sched_4bsd.c revision 1.24 1 1.24 rmind /* $NetBSD: sched_4bsd.c,v 1.24 2008/10/07 09:48:27 rmind Exp $ */
2 1.2 yamt
3 1.2 yamt /*-
4 1.16 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 yamt * All rights reserved.
6 1.2 yamt *
7 1.2 yamt * This code is derived from software contributed to The NetBSD Foundation
8 1.2 yamt * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.2 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
10 1.2 yamt * Daniel Sieger.
11 1.2 yamt *
12 1.2 yamt * Redistribution and use in source and binary forms, with or without
13 1.2 yamt * modification, are permitted provided that the following conditions
14 1.2 yamt * are met:
15 1.2 yamt * 1. Redistributions of source code must retain the above copyright
16 1.2 yamt * notice, this list of conditions and the following disclaimer.
17 1.2 yamt * 2. Redistributions in binary form must reproduce the above copyright
18 1.2 yamt * notice, this list of conditions and the following disclaimer in the
19 1.2 yamt * documentation and/or other materials provided with the distribution.
20 1.2 yamt *
21 1.2 yamt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 1.2 yamt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 1.2 yamt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 1.2 yamt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 1.2 yamt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 1.2 yamt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 1.2 yamt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.2 yamt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 1.2 yamt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 1.2 yamt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 1.2 yamt * POSSIBILITY OF SUCH DAMAGE.
32 1.2 yamt */
33 1.2 yamt
34 1.2 yamt /*-
35 1.2 yamt * Copyright (c) 1982, 1986, 1990, 1991, 1993
36 1.2 yamt * The Regents of the University of California. All rights reserved.
37 1.2 yamt * (c) UNIX System Laboratories, Inc.
38 1.2 yamt * All or some portions of this file are derived from material licensed
39 1.2 yamt * to the University of California by American Telephone and Telegraph
40 1.2 yamt * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 1.2 yamt * the permission of UNIX System Laboratories, Inc.
42 1.2 yamt *
43 1.2 yamt * Redistribution and use in source and binary forms, with or without
44 1.2 yamt * modification, are permitted provided that the following conditions
45 1.2 yamt * are met:
46 1.2 yamt * 1. Redistributions of source code must retain the above copyright
47 1.2 yamt * notice, this list of conditions and the following disclaimer.
48 1.2 yamt * 2. Redistributions in binary form must reproduce the above copyright
49 1.2 yamt * notice, this list of conditions and the following disclaimer in the
50 1.2 yamt * documentation and/or other materials provided with the distribution.
51 1.2 yamt * 3. Neither the name of the University nor the names of its contributors
52 1.2 yamt * may be used to endorse or promote products derived from this software
53 1.2 yamt * without specific prior written permission.
54 1.2 yamt *
55 1.2 yamt * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.2 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.2 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.2 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.2 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.2 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.2 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.2 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.2 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.2 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.2 yamt * SUCH DAMAGE.
66 1.2 yamt *
67 1.2 yamt * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
68 1.2 yamt */
69 1.2 yamt
70 1.2 yamt #include <sys/cdefs.h>
71 1.24 rmind __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.24 2008/10/07 09:48:27 rmind Exp $");
72 1.2 yamt
73 1.2 yamt #include "opt_ddb.h"
74 1.2 yamt #include "opt_lockdebug.h"
75 1.2 yamt #include "opt_perfctrs.h"
76 1.2 yamt
77 1.2 yamt #include <sys/param.h>
78 1.2 yamt #include <sys/systm.h>
79 1.2 yamt #include <sys/callout.h>
80 1.2 yamt #include <sys/cpu.h>
81 1.2 yamt #include <sys/proc.h>
82 1.2 yamt #include <sys/kernel.h>
83 1.2 yamt #include <sys/signalvar.h>
84 1.2 yamt #include <sys/resourcevar.h>
85 1.2 yamt #include <sys/sched.h>
86 1.2 yamt #include <sys/sysctl.h>
87 1.2 yamt #include <sys/kauth.h>
88 1.2 yamt #include <sys/lockdebug.h>
89 1.2 yamt #include <sys/kmem.h>
90 1.5 ad #include <sys/intr.h>
91 1.2 yamt
92 1.2 yamt #include <uvm/uvm_extern.h>
93 1.2 yamt
94 1.2 yamt static void updatepri(struct lwp *);
95 1.2 yamt static void resetpriority(struct lwp *);
96 1.2 yamt
97 1.2 yamt extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
98 1.2 yamt
99 1.2 yamt /* Number of hardclock ticks per sched_tick() */
100 1.12 rmind static int rrticks;
101 1.2 yamt
102 1.2 yamt /*
103 1.2 yamt * Force switch among equal priority processes every 100ms.
104 1.2 yamt * Called from hardclock every hz/10 == rrticks hardclock ticks.
105 1.5 ad *
106 1.5 ad * There's no need to lock anywhere in this routine, as it's
107 1.5 ad * CPU-local and runs at IPL_SCHED (called from clock interrupt).
108 1.2 yamt */
109 1.2 yamt /* ARGSUSED */
110 1.2 yamt void
111 1.2 yamt sched_tick(struct cpu_info *ci)
112 1.2 yamt {
113 1.2 yamt struct schedstate_percpu *spc = &ci->ci_schedstate;
114 1.23 ad lwp_t *l;
115 1.2 yamt
116 1.2 yamt spc->spc_ticks = rrticks;
117 1.2 yamt
118 1.15 ad if (CURCPU_IDLE_P()) {
119 1.15 ad cpu_need_resched(ci, 0);
120 1.7 rmind return;
121 1.15 ad }
122 1.23 ad l = ci->ci_data.cpu_onproc;
123 1.23 ad if (l == NULL) {
124 1.19 yamt return;
125 1.19 yamt }
126 1.23 ad switch (l->l_class) {
127 1.23 ad case SCHED_FIFO:
128 1.23 ad /* No timeslicing for FIFO jobs. */
129 1.23 ad break;
130 1.23 ad case SCHED_RR:
131 1.23 ad /* Force it into mi_switch() to look for other jobs to run. */
132 1.23 ad cpu_need_resched(ci, RESCHED_KPREEMPT);
133 1.23 ad break;
134 1.23 ad default:
135 1.23 ad if (spc->spc_flags & SPCF_SHOULDYIELD) {
136 1.23 ad /*
137 1.23 ad * Process is stuck in kernel somewhere, probably
138 1.23 ad * due to buggy or inefficient code. Force a
139 1.23 ad * kernel preemption.
140 1.23 ad */
141 1.23 ad cpu_need_resched(ci, RESCHED_KPREEMPT);
142 1.23 ad } else if (spc->spc_flags & SPCF_SEENRR) {
143 1.23 ad /*
144 1.23 ad * The process has already been through a roundrobin
145 1.23 ad * without switching and may be hogging the CPU.
146 1.23 ad * Indicate that the process should yield.
147 1.23 ad */
148 1.23 ad spc->spc_flags |= SPCF_SHOULDYIELD;
149 1.23 ad cpu_need_resched(ci, 0);
150 1.23 ad } else {
151 1.23 ad spc->spc_flags |= SPCF_SEENRR;
152 1.23 ad }
153 1.23 ad break;
154 1.23 ad }
155 1.2 yamt }
156 1.2 yamt
157 1.8 ad /*
158 1.8 ad * Why PRIO_MAX - 2? From setpriority(2):
159 1.8 ad *
160 1.8 ad * prio is a value in the range -20 to 20. The default priority is
161 1.8 ad * 0; lower priorities cause more favorable scheduling. A value of
162 1.8 ad * 19 or 20 will schedule a process only when nothing at priority <=
163 1.8 ad * 0 is runnable.
164 1.8 ad *
165 1.8 ad * This gives estcpu influence over 18 priority levels, and leaves nice
166 1.8 ad * with 40 levels. One way to think about it is that nice has 20 levels
167 1.8 ad * either side of estcpu's 18.
168 1.8 ad */
169 1.2 yamt #define ESTCPU_SHIFT 11
170 1.8 ad #define ESTCPU_MAX ((PRIO_MAX - 2) << ESTCPU_SHIFT)
171 1.8 ad #define ESTCPU_ACCUM (1 << (ESTCPU_SHIFT - 1))
172 1.2 yamt #define ESTCPULIM(e) min((e), ESTCPU_MAX)
173 1.2 yamt
174 1.2 yamt /*
175 1.2 yamt * Constants for digital decay and forget:
176 1.8 ad * 90% of (l_estcpu) usage in 5 * loadav time
177 1.8 ad * 95% of (l_pctcpu) usage in 60 seconds (load insensitive)
178 1.2 yamt * Note that, as ps(1) mentions, this can let percentages
179 1.2 yamt * total over 100% (I've seen 137.9% for 3 processes).
180 1.2 yamt *
181 1.8 ad * Note that hardclock updates l_estcpu and l_cpticks independently.
182 1.2 yamt *
183 1.8 ad * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds.
184 1.2 yamt * That is, the system wants to compute a value of decay such
185 1.2 yamt * that the following for loop:
186 1.2 yamt * for (i = 0; i < (5 * loadavg); i++)
187 1.8 ad * l_estcpu *= decay;
188 1.2 yamt * will compute
189 1.8 ad * l_estcpu *= 0.1;
190 1.2 yamt * for all values of loadavg:
191 1.2 yamt *
192 1.2 yamt * Mathematically this loop can be expressed by saying:
193 1.2 yamt * decay ** (5 * loadavg) ~= .1
194 1.2 yamt *
195 1.2 yamt * The system computes decay as:
196 1.2 yamt * decay = (2 * loadavg) / (2 * loadavg + 1)
197 1.2 yamt *
198 1.2 yamt * We wish to prove that the system's computation of decay
199 1.2 yamt * will always fulfill the equation:
200 1.2 yamt * decay ** (5 * loadavg) ~= .1
201 1.2 yamt *
202 1.2 yamt * If we compute b as:
203 1.2 yamt * b = 2 * loadavg
204 1.2 yamt * then
205 1.2 yamt * decay = b / (b + 1)
206 1.2 yamt *
207 1.2 yamt * We now need to prove two things:
208 1.2 yamt * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
209 1.2 yamt * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
210 1.2 yamt *
211 1.2 yamt * Facts:
212 1.2 yamt * For x close to zero, exp(x) =~ 1 + x, since
213 1.2 yamt * exp(x) = 0! + x**1/1! + x**2/2! + ... .
214 1.2 yamt * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
215 1.2 yamt * For x close to zero, ln(1+x) =~ x, since
216 1.2 yamt * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
217 1.2 yamt * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
218 1.2 yamt * ln(.1) =~ -2.30
219 1.2 yamt *
220 1.2 yamt * Proof of (1):
221 1.2 yamt * Solve (factor)**(power) =~ .1 given power (5*loadav):
222 1.2 yamt * solving for factor,
223 1.2 yamt * ln(factor) =~ (-2.30/5*loadav), or
224 1.2 yamt * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
225 1.2 yamt * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
226 1.2 yamt *
227 1.2 yamt * Proof of (2):
228 1.2 yamt * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
229 1.2 yamt * solving for power,
230 1.2 yamt * power*ln(b/(b+1)) =~ -2.30, or
231 1.2 yamt * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
232 1.2 yamt *
233 1.2 yamt * Actual power values for the implemented algorithm are as follows:
234 1.2 yamt * loadav: 1 2 3 4
235 1.2 yamt * power: 5.68 10.32 14.94 19.55
236 1.2 yamt */
237 1.2 yamt
238 1.2 yamt /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
239 1.2 yamt #define loadfactor(loadav) (2 * (loadav))
240 1.2 yamt
241 1.17 yamt static fixpt_t
242 1.2 yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
243 1.2 yamt {
244 1.2 yamt
245 1.2 yamt if (estcpu == 0) {
246 1.2 yamt return 0;
247 1.2 yamt }
248 1.2 yamt
249 1.2 yamt #if !defined(_LP64)
250 1.2 yamt /* avoid 64bit arithmetics. */
251 1.2 yamt #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
252 1.2 yamt if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
253 1.2 yamt return estcpu * loadfac / (loadfac + FSCALE);
254 1.2 yamt }
255 1.2 yamt #endif /* !defined(_LP64) */
256 1.2 yamt
257 1.2 yamt return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
258 1.2 yamt }
259 1.2 yamt
260 1.2 yamt /*
261 1.8 ad * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
262 1.8 ad * sleeping for at least seven times the loadfactor will decay l_estcpu to
263 1.2 yamt * less than (1 << ESTCPU_SHIFT).
264 1.2 yamt *
265 1.2 yamt * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
266 1.2 yamt */
267 1.2 yamt static fixpt_t
268 1.2 yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
269 1.2 yamt {
270 1.2 yamt
271 1.2 yamt if ((n << FSHIFT) >= 7 * loadfac) {
272 1.2 yamt return 0;
273 1.2 yamt }
274 1.2 yamt
275 1.2 yamt while (estcpu != 0 && n > 1) {
276 1.2 yamt estcpu = decay_cpu(loadfac, estcpu);
277 1.2 yamt n--;
278 1.2 yamt }
279 1.2 yamt
280 1.2 yamt return estcpu;
281 1.2 yamt }
282 1.2 yamt
283 1.2 yamt /*
284 1.2 yamt * sched_pstats_hook:
285 1.2 yamt *
286 1.2 yamt * Periodically called from sched_pstats(); used to recalculate priorities.
287 1.2 yamt */
288 1.2 yamt void
289 1.22 rmind sched_pstats_hook(struct lwp *l, int batch)
290 1.2 yamt {
291 1.2 yamt
292 1.8 ad /*
293 1.8 ad * If the LWP has slept an entire second, stop recalculating
294 1.8 ad * its priority until it wakes up.
295 1.8 ad */
296 1.24 rmind KASSERT(lwp_locked(l, NULL));
297 1.24 rmind if (l->l_slptime > 0) {
298 1.24 rmind fixpt_t loadfac = 2 * (averunnable.ldavg[0]);
299 1.8 ad l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
300 1.6 rmind resetpriority(l);
301 1.8 ad }
302 1.2 yamt }
303 1.2 yamt
304 1.2 yamt /*
305 1.2 yamt * Recalculate the priority of a process after it has slept for a while.
306 1.2 yamt */
307 1.2 yamt static void
308 1.2 yamt updatepri(struct lwp *l)
309 1.2 yamt {
310 1.2 yamt fixpt_t loadfac;
311 1.2 yamt
312 1.3 ad KASSERT(lwp_locked(l, NULL));
313 1.2 yamt KASSERT(l->l_slptime > 1);
314 1.2 yamt
315 1.2 yamt loadfac = loadfactor(averunnable.ldavg[0]);
316 1.2 yamt
317 1.2 yamt l->l_slptime--; /* the first time was done in sched_pstats */
318 1.8 ad l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
319 1.2 yamt resetpriority(l);
320 1.2 yamt }
321 1.2 yamt
322 1.2 yamt void
323 1.14 matt sched_rqinit(void)
324 1.2 yamt {
325 1.2 yamt
326 1.2 yamt }
327 1.2 yamt
328 1.2 yamt void
329 1.2 yamt sched_setrunnable(struct lwp *l)
330 1.2 yamt {
331 1.2 yamt
332 1.2 yamt if (l->l_slptime > 1)
333 1.2 yamt updatepri(l);
334 1.2 yamt }
335 1.2 yamt
336 1.2 yamt void
337 1.8 ad sched_nice(struct proc *p, int n)
338 1.2 yamt {
339 1.8 ad struct lwp *l;
340 1.8 ad
341 1.20 ad KASSERT(mutex_owned(p->p_lock));
342 1.2 yamt
343 1.8 ad p->p_nice = n;
344 1.8 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
345 1.8 ad lwp_lock(l);
346 1.8 ad resetpriority(l);
347 1.8 ad lwp_unlock(l);
348 1.8 ad }
349 1.2 yamt }
350 1.2 yamt
351 1.2 yamt /*
352 1.8 ad * Recompute the priority of an LWP. Arrange to reschedule if
353 1.8 ad * the resulting priority is better than that of the current LWP.
354 1.2 yamt */
355 1.2 yamt static void
356 1.2 yamt resetpriority(struct lwp *l)
357 1.2 yamt {
358 1.8 ad pri_t pri;
359 1.2 yamt struct proc *p = l->l_proc;
360 1.2 yamt
361 1.8 ad KASSERT(lwp_locked(l, NULL));
362 1.2 yamt
363 1.8 ad if (l->l_class != SCHED_OTHER)
364 1.2 yamt return;
365 1.2 yamt
366 1.8 ad /* See comments above ESTCPU_SHIFT definition. */
367 1.8 ad pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
368 1.8 ad pri = imax(pri, 0);
369 1.8 ad if (pri != l->l_priority)
370 1.8 ad lwp_changepri(l, pri);
371 1.2 yamt }
372 1.2 yamt
373 1.2 yamt /*
374 1.2 yamt * We adjust the priority of the current process. The priority of a process
375 1.8 ad * gets worse as it accumulates CPU time. The CPU usage estimator (l_estcpu)
376 1.2 yamt * is increased here. The formula for computing priorities (in kern_synch.c)
377 1.8 ad * will compute a different value each time l_estcpu increases. This can
378 1.2 yamt * cause a switch, but unless the priority crosses a PPQ boundary the actual
379 1.2 yamt * queue will not change. The CPU usage estimator ramps up quite quickly
380 1.2 yamt * when the process is running (linearly), and decays away exponentially, at
381 1.2 yamt * a rate which is proportionally slower when the system is busy. The basic
382 1.2 yamt * principle is that the system will 90% forget that the process used a lot
383 1.2 yamt * of CPU time in 5 * loadav seconds. This causes the system to favor
384 1.2 yamt * processes which haven't run much recently, and to round-robin among other
385 1.2 yamt * processes.
386 1.2 yamt */
387 1.2 yamt
388 1.2 yamt void
389 1.2 yamt sched_schedclock(struct lwp *l)
390 1.2 yamt {
391 1.8 ad
392 1.8 ad if (l->l_class != SCHED_OTHER)
393 1.8 ad return;
394 1.2 yamt
395 1.2 yamt KASSERT(!CURCPU_IDLE_P());
396 1.8 ad l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
397 1.2 yamt lwp_lock(l);
398 1.2 yamt resetpriority(l);
399 1.2 yamt lwp_unlock(l);
400 1.2 yamt }
401 1.2 yamt
402 1.2 yamt /*
403 1.2 yamt * sched_proc_fork:
404 1.2 yamt *
405 1.2 yamt * Inherit the parent's scheduler history.
406 1.2 yamt */
407 1.2 yamt void
408 1.2 yamt sched_proc_fork(struct proc *parent, struct proc *child)
409 1.2 yamt {
410 1.8 ad lwp_t *pl;
411 1.2 yamt
412 1.20 ad KASSERT(mutex_owned(parent->p_lock));
413 1.2 yamt
414 1.8 ad pl = LIST_FIRST(&parent->p_lwps);
415 1.8 ad child->p_estcpu_inherited = pl->l_estcpu;
416 1.2 yamt child->p_forktime = sched_pstats_ticks;
417 1.2 yamt }
418 1.2 yamt
419 1.2 yamt /*
420 1.2 yamt * sched_proc_exit:
421 1.2 yamt *
422 1.2 yamt * Chargeback parents for the sins of their children.
423 1.2 yamt */
424 1.2 yamt void
425 1.2 yamt sched_proc_exit(struct proc *parent, struct proc *child)
426 1.2 yamt {
427 1.2 yamt fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
428 1.2 yamt fixpt_t estcpu;
429 1.8 ad lwp_t *pl, *cl;
430 1.2 yamt
431 1.2 yamt /* XXX Only if parent != init?? */
432 1.2 yamt
433 1.20 ad mutex_enter(parent->p_lock);
434 1.8 ad pl = LIST_FIRST(&parent->p_lwps);
435 1.8 ad cl = LIST_FIRST(&child->p_lwps);
436 1.2 yamt estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
437 1.2 yamt sched_pstats_ticks - child->p_forktime);
438 1.8 ad if (cl->l_estcpu > estcpu) {
439 1.8 ad lwp_lock(pl);
440 1.8 ad pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
441 1.8 ad lwp_unlock(pl);
442 1.8 ad }
443 1.20 ad mutex_exit(parent->p_lock);
444 1.2 yamt }
445 1.2 yamt
446 1.2 yamt void
447 1.6 rmind sched_wakeup(struct lwp *l)
448 1.6 rmind {
449 1.6 rmind
450 1.6 rmind }
451 1.6 rmind
452 1.6 rmind void
453 1.6 rmind sched_slept(struct lwp *l)
454 1.6 rmind {
455 1.6 rmind
456 1.6 rmind }
457 1.6 rmind
458 1.2 yamt void
459 1.8 ad sched_lwp_fork(struct lwp *l1, struct lwp *l2)
460 1.2 yamt {
461 1.2 yamt
462 1.8 ad l2->l_estcpu = l1->l_estcpu;
463 1.2 yamt }
464 1.2 yamt
465 1.2 yamt void
466 1.8 ad sched_lwp_collect(struct lwp *t)
467 1.8 ad {
468 1.8 ad lwp_t *l;
469 1.8 ad
470 1.8 ad /* Absorb estcpu value of collected LWP. */
471 1.8 ad l = curlwp;
472 1.8 ad lwp_lock(l);
473 1.8 ad l->l_estcpu += t->l_estcpu;
474 1.8 ad lwp_unlock(l);
475 1.8 ad }
476 1.8 ad
477 1.16 ad void
478 1.16 ad sched_oncpu(lwp_t *l)
479 1.16 ad {
480 1.16 ad
481 1.16 ad }
482 1.16 ad
483 1.16 ad void
484 1.16 ad sched_newts(lwp_t *l)
485 1.16 ad {
486 1.16 ad
487 1.16 ad }
488 1.16 ad
489 1.5 ad /*
490 1.12 rmind * Sysctl nodes and initialization.
491 1.5 ad */
492 1.12 rmind
493 1.12 rmind static int
494 1.12 rmind sysctl_sched_rtts(SYSCTLFN_ARGS)
495 1.12 rmind {
496 1.12 rmind struct sysctlnode node;
497 1.12 rmind int rttsms = hztoms(rrticks);
498 1.12 rmind
499 1.12 rmind node = *rnode;
500 1.12 rmind node.sysctl_data = &rttsms;
501 1.12 rmind return sysctl_lookup(SYSCTLFN_CALL(&node));
502 1.12 rmind }
503 1.12 rmind
504 1.16 ad SYSCTL_SETUP(sysctl_sched_4bsd_setup, "sysctl sched setup")
505 1.2 yamt {
506 1.2 yamt const struct sysctlnode *node = NULL;
507 1.2 yamt
508 1.2 yamt sysctl_createv(clog, 0, NULL, NULL,
509 1.2 yamt CTLFLAG_PERMANENT,
510 1.2 yamt CTLTYPE_NODE, "kern", NULL,
511 1.2 yamt NULL, 0, NULL, 0,
512 1.2 yamt CTL_KERN, CTL_EOL);
513 1.2 yamt sysctl_createv(clog, 0, NULL, &node,
514 1.2 yamt CTLFLAG_PERMANENT,
515 1.2 yamt CTLTYPE_NODE, "sched",
516 1.2 yamt SYSCTL_DESCR("Scheduler options"),
517 1.2 yamt NULL, 0, NULL, 0,
518 1.2 yamt CTL_KERN, CTL_CREATE, CTL_EOL);
519 1.2 yamt
520 1.16 ad if (node == NULL)
521 1.16 ad return;
522 1.5 ad
523 1.16 ad rrticks = hz / 10;
524 1.16 ad
525 1.16 ad sysctl_createv(NULL, 0, &node, NULL,
526 1.5 ad CTLFLAG_PERMANENT,
527 1.5 ad CTLTYPE_STRING, "name", NULL,
528 1.5 ad NULL, 0, __UNCONST("4.4BSD"), 0,
529 1.5 ad CTL_CREATE, CTL_EOL);
530 1.16 ad sysctl_createv(NULL, 0, &node, NULL,
531 1.12 rmind CTLFLAG_PERMANENT,
532 1.12 rmind CTLTYPE_INT, "rtts",
533 1.12 rmind SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
534 1.12 rmind sysctl_sched_rtts, 0, NULL, 0,
535 1.12 rmind CTL_CREATE, CTL_EOL);
536 1.2 yamt }
537