Home | History | Annotate | Line # | Download | only in kern
sched_4bsd.c revision 1.23
      1  1.23     ad /*	$NetBSD: sched_4bsd.c,v 1.23 2008/05/25 22:04:50 ad Exp $	*/
      2   1.2   yamt 
      3   1.2   yamt /*-
      4  1.16     ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5   1.2   yamt  * All rights reserved.
      6   1.2   yamt  *
      7   1.2   yamt  * This code is derived from software contributed to The NetBSD Foundation
      8   1.2   yamt  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9   1.2   yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
     10   1.2   yamt  * Daniel Sieger.
     11   1.2   yamt  *
     12   1.2   yamt  * Redistribution and use in source and binary forms, with or without
     13   1.2   yamt  * modification, are permitted provided that the following conditions
     14   1.2   yamt  * are met:
     15   1.2   yamt  * 1. Redistributions of source code must retain the above copyright
     16   1.2   yamt  *    notice, this list of conditions and the following disclaimer.
     17   1.2   yamt  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.2   yamt  *    notice, this list of conditions and the following disclaimer in the
     19   1.2   yamt  *    documentation and/or other materials provided with the distribution.
     20   1.2   yamt  *
     21   1.2   yamt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22   1.2   yamt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23   1.2   yamt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24   1.2   yamt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25   1.2   yamt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26   1.2   yamt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27   1.2   yamt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28   1.2   yamt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29   1.2   yamt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30   1.2   yamt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31   1.2   yamt  * POSSIBILITY OF SUCH DAMAGE.
     32   1.2   yamt  */
     33   1.2   yamt 
     34   1.2   yamt /*-
     35   1.2   yamt  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     36   1.2   yamt  *	The Regents of the University of California.  All rights reserved.
     37   1.2   yamt  * (c) UNIX System Laboratories, Inc.
     38   1.2   yamt  * All or some portions of this file are derived from material licensed
     39   1.2   yamt  * to the University of California by American Telephone and Telegraph
     40   1.2   yamt  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     41   1.2   yamt  * the permission of UNIX System Laboratories, Inc.
     42   1.2   yamt  *
     43   1.2   yamt  * Redistribution and use in source and binary forms, with or without
     44   1.2   yamt  * modification, are permitted provided that the following conditions
     45   1.2   yamt  * are met:
     46   1.2   yamt  * 1. Redistributions of source code must retain the above copyright
     47   1.2   yamt  *    notice, this list of conditions and the following disclaimer.
     48   1.2   yamt  * 2. Redistributions in binary form must reproduce the above copyright
     49   1.2   yamt  *    notice, this list of conditions and the following disclaimer in the
     50   1.2   yamt  *    documentation and/or other materials provided with the distribution.
     51   1.2   yamt  * 3. Neither the name of the University nor the names of its contributors
     52   1.2   yamt  *    may be used to endorse or promote products derived from this software
     53   1.2   yamt  *    without specific prior written permission.
     54   1.2   yamt  *
     55   1.2   yamt  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56   1.2   yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57   1.2   yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58   1.2   yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59   1.2   yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60   1.2   yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61   1.2   yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62   1.2   yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63   1.2   yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64   1.2   yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65   1.2   yamt  * SUCH DAMAGE.
     66   1.2   yamt  *
     67   1.2   yamt  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     68   1.2   yamt  */
     69   1.2   yamt 
     70   1.2   yamt #include <sys/cdefs.h>
     71  1.23     ad __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.23 2008/05/25 22:04:50 ad Exp $");
     72   1.2   yamt 
     73   1.2   yamt #include "opt_ddb.h"
     74   1.2   yamt #include "opt_lockdebug.h"
     75   1.2   yamt #include "opt_perfctrs.h"
     76   1.2   yamt 
     77   1.2   yamt #include <sys/param.h>
     78   1.2   yamt #include <sys/systm.h>
     79   1.2   yamt #include <sys/callout.h>
     80   1.2   yamt #include <sys/cpu.h>
     81   1.2   yamt #include <sys/proc.h>
     82   1.2   yamt #include <sys/kernel.h>
     83   1.2   yamt #include <sys/signalvar.h>
     84   1.2   yamt #include <sys/resourcevar.h>
     85   1.2   yamt #include <sys/sched.h>
     86   1.2   yamt #include <sys/sysctl.h>
     87   1.2   yamt #include <sys/kauth.h>
     88   1.2   yamt #include <sys/lockdebug.h>
     89   1.2   yamt #include <sys/kmem.h>
     90   1.5     ad #include <sys/intr.h>
     91   1.2   yamt 
     92   1.2   yamt #include <uvm/uvm_extern.h>
     93   1.2   yamt 
     94   1.2   yamt static void updatepri(struct lwp *);
     95   1.2   yamt static void resetpriority(struct lwp *);
     96   1.2   yamt 
     97   1.2   yamt extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
     98   1.2   yamt 
     99   1.2   yamt /* Number of hardclock ticks per sched_tick() */
    100  1.12  rmind static int rrticks;
    101   1.2   yamt 
    102   1.2   yamt /*
    103   1.2   yamt  * Force switch among equal priority processes every 100ms.
    104   1.2   yamt  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    105   1.5     ad  *
    106   1.5     ad  * There's no need to lock anywhere in this routine, as it's
    107   1.5     ad  * CPU-local and runs at IPL_SCHED (called from clock interrupt).
    108   1.2   yamt  */
    109   1.2   yamt /* ARGSUSED */
    110   1.2   yamt void
    111   1.2   yamt sched_tick(struct cpu_info *ci)
    112   1.2   yamt {
    113   1.2   yamt 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    114  1.23     ad 	lwp_t *l;
    115   1.2   yamt 
    116   1.2   yamt 	spc->spc_ticks = rrticks;
    117   1.2   yamt 
    118  1.15     ad 	if (CURCPU_IDLE_P()) {
    119  1.15     ad 		cpu_need_resched(ci, 0);
    120   1.7  rmind 		return;
    121  1.15     ad 	}
    122  1.23     ad 	l = ci->ci_data.cpu_onproc;
    123  1.23     ad 	if (l == NULL) {
    124  1.19   yamt 		return;
    125  1.19   yamt 	}
    126  1.23     ad 	switch (l->l_class) {
    127  1.23     ad 	case SCHED_FIFO:
    128  1.23     ad 		/* No timeslicing for FIFO jobs. */
    129  1.23     ad 		break;
    130  1.23     ad 	case SCHED_RR:
    131  1.23     ad 		/* Force it into mi_switch() to look for other jobs to run. */
    132  1.23     ad 		cpu_need_resched(ci, RESCHED_KPREEMPT);
    133  1.23     ad 		break;
    134  1.23     ad 	default:
    135  1.23     ad 		if (spc->spc_flags & SPCF_SHOULDYIELD) {
    136  1.23     ad 			/*
    137  1.23     ad 			 * Process is stuck in kernel somewhere, probably
    138  1.23     ad 			 * due to buggy or inefficient code.  Force a
    139  1.23     ad 			 * kernel preemption.
    140  1.23     ad 			 */
    141  1.23     ad 			cpu_need_resched(ci, RESCHED_KPREEMPT);
    142  1.23     ad 		} else if (spc->spc_flags & SPCF_SEENRR) {
    143  1.23     ad 			/*
    144  1.23     ad 			 * The process has already been through a roundrobin
    145  1.23     ad 			 * without switching and may be hogging the CPU.
    146  1.23     ad 			 * Indicate that the process should yield.
    147  1.23     ad 			 */
    148  1.23     ad 			spc->spc_flags |= SPCF_SHOULDYIELD;
    149  1.23     ad 			cpu_need_resched(ci, 0);
    150  1.23     ad 		} else {
    151  1.23     ad 			spc->spc_flags |= SPCF_SEENRR;
    152  1.23     ad 		}
    153  1.23     ad 		break;
    154  1.23     ad 	}
    155   1.2   yamt }
    156   1.2   yamt 
    157   1.8     ad /*
    158   1.8     ad  * Why PRIO_MAX - 2? From setpriority(2):
    159   1.8     ad  *
    160   1.8     ad  *	prio is a value in the range -20 to 20.  The default priority is
    161   1.8     ad  *	0; lower priorities cause more favorable scheduling.  A value of
    162   1.8     ad  *	19 or 20 will schedule a process only when nothing at priority <=
    163   1.8     ad  *	0 is runnable.
    164   1.8     ad  *
    165   1.8     ad  * This gives estcpu influence over 18 priority levels, and leaves nice
    166   1.8     ad  * with 40 levels.  One way to think about it is that nice has 20 levels
    167   1.8     ad  * either side of estcpu's 18.
    168   1.8     ad  */
    169   1.2   yamt #define	ESTCPU_SHIFT	11
    170   1.8     ad #define	ESTCPU_MAX	((PRIO_MAX - 2) << ESTCPU_SHIFT)
    171   1.8     ad #define	ESTCPU_ACCUM	(1 << (ESTCPU_SHIFT - 1))
    172   1.2   yamt #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    173   1.2   yamt 
    174   1.2   yamt /*
    175   1.2   yamt  * Constants for digital decay and forget:
    176   1.8     ad  *	90% of (l_estcpu) usage in 5 * loadav time
    177   1.8     ad  *	95% of (l_pctcpu) usage in 60 seconds (load insensitive)
    178   1.2   yamt  *          Note that, as ps(1) mentions, this can let percentages
    179   1.2   yamt  *          total over 100% (I've seen 137.9% for 3 processes).
    180   1.2   yamt  *
    181   1.8     ad  * Note that hardclock updates l_estcpu and l_cpticks independently.
    182   1.2   yamt  *
    183   1.8     ad  * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds.
    184   1.2   yamt  * That is, the system wants to compute a value of decay such
    185   1.2   yamt  * that the following for loop:
    186   1.2   yamt  * 	for (i = 0; i < (5 * loadavg); i++)
    187   1.8     ad  * 		l_estcpu *= decay;
    188   1.2   yamt  * will compute
    189   1.8     ad  * 	l_estcpu *= 0.1;
    190   1.2   yamt  * for all values of loadavg:
    191   1.2   yamt  *
    192   1.2   yamt  * Mathematically this loop can be expressed by saying:
    193   1.2   yamt  * 	decay ** (5 * loadavg) ~= .1
    194   1.2   yamt  *
    195   1.2   yamt  * The system computes decay as:
    196   1.2   yamt  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    197   1.2   yamt  *
    198   1.2   yamt  * We wish to prove that the system's computation of decay
    199   1.2   yamt  * will always fulfill the equation:
    200   1.2   yamt  * 	decay ** (5 * loadavg) ~= .1
    201   1.2   yamt  *
    202   1.2   yamt  * If we compute b as:
    203   1.2   yamt  * 	b = 2 * loadavg
    204   1.2   yamt  * then
    205   1.2   yamt  * 	decay = b / (b + 1)
    206   1.2   yamt  *
    207   1.2   yamt  * We now need to prove two things:
    208   1.2   yamt  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    209   1.2   yamt  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    210   1.2   yamt  *
    211   1.2   yamt  * Facts:
    212   1.2   yamt  *         For x close to zero, exp(x) =~ 1 + x, since
    213   1.2   yamt  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    214   1.2   yamt  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    215   1.2   yamt  *         For x close to zero, ln(1+x) =~ x, since
    216   1.2   yamt  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    217   1.2   yamt  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    218   1.2   yamt  *         ln(.1) =~ -2.30
    219   1.2   yamt  *
    220   1.2   yamt  * Proof of (1):
    221   1.2   yamt  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    222   1.2   yamt  *	solving for factor,
    223   1.2   yamt  *      ln(factor) =~ (-2.30/5*loadav), or
    224   1.2   yamt  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    225   1.2   yamt  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    226   1.2   yamt  *
    227   1.2   yamt  * Proof of (2):
    228   1.2   yamt  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    229   1.2   yamt  *	solving for power,
    230   1.2   yamt  *      power*ln(b/(b+1)) =~ -2.30, or
    231   1.2   yamt  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    232   1.2   yamt  *
    233   1.2   yamt  * Actual power values for the implemented algorithm are as follows:
    234   1.2   yamt  *      loadav: 1       2       3       4
    235   1.2   yamt  *      power:  5.68    10.32   14.94   19.55
    236   1.2   yamt  */
    237   1.2   yamt 
    238   1.2   yamt /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    239   1.2   yamt #define	loadfactor(loadav)	(2 * (loadav))
    240   1.2   yamt 
    241  1.17   yamt static fixpt_t
    242   1.2   yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    243   1.2   yamt {
    244   1.2   yamt 
    245   1.2   yamt 	if (estcpu == 0) {
    246   1.2   yamt 		return 0;
    247   1.2   yamt 	}
    248   1.2   yamt 
    249   1.2   yamt #if !defined(_LP64)
    250   1.2   yamt 	/* avoid 64bit arithmetics. */
    251   1.2   yamt #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    252   1.2   yamt 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    253   1.2   yamt 		return estcpu * loadfac / (loadfac + FSCALE);
    254   1.2   yamt 	}
    255   1.2   yamt #endif /* !defined(_LP64) */
    256   1.2   yamt 
    257   1.2   yamt 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    258   1.2   yamt }
    259   1.2   yamt 
    260   1.2   yamt /*
    261   1.8     ad  * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
    262   1.8     ad  * sleeping for at least seven times the loadfactor will decay l_estcpu to
    263   1.2   yamt  * less than (1 << ESTCPU_SHIFT).
    264   1.2   yamt  *
    265   1.2   yamt  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    266   1.2   yamt  */
    267   1.2   yamt static fixpt_t
    268   1.2   yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    269   1.2   yamt {
    270   1.2   yamt 
    271   1.2   yamt 	if ((n << FSHIFT) >= 7 * loadfac) {
    272   1.2   yamt 		return 0;
    273   1.2   yamt 	}
    274   1.2   yamt 
    275   1.2   yamt 	while (estcpu != 0 && n > 1) {
    276   1.2   yamt 		estcpu = decay_cpu(loadfac, estcpu);
    277   1.2   yamt 		n--;
    278   1.2   yamt 	}
    279   1.2   yamt 
    280   1.2   yamt 	return estcpu;
    281   1.2   yamt }
    282   1.2   yamt 
    283   1.2   yamt /*
    284   1.2   yamt  * sched_pstats_hook:
    285   1.2   yamt  *
    286   1.2   yamt  * Periodically called from sched_pstats(); used to recalculate priorities.
    287   1.2   yamt  */
    288   1.2   yamt void
    289  1.22  rmind sched_pstats_hook(struct lwp *l, int batch)
    290   1.2   yamt {
    291   1.8     ad 	fixpt_t loadfac;
    292   1.8     ad 	int sleeptm;
    293   1.2   yamt 
    294   1.8     ad 	/*
    295   1.8     ad 	 * If the LWP has slept an entire second, stop recalculating
    296   1.8     ad 	 * its priority until it wakes up.
    297   1.8     ad 	 */
    298   1.8     ad 	if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    299   1.8     ad 	    l->l_stat == LSSUSPENDED) {
    300   1.8     ad 		l->l_slptime++;
    301   1.8     ad 		sleeptm = 1;
    302   1.8     ad 	} else {
    303   1.8     ad 		sleeptm = 0x7fffffff;
    304   1.8     ad 	}
    305   1.8     ad 
    306   1.8     ad 	if (l->l_slptime <= sleeptm) {
    307   1.8     ad 		loadfac = 2 * (averunnable.ldavg[0]);
    308   1.8     ad 		l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
    309   1.6  rmind 		resetpriority(l);
    310   1.8     ad 	}
    311   1.2   yamt }
    312   1.2   yamt 
    313   1.2   yamt /*
    314   1.2   yamt  * Recalculate the priority of a process after it has slept for a while.
    315   1.2   yamt  */
    316   1.2   yamt static void
    317   1.2   yamt updatepri(struct lwp *l)
    318   1.2   yamt {
    319   1.2   yamt 	fixpt_t loadfac;
    320   1.2   yamt 
    321   1.3     ad 	KASSERT(lwp_locked(l, NULL));
    322   1.2   yamt 	KASSERT(l->l_slptime > 1);
    323   1.2   yamt 
    324   1.2   yamt 	loadfac = loadfactor(averunnable.ldavg[0]);
    325   1.2   yamt 
    326   1.2   yamt 	l->l_slptime--; /* the first time was done in sched_pstats */
    327   1.8     ad 	l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
    328   1.2   yamt 	resetpriority(l);
    329   1.2   yamt }
    330   1.2   yamt 
    331   1.2   yamt void
    332  1.14   matt sched_rqinit(void)
    333   1.2   yamt {
    334   1.2   yamt 
    335   1.2   yamt }
    336   1.2   yamt 
    337   1.2   yamt void
    338   1.2   yamt sched_setrunnable(struct lwp *l)
    339   1.2   yamt {
    340   1.2   yamt 
    341   1.2   yamt  	if (l->l_slptime > 1)
    342   1.2   yamt  		updatepri(l);
    343   1.2   yamt }
    344   1.2   yamt 
    345   1.2   yamt void
    346   1.8     ad sched_nice(struct proc *p, int n)
    347   1.2   yamt {
    348   1.8     ad 	struct lwp *l;
    349   1.8     ad 
    350  1.20     ad 	KASSERT(mutex_owned(p->p_lock));
    351   1.2   yamt 
    352   1.8     ad 	p->p_nice = n;
    353   1.8     ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    354   1.8     ad 		lwp_lock(l);
    355   1.8     ad 		resetpriority(l);
    356   1.8     ad 		lwp_unlock(l);
    357   1.8     ad 	}
    358   1.2   yamt }
    359   1.2   yamt 
    360   1.2   yamt /*
    361   1.8     ad  * Recompute the priority of an LWP.  Arrange to reschedule if
    362   1.8     ad  * the resulting priority is better than that of the current LWP.
    363   1.2   yamt  */
    364   1.2   yamt static void
    365   1.2   yamt resetpriority(struct lwp *l)
    366   1.2   yamt {
    367   1.8     ad 	pri_t pri;
    368   1.2   yamt 	struct proc *p = l->l_proc;
    369   1.2   yamt 
    370   1.8     ad 	KASSERT(lwp_locked(l, NULL));
    371   1.2   yamt 
    372   1.8     ad 	if (l->l_class != SCHED_OTHER)
    373   1.2   yamt 		return;
    374   1.2   yamt 
    375   1.8     ad 	/* See comments above ESTCPU_SHIFT definition. */
    376   1.8     ad 	pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
    377   1.8     ad 	pri = imax(pri, 0);
    378   1.8     ad 	if (pri != l->l_priority)
    379   1.8     ad 		lwp_changepri(l, pri);
    380   1.2   yamt }
    381   1.2   yamt 
    382   1.2   yamt /*
    383   1.2   yamt  * We adjust the priority of the current process.  The priority of a process
    384   1.8     ad  * gets worse as it accumulates CPU time.  The CPU usage estimator (l_estcpu)
    385   1.2   yamt  * is increased here.  The formula for computing priorities (in kern_synch.c)
    386   1.8     ad  * will compute a different value each time l_estcpu increases. This can
    387   1.2   yamt  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    388   1.2   yamt  * queue will not change.  The CPU usage estimator ramps up quite quickly
    389   1.2   yamt  * when the process is running (linearly), and decays away exponentially, at
    390   1.2   yamt  * a rate which is proportionally slower when the system is busy.  The basic
    391   1.2   yamt  * principle is that the system will 90% forget that the process used a lot
    392   1.2   yamt  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    393   1.2   yamt  * processes which haven't run much recently, and to round-robin among other
    394   1.2   yamt  * processes.
    395   1.2   yamt  */
    396   1.2   yamt 
    397   1.2   yamt void
    398   1.2   yamt sched_schedclock(struct lwp *l)
    399   1.2   yamt {
    400   1.8     ad 
    401   1.8     ad 	if (l->l_class != SCHED_OTHER)
    402   1.8     ad 		return;
    403   1.2   yamt 
    404   1.2   yamt 	KASSERT(!CURCPU_IDLE_P());
    405   1.8     ad 	l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
    406   1.2   yamt 	lwp_lock(l);
    407   1.2   yamt 	resetpriority(l);
    408   1.2   yamt 	lwp_unlock(l);
    409   1.2   yamt }
    410   1.2   yamt 
    411   1.2   yamt /*
    412   1.2   yamt  * sched_proc_fork:
    413   1.2   yamt  *
    414   1.2   yamt  *	Inherit the parent's scheduler history.
    415   1.2   yamt  */
    416   1.2   yamt void
    417   1.2   yamt sched_proc_fork(struct proc *parent, struct proc *child)
    418   1.2   yamt {
    419   1.8     ad 	lwp_t *pl;
    420   1.2   yamt 
    421  1.20     ad 	KASSERT(mutex_owned(parent->p_lock));
    422   1.2   yamt 
    423   1.8     ad 	pl = LIST_FIRST(&parent->p_lwps);
    424   1.8     ad 	child->p_estcpu_inherited = pl->l_estcpu;
    425   1.2   yamt 	child->p_forktime = sched_pstats_ticks;
    426   1.2   yamt }
    427   1.2   yamt 
    428   1.2   yamt /*
    429   1.2   yamt  * sched_proc_exit:
    430   1.2   yamt  *
    431   1.2   yamt  *	Chargeback parents for the sins of their children.
    432   1.2   yamt  */
    433   1.2   yamt void
    434   1.2   yamt sched_proc_exit(struct proc *parent, struct proc *child)
    435   1.2   yamt {
    436   1.2   yamt 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    437   1.2   yamt 	fixpt_t estcpu;
    438   1.8     ad 	lwp_t *pl, *cl;
    439   1.2   yamt 
    440   1.2   yamt 	/* XXX Only if parent != init?? */
    441   1.2   yamt 
    442  1.20     ad 	mutex_enter(parent->p_lock);
    443   1.8     ad 	pl = LIST_FIRST(&parent->p_lwps);
    444   1.8     ad 	cl = LIST_FIRST(&child->p_lwps);
    445   1.2   yamt 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
    446   1.2   yamt 	    sched_pstats_ticks - child->p_forktime);
    447   1.8     ad 	if (cl->l_estcpu > estcpu) {
    448   1.8     ad 		lwp_lock(pl);
    449   1.8     ad 		pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
    450   1.8     ad 		lwp_unlock(pl);
    451   1.8     ad 	}
    452  1.20     ad 	mutex_exit(parent->p_lock);
    453   1.2   yamt }
    454   1.2   yamt 
    455   1.2   yamt void
    456   1.6  rmind sched_wakeup(struct lwp *l)
    457   1.6  rmind {
    458   1.6  rmind 
    459   1.6  rmind }
    460   1.6  rmind 
    461   1.6  rmind void
    462   1.6  rmind sched_slept(struct lwp *l)
    463   1.6  rmind {
    464   1.6  rmind 
    465   1.6  rmind }
    466   1.6  rmind 
    467   1.2   yamt void
    468   1.8     ad sched_lwp_fork(struct lwp *l1, struct lwp *l2)
    469   1.2   yamt {
    470   1.2   yamt 
    471   1.8     ad 	l2->l_estcpu = l1->l_estcpu;
    472   1.2   yamt }
    473   1.2   yamt 
    474   1.2   yamt void
    475   1.2   yamt sched_lwp_exit(struct lwp *l)
    476   1.2   yamt {
    477   1.2   yamt 
    478   1.2   yamt }
    479   1.2   yamt 
    480   1.8     ad void
    481   1.8     ad sched_lwp_collect(struct lwp *t)
    482   1.8     ad {
    483   1.8     ad 	lwp_t *l;
    484   1.8     ad 
    485   1.8     ad 	/* Absorb estcpu value of collected LWP. */
    486   1.8     ad 	l = curlwp;
    487   1.8     ad 	lwp_lock(l);
    488   1.8     ad 	l->l_estcpu += t->l_estcpu;
    489   1.8     ad 	lwp_unlock(l);
    490   1.8     ad }
    491   1.8     ad 
    492  1.16     ad void
    493  1.16     ad sched_oncpu(lwp_t *l)
    494  1.16     ad {
    495  1.16     ad 
    496  1.16     ad }
    497  1.16     ad 
    498  1.16     ad void
    499  1.16     ad sched_newts(lwp_t *l)
    500  1.16     ad {
    501  1.16     ad 
    502  1.16     ad }
    503  1.16     ad 
    504   1.5     ad /*
    505  1.12  rmind  * Sysctl nodes and initialization.
    506   1.5     ad  */
    507  1.12  rmind 
    508  1.12  rmind static int
    509  1.12  rmind sysctl_sched_rtts(SYSCTLFN_ARGS)
    510  1.12  rmind {
    511  1.12  rmind 	struct sysctlnode node;
    512  1.12  rmind 	int rttsms = hztoms(rrticks);
    513  1.12  rmind 
    514  1.12  rmind 	node = *rnode;
    515  1.12  rmind 	node.sysctl_data = &rttsms;
    516  1.12  rmind 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    517  1.12  rmind }
    518  1.12  rmind 
    519  1.16     ad SYSCTL_SETUP(sysctl_sched_4bsd_setup, "sysctl sched setup")
    520   1.2   yamt {
    521   1.2   yamt 	const struct sysctlnode *node = NULL;
    522   1.2   yamt 
    523   1.2   yamt 	sysctl_createv(clog, 0, NULL, NULL,
    524   1.2   yamt 		CTLFLAG_PERMANENT,
    525   1.2   yamt 		CTLTYPE_NODE, "kern", NULL,
    526   1.2   yamt 		NULL, 0, NULL, 0,
    527   1.2   yamt 		CTL_KERN, CTL_EOL);
    528   1.2   yamt 	sysctl_createv(clog, 0, NULL, &node,
    529   1.2   yamt 		CTLFLAG_PERMANENT,
    530   1.2   yamt 		CTLTYPE_NODE, "sched",
    531   1.2   yamt 		SYSCTL_DESCR("Scheduler options"),
    532   1.2   yamt 		NULL, 0, NULL, 0,
    533   1.2   yamt 		CTL_KERN, CTL_CREATE, CTL_EOL);
    534   1.2   yamt 
    535  1.16     ad 	if (node == NULL)
    536  1.16     ad 		return;
    537   1.5     ad 
    538  1.16     ad 	rrticks = hz / 10;
    539  1.16     ad 
    540  1.16     ad 	sysctl_createv(NULL, 0, &node, NULL,
    541   1.5     ad 		CTLFLAG_PERMANENT,
    542   1.5     ad 		CTLTYPE_STRING, "name", NULL,
    543   1.5     ad 		NULL, 0, __UNCONST("4.4BSD"), 0,
    544   1.5     ad 		CTL_CREATE, CTL_EOL);
    545  1.16     ad 	sysctl_createv(NULL, 0, &node, NULL,
    546  1.12  rmind 		CTLFLAG_PERMANENT,
    547  1.12  rmind 		CTLTYPE_INT, "rtts",
    548  1.12  rmind 		SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
    549  1.12  rmind 		sysctl_sched_rtts, 0, NULL, 0,
    550  1.12  rmind 		CTL_CREATE, CTL_EOL);
    551   1.2   yamt }
    552