  rmind 		 * without switching and may be hogging the CPU.
    128   1.7  rmind 		 * Indicate that the process should yield.
    129   1.7  rmind 		 */
    130   1.7  rmind 		spc->spc_flags |= SPCF_SHOULDYIELD;
    131  1.15     ad 		cpu_need_resched(ci, 0);
    132   1.7  rmind 	} else
    133   1.7  rmind 		spc->spc_flags |= SPCF_SEENRR;
    134   1.2   yamt }
    135   1.2   yamt 
    136   1.8     ad /*
    137   1.8     ad  * Why PRIO_MAX - 2? From setpriority(2):
    138   1.8     ad  *
    139   1.8     ad  *	prio is a value in the range -20 to 20.  The default priority is
    140   1.8     ad  *	0; lower priorities cause more favorable scheduling.  A value of
    141   1.8     ad  *	19 or 20 will schedule a process only when nothing at priority <=
    142   1.8     ad  *	0 is runnable.
    143   1.8     ad  *
    144   1.8     ad  * This gives estcpu influence over 18 priority levels, and leaves nice
    145   1.8     ad  * with 40 levels.  One way to think about it is that nice has 20 levels
    146   1.8     ad  * either side of estcpu's 18.
    147   1.8     ad  */
    148   1.2   yamt #define	ESTCPU_SHIFT	11
    149   1.8     ad #define	ESTCPU_MAX	((PRIO_MAX - 2) << ESTCPU_SHIFT)
    150   1.8     ad #define	ESTCPU_ACCUM	(1 << (ESTCPU_SHIFT - 1))
    151   1.2   yamt #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    152   1.2   yamt 
    153   1.2   yamt /*
    154   1.2   yamt  * Constants for digital decay and forget:
    155   1.8     ad  *	90% of (l_estcpu) usage in 5 * loadav time
    156   1.8     ad  *	95% of (l_pctcpu) usage in 60 seconds (load insensitive)
    157   1.2   yamt  *          Note that, as ps(1) mentions, this can let percentages
    158   1.2   yamt  *          total over 100% (I've seen 137.9% for 3 processes).
    159   1.2   yamt  *
    160   1.8     ad  * Note that hardclock updates l_estcpu and l_cpticks independently.
    161   1.2   yamt  *
    162   1.8     ad  * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds.
    163   1.2   yamt  * That is, the system wants to compute a value of decay such
    164   1.2   yamt  * that the following for loop:
    165   1.2   yamt  * 	for (i = 0; i < (5 * loadavg); i++)
    166   1.8     ad  * 		l_estcpu *= decay;
    167   1.2   yamt  * will compute
    168   1.8     ad  * 	l_estcpu *= 0.1;
    169   1.2   yamt  * for all values of loadavg:
    170   1.2   yamt  *
    171   1.2   yamt  * Mathematically this loop can be expressed by saying:
    172   1.2   yamt  * 	decay ** (5 * loadavg) ~= .1
    173   1.2   yamt  *
    174   1.2   yamt  * The system computes decay as:
    175   1.2   yamt  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    176   1.2   yamt  *
    177   1.2   yamt  * We wish to prove that the system's computation of decay
    178   1.2   yamt  * will always fulfill the equation:
    179   1.2   yamt  * 	decay ** (5 * loadavg) ~= .1
    180   1.2   yamt  *
    181   1.2   yamt  * If we compute b as:
    182   1.2   yamt  * 	b = 2 * loadavg
    183   1.2   yamt  * then
    184   1.2   yamt  * 	decay = b / (b + 1)
    185   1.2   yamt  *
    186   1.2   yamt  * We now need to prove two things:
    187   1.2   yamt  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    188   1.2   yamt  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    189   1.2   yamt  *
    190   1.2   yamt  * Facts:
    191   1.2   yamt  *         For x close to zero, exp(x) =~ 1 + x, since
    192   1.2   yamt  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    193   1.2   yamt  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    194   1.2   yamt  *         For x close to zero, ln(1+x) =~ x, since
    195   1.2   yamt  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    196   1.2   yamt  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    197   1.2   yamt  *         ln(.1) =~ -2.30
    198   1.2   yamt  *
    199   1.2   yamt  * Proof of (1):
    200   1.2   yamt  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    201   1.2   yamt  *	solving for factor,
    202   1.2   yamt  *      ln(factor) =~ (-2.30/5*loadav), or
    203   1.2   yamt  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    204   1.2   yamt  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    205   1.2   yamt  *
    206   1.2   yamt  * Proof of (2):
    207   1.2   yamt  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    208   1.2   yamt  *	solving for power,
    209   1.2   yamt  *      power*ln(b/(b+1)) =~ -2.30, or
    210   1.2   yamt  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    211   1.2   yamt  *
    212   1.2   yamt  * Actual power values for the implemented algorithm are as follows:
    213   1.2   yamt  *      loadav: 1       2       3       4
    214   1.2   yamt  *      power:  5.68    10.32   14.94   19.55
    215   1.2   yamt  */
    216   1.2   yamt 
    217   1.2   yamt /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    218   1.2   yamt #define	loadfactor(loadav)	(2 * (loadav))
    219   1.2   yamt 
    220  1.17   yamt static fixpt_t
    221   1.2   yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    222   1.2   yamt {
    223   1.2   yamt 
    224   1.2   yamt 	if (estcpu == 0) {
    225   1.2   yamt 		return 0;
    226   1.2   yamt 	}
    227   1.2   yamt 
    228   1.2   yamt #if !defined(_LP64)
    229   1.2   yamt 	/* avoid 64bit arithmetics. */
    230   1.2   yamt #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    231   1.2   yamt 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    232   1.2   yamt 		return estcpu * loadfac / (loadfac + FSCALE);
    233   1.2   yamt 	}
    234   1.2   yamt #endif /* !defined(_LP64) */
    235   1.2   yamt 
    236   1.2   yamt 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    237   1.2   yamt }
    238   1.2   yamt 
    239   1.2   yamt /*
    240   1.8     ad  * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
    241   1.8     ad  * sleeping for at least seven times the loadfactor will decay l_estcpu to
    242   1.2   yamt  * less than (1 << ESTCPU_SHIFT).
    243   1.2   yamt  *
    244   1.2   yamt  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    245   1.2   yamt  */
    246   1.2   yamt static fixpt_t
    247   1.2   yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    248   1.2   yamt {
    249   1.2   yamt 
    250   1.2   yamt 	if ((n << FSHIFT) >= 7 * loadfac) {
    251   1.2   yamt 		return 0;
    252   1.2   yamt 	}
    253   1.2   yamt 
    254   1.2   yamt 	while (estcpu != 0 && n > 1) {
    255   1.2   yamt 		estcpu = decay_cpu(loadfac, estcpu);
    256   1.2   yamt 		n--;
    257   1.2   yamt 	}
    258   1.2   yamt 
    259   1.2   yamt 	return estcpu;
    260   1.2   yamt }
    261   1.2   yamt 
    262   1.2   yamt /*
    263   1.2   yamt  * sched_pstats_hook:
    264   1.2   yamt  *
    265   1.2   yamt  * Periodically called from sched_pstats(); used to recalculate priorities.
    266   1.2   yamt  */
    267   1.2   yamt void
    268  1.22  rmind sched_pstats_hook(struct lwp *l, int batch)
    269   1.2   yamt {
    270   1.8     ad 	fixpt_t loadfac;
    271   1.8     ad 	int sleeptm;
    272   1.2   yamt 
    273   1.8     ad 	/*
    274   1.8     ad 	 * If the LWP has slept an entire second, stop recalculating
    275   1.8     ad 	 * its priority until it wakes up.
    276   1.8     ad 	 */
    277   1.8     ad 	if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    278   1.8     ad 	    l->l_stat == LSSUSPENDED) {
    279   1.8     ad 		l->l_slptime++;
    280   1.8     ad 		sleeptm = 1;
    281   1.8     ad 	} else {
    282   1.8     ad 		sleeptm = 0x7fffffff;
    283   1.8     ad 	}
    284   1.8     ad 
    285   1.8     ad 	if (l->l_slptime <= sleeptm) {
    286   1.8     ad 		loadfac = 2 * (averunnable.ldavg[0]);
    287   1.8     ad 		l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
    288   1.6  rmind 		resetpriority(l);
    289   1.8     ad 	}
    290   1.2   yamt }
    291   1.2   yamt 
    292   1.2   yamt /*
    293   1.2   yamt  * Recalculate the priority of a process after it has slept for a while.
    294   1.2   yamt  */
    295   1.2   yamt static void
    296   1.2   yamt updatepri(struct lwp *l)
    297   1.2   yamt {
    298   1.2   yamt 	fixpt_t loadfac;
    299   1.2   yamt 
    300   1.3     ad 	KASSERT(lwp_locked(l, NULL));
    301   1.2   yamt 	KASSERT(l->l_slptime > 1);
    302   1.2   yamt 
    303   1.2   yamt 	loadfac = loadfactor(averunnable.ldavg[0]);
    304   1.2   yamt 
    305   1.2   yamt 	l->l_slptime--; /* the first time was done in sched_pstats */
    306   1.8     ad 	l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
    307   1.2   yamt 	resetpriority(l);
    308   1.2   yamt }
    309   1.2   yamt 
    310   1.2   yamt void
    311  1.14   matt sched_rqinit(void)
    312   1.2   yamt {
    313   1.2   yamt 
    314   1.2   yamt }
    315   1.2   yamt 
    316   1.2   yamt void
    317   1.2   yamt sched_setrunnable(struct lwp *l)
    318   1.2   yamt {
    319   1.2   yamt 
    320   1.2   yamt  	if (l->l_slptime > 1)
    321   1.2   yamt  		updatepri(l);
    322   1.2   yamt }
    323   1.2   yamt 
    324   1.2   yamt void
    325   1.8     ad sched_nice(struct proc *p, int n)
    326   1.2   yamt {
    327   1.8     ad 	struct lwp *l;
    328   1.8     ad 
    329  1.20     ad 	KASSERT(mutex_owned(p->p_lock));
    330   1.2   yamt 
    331   1.8     ad 	p->p_nice = n;
    332   1.8     ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    333   1.8     ad 		lwp_lock(l);
    334   1.8     ad 		resetpriority(l);
    335   1.8     ad 		lwp_unlock(l);
    336   1.8     ad 	}
    337   1.2   yamt }
    338   1.2   yamt 
    339   1.2   yamt /*
    340   1.8     ad  * Recompute the priority of an LWP.  Arrange to reschedule if
    341   1.8     ad  * the resulting priority is better than that of the current LWP.
    342   1.2   yamt  */
    343   1.2   yamt static void
    344   1.2   yamt resetpriority(struct lwp *l)
    345   1.2   yamt {
    346   1.8     ad 	pri_t pri;
    347   1.2   yamt 	struct proc *p = l->l_proc;
    348   1.2   yamt 
    349   1.8     ad 	KASSERT(lwp_locked(l, NULL));
    350   1.2   yamt 
    351   1.8     ad 	if (l->l_class != SCHED_OTHER)
    352   1.2   yamt 		return;
    353   1.2   yamt 
    354   1.8     ad 	/* See comments above ESTCPU_SHIFT definition. */
    355   1.8     ad 	pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
    356   1.8     ad 	pri = imax(pri, 0);
    357   1.8     ad 	if (pri != l->l_priority)
    358   1.8     ad 		lwp_changepri(l, pri);
    359   1.2   yamt }
    360   1.2   yamt 
    361   1.2   yamt /*
    362   1.2   yamt  * We adjust the priority of the current process.  The priority of a process
    363   1.8     ad  * gets worse as it accumulates CPU time.  The CPU usage estimator (l_estcpu)
    364   1.2   yamt  * is increased here.  The formula for computing priorities (in kern_synch.c)
    365   1.8     ad  * will compute a different value each time l_estcpu increases. This can
    366   1.2   yamt  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    367   1.2   yamt  * queue will not change.  The CPU usage estimator ramps up quite quickly
    368   1.2   yamt  * when the process is running (linearly), and decays away exponentially, at
    369   1.2   yamt  * a rate which is proportionally slower when the system is busy.  The basic
    370   1.2   yamt  * principle is that the system will 90% forget that the process used a lot
    371   1.2   yamt  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    372   1.2   yamt  * processes which haven't run much recently, and to round-robin among other
    373   1.2   yamt  * processes.
    374   1.2   yamt  */
    375   1.2   yamt 
    376   1.2   yamt void
    377   1.2   yamt sched_schedclock(struct lwp *l)
    378   1.2   yamt {
    379   1.8     ad 
    380   1.8     ad 	if (l->l_class != SCHED_OTHER)
    381   1.8     ad 		return;
    382   1.2   yamt 
    383   1.2   yamt 	KASSERT(!CURCPU_IDLE_P());
    384   1.8     ad 	l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
    385   1.2   yamt 	lwp_lock(l);
    386   1.2   yamt 	resetpriority(l);
    387   1.2   yamt 	lwp_unlock(l);
    388   1.2   yamt }
    389   1.2   yamt 
    390   1.2   yamt /*
    391   1.2   yamt  * sched_proc_fork:
    392   1.2   yamt  *
    393   1.2   yamt  *	Inherit the parent's scheduler history.
    394   1.2   yamt  */
    395   1.2   yamt void
    396   1.2   yamt sched_proc_fork(struct proc *parent, struct proc *child)
    397   1.2   yamt {
    398   1.8     ad 	lwp_t *pl;
    399   1.2   yamt 
    400  1.20     ad 	KASSERT(mutex_owned(parent->p_lock));
    401   1.2   yamt 
    402   1.8     ad 	pl = LIST_FIRST(&parent->p_lwps);
    403   1.8     ad 	child->p_estcpu_inherited = pl->l_estcpu;
    404   1.2   yamt 	child->p_forktime = sched_pstats_ticks;
    405   1.2   yamt }
    406   1.2   yamt 
    407   1.2   yamt /*
    408   1.2   yamt  * sched_proc_exit:
    409   1.2   yamt  *
    410   1.2   yamt  *	Chargeback parents for the sins of their children.
    411   1.2   yamt  */
    412   1.2   yamt void
    413   1.2   yamt sched_proc_exit(struct proc *parent, struct proc *child)
    414   1.2   yamt {
    415   1.2   yamt 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    416   1.2   yamt 	fixpt_t estcpu;
    417   1.8     ad 	lwp_t *pl, *cl;
    418   1.2   yamt 
    419   1.2   yamt 	/* XXX Only if parent != init?? */
    420   1.2   yamt 
    421  1.20     ad 	mutex_enter(parent->p_lock);
    422   1.8     ad 	pl = LIST_FIRST(&parent->p_lwps);
    423   1.8     ad 	cl = LIST_FIRST(&child->p_lwps);
    424   1.2   yamt 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
    425   1.2   yamt 	    sched_pstats_ticks - child->p_forktime);
    426   1.8     ad 	if (cl->l_estcpu > estcpu) {
    427   1.8     ad 		lwp_lock(pl);
    428   1.8     ad 		pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
    429   1.8     ad 		lwp_unlock(pl);
    430   1.8     ad 	}
    431  1.20     ad 	mutex_exit(parent->p_lock);
    432   1.2   yamt }
    433   1.2   yamt 
    434   1.2   yamt void
    435   1.6  rmind sched_wakeup(struct lwp *l)
    436   1.6  rmind {
    437   1.6  rmind 
    438   1.6  rmind }
    439   1.6  rmind 
    440   1.6  rmind void
    441   1.6  rmind sched_slept(struct lwp *l)
    442   1.6  rmind {
    443   1.6  rmind 
    444   1.6  rmind }
    445   1.6  rmind 
    446   1.2   yamt void
    447   1.8     ad sched_lwp_fork(struct lwp *l1, struct lwp *l2)
    448   1.2   yamt {
    449   1.2   yamt 
    450   1.8     ad 	l2->l_estcpu = l1->l_estcpu;
    451   1.2   yamt }
    452   1.2   yamt 
    453   1.2   yamt void
    454   1.2   yamt sched_lwp_exit(struct lwp *l)
    455   1.2   yamt {
    456   1.2   yamt 
    457   1.2   yamt }
    458   1.2   yamt 
    459   1.8     ad void
    460   1.8     ad sched_lwp_collect(struct lwp *t)
    461   1.8     ad {
    462   1.8     ad 	lwp_t *l;
    463   1.8     ad 
    464   1.8     ad 	/* Absorb estcpu value of collected LWP. */
    465   1.8     ad 	l = curlwp;
    466   1.8     ad 	lwp_lock(l);
    467   1.8     ad 	l->l_estcpu += t->l_estcpu;
    468   1.8     ad 	lwp_unlock(l);
    469   1.8     ad }
    470   1.8     ad 
    471  1.16     ad void
    472  1.16     ad sched_oncpu(lwp_t *l)
    473  1.16     ad {
    474  1.16     ad 
    475  1.16     ad }
    476  1.16     ad 
    477  1.16     ad void
    478  1.16     ad sched_newts(lwp_t *l)
    479  1.16     ad {
    480  1.16     ad 
    481  1.16     ad }
    482  1.16     ad 
    483   1.5     ad /*
    484  1.12  rmind  * Sysctl nodes and initialization.
    485   1.5     ad  */
    486  1.12  rmind 
    487  1.12  rmind static int
    488  1.12  rmind sysctl_sched_rtts(SYSCTLFN_ARGS)
    489  1.12  rmind {
    490  1.12  rmind 	struct sysctlnode node;
    491  1.12  rmind 	int rttsms = hztoms(rrticks);
    492  1.12  rmind 
    493  1.12  rmind 	node = *rnode;
    494  1.12  rmind 	node.sysctl_data = &rttsms;
    495  1.12  rmind 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    496  1.12  rmind }
    497  1.12  rmind 
    498  1.16     ad SYSCTL_SETUP(sysctl_sched_4bsd_setup, "sysctl sched setup")
    499   1.2   yamt {
    500   1.2   yamt 	const struct sysctlnode *node = NULL;
    501   1.2   yamt 
    502   1.2   yamt 	sysctl_createv(clog, 0, NULL, NULL,
    503   1.2   yamt 		CTLFLAG_PERMANENT,
    504   1.2   yamt 		CTLTYPE_NODE, "kern", NULL,
    505   1.2   yamt 		NULL, 0, NULL, 0,
    506   1.2   yamt 		CTL_KERN, CTL_EOL);
    507   1.2   yamt 	sysctl_createv(clog, 0, NULL, &node,
    508   1.2   yamt 		CTLFLAG_PERMANENT,
    509   1.2   yamt 		CTLTYPE_NODE, "sched",
    510   1.2   yamt 		SYSCTL_DESCR("Scheduler options"),
    511   1.2   yamt 		NULL, 0, NULL, 0,
    512   1.2   yamt 		CTL_KERN, CTL_CREATE, CTL_EOL);
    513   1.2   yamt 
    514  1.16     ad 	if (node == NULL)
    515  1.16     ad 		return;
    516   1.5     ad 
    517  1.16     ad 	rrticks = hz / 10;
    518  1.16     ad 
    519  1.16     ad 	sysctl_createv(NULL, 0, &node, NULL,
    520   1.5     ad 		CTLFLAG_PERMANENT,
    521   1.5     ad 		CTLTYPE_STRING, "name", NULL,
    522   1.5     ad 		NULL, 0, __UNCONST("4.4BSD"), 0,
    523   1.5     ad 		CTL_CREATE, CTL_EOL);
    524  1.16     ad 	sysctl_createv(NULL, 0, &node, NULL,
    525  1.12  rmind 		CTLFLAG_PERMANENT,
    526  1.12  rmind 		CTLTYPE_INT, "rtts",
    527  1.12  rmind 		SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
    528  1.12  rmind 		sysctl_sched_rtts, 0, NULL, 0,
    529  1.12  rmind 		CTL_CREATE, CTL_EOL);
    530   1.2   yamt }
    531