Home | History | Annotate | Line # | Download | only in kern
sched_4bsd.c revision 1.24.10.1
      1  1.24.10.1  bouyer /*	$NetBSD: sched_4bsd.c,v 1.24.10.1 2009/06/06 22:13:04 bouyer Exp $	*/
      2        1.2    yamt 
      3        1.2    yamt /*-
      4       1.16      ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5        1.2    yamt  * All rights reserved.
      6        1.2    yamt  *
      7        1.2    yamt  * This code is derived from software contributed to The NetBSD Foundation
      8        1.2    yamt  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9        1.2    yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
     10        1.2    yamt  * Daniel Sieger.
     11        1.2    yamt  *
     12        1.2    yamt  * Redistribution and use in source and binary forms, with or without
     13        1.2    yamt  * modification, are permitted provided that the following conditions
     14        1.2    yamt  * are met:
     15        1.2    yamt  * 1. Redistributions of source code must retain the above copyright
     16        1.2    yamt  *    notice, this list of conditions and the following disclaimer.
     17        1.2    yamt  * 2. Redistributions in binary form must reproduce the above copyright
     18        1.2    yamt  *    notice, this list of conditions and the following disclaimer in the
     19        1.2    yamt  *    documentation and/or other materials provided with the distribution.
     20        1.2    yamt  *
     21        1.2    yamt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22        1.2    yamt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23        1.2    yamt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24        1.2    yamt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25        1.2    yamt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26        1.2    yamt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27        1.2    yamt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28        1.2    yamt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29        1.2    yamt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30        1.2    yamt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31        1.2    yamt  * POSSIBILITY OF SUCH DAMAGE.
     32        1.2    yamt  */
     33        1.2    yamt 
     34        1.2    yamt /*-
     35        1.2    yamt  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     36        1.2    yamt  *	The Regents of the University of California.  All rights reserved.
     37        1.2    yamt  * (c) UNIX System Laboratories, Inc.
     38        1.2    yamt  * All or some portions of this file are derived from material licensed
     39        1.2    yamt  * to the University of California by American Telephone and Telegraph
     40        1.2    yamt  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     41        1.2    yamt  * the permission of UNIX System Laboratories, Inc.
     42        1.2    yamt  *
     43        1.2    yamt  * Redistribution and use in source and binary forms, with or without
     44        1.2    yamt  * modification, are permitted provided that the following conditions
     45        1.2    yamt  * are met:
     46        1.2    yamt  * 1. Redistributions of source code must retain the above copyright
     47        1.2    yamt  *    notice, this list of conditions and the following disclaimer.
     48        1.2    yamt  * 2. Redistributions in binary form must reproduce the above copyright
     49        1.2    yamt  *    notice, this list of conditions and the following disclaimer in the
     50        1.2    yamt  *    documentation and/or other materials provided with the distribution.
     51        1.2    yamt  * 3. Neither the name of the University nor the names of its contributors
     52        1.2    yamt  *    may be used to endorse or promote products derived from this software
     53        1.2    yamt  *    without specific prior written permission.
     54        1.2    yamt  *
     55        1.2    yamt  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56        1.2    yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57        1.2    yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58        1.2    yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59        1.2    yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60        1.2    yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61        1.2    yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62        1.2    yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63        1.2    yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64        1.2    yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65        1.2    yamt  * SUCH DAMAGE.
     66        1.2    yamt  *
     67        1.2    yamt  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     68        1.2    yamt  */
     69        1.2    yamt 
     70        1.2    yamt #include <sys/cdefs.h>
     71  1.24.10.1  bouyer __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.24.10.1 2009/06/06 22:13:04 bouyer Exp $");
     72        1.2    yamt 
     73        1.2    yamt #include "opt_ddb.h"
     74        1.2    yamt #include "opt_lockdebug.h"
     75        1.2    yamt #include "opt_perfctrs.h"
     76        1.2    yamt 
     77        1.2    yamt #include <sys/param.h>
     78        1.2    yamt #include <sys/systm.h>
     79        1.2    yamt #include <sys/callout.h>
     80        1.2    yamt #include <sys/cpu.h>
     81        1.2    yamt #include <sys/proc.h>
     82        1.2    yamt #include <sys/kernel.h>
     83        1.2    yamt #include <sys/signalvar.h>
     84        1.2    yamt #include <sys/resourcevar.h>
     85        1.2    yamt #include <sys/sched.h>
     86        1.2    yamt #include <sys/sysctl.h>
     87        1.2    yamt #include <sys/kauth.h>
     88        1.2    yamt #include <sys/lockdebug.h>
     89        1.2    yamt #include <sys/kmem.h>
     90        1.5      ad #include <sys/intr.h>
     91        1.2    yamt 
     92        1.2    yamt #include <uvm/uvm_extern.h>
     93        1.2    yamt 
     94        1.2    yamt static void updatepri(struct lwp *);
     95        1.2    yamt static void resetpriority(struct lwp *);
     96        1.2    yamt 
     97        1.2    yamt extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
     98        1.2    yamt 
     99        1.2    yamt /* Number of hardclock ticks per sched_tick() */
    100       1.12   rmind static int rrticks;
    101        1.2    yamt 
    102        1.2    yamt /*
    103        1.2    yamt  * Force switch among equal priority processes every 100ms.
    104        1.2    yamt  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    105        1.5      ad  *
    106        1.5      ad  * There's no need to lock anywhere in this routine, as it's
    107        1.5      ad  * CPU-local and runs at IPL_SCHED (called from clock interrupt).
    108        1.2    yamt  */
    109        1.2    yamt /* ARGSUSED */
    110        1.2    yamt void
    111        1.2    yamt sched_tick(struct cpu_info *ci)
    112        1.2    yamt {
    113        1.2    yamt 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    114       1.23      ad 	lwp_t *l;
    115        1.2    yamt 
    116        1.2    yamt 	spc->spc_ticks = rrticks;
    117        1.2    yamt 
    118       1.15      ad 	if (CURCPU_IDLE_P()) {
    119       1.15      ad 		cpu_need_resched(ci, 0);
    120        1.7   rmind 		return;
    121       1.15      ad 	}
    122       1.23      ad 	l = ci->ci_data.cpu_onproc;
    123       1.23      ad 	if (l == NULL) {
    124       1.19    yamt 		return;
    125       1.19    yamt 	}
    126       1.23      ad 	switch (l->l_class) {
    127       1.23      ad 	case SCHED_FIFO:
    128       1.23      ad 		/* No timeslicing for FIFO jobs. */
    129       1.23      ad 		break;
    130       1.23      ad 	case SCHED_RR:
    131       1.23      ad 		/* Force it into mi_switch() to look for other jobs to run. */
    132       1.23      ad 		cpu_need_resched(ci, RESCHED_KPREEMPT);
    133       1.23      ad 		break;
    134       1.23      ad 	default:
    135       1.23      ad 		if (spc->spc_flags & SPCF_SHOULDYIELD) {
    136       1.23      ad 			/*
    137       1.23      ad 			 * Process is stuck in kernel somewhere, probably
    138       1.23      ad 			 * due to buggy or inefficient code.  Force a
    139       1.23      ad 			 * kernel preemption.
    140       1.23      ad 			 */
    141       1.23      ad 			cpu_need_resched(ci, RESCHED_KPREEMPT);
    142       1.23      ad 		} else if (spc->spc_flags & SPCF_SEENRR) {
    143       1.23      ad 			/*
    144       1.23      ad 			 * The process has already been through a roundrobin
    145       1.23      ad 			 * without switching and may be hogging the CPU.
    146       1.23      ad 			 * Indicate that the process should yield.
    147       1.23      ad 			 */
    148       1.23      ad 			spc->spc_flags |= SPCF_SHOULDYIELD;
    149       1.23      ad 			cpu_need_resched(ci, 0);
    150       1.23      ad 		} else {
    151       1.23      ad 			spc->spc_flags |= SPCF_SEENRR;
    152       1.23      ad 		}
    153       1.23      ad 		break;
    154       1.23      ad 	}
    155        1.2    yamt }
    156        1.2    yamt 
    157        1.8      ad /*
    158        1.8      ad  * Why PRIO_MAX - 2? From setpriority(2):
    159        1.8      ad  *
    160        1.8      ad  *	prio is a value in the range -20 to 20.  The default priority is
    161        1.8      ad  *	0; lower priorities cause more favorable scheduling.  A value of
    162        1.8      ad  *	19 or 20 will schedule a process only when nothing at priority <=
    163        1.8      ad  *	0 is runnable.
    164        1.8      ad  *
    165        1.8      ad  * This gives estcpu influence over 18 priority levels, and leaves nice
    166        1.8      ad  * with 40 levels.  One way to think about it is that nice has 20 levels
    167        1.8      ad  * either side of estcpu's 18.
    168        1.8      ad  */
    169        1.2    yamt #define	ESTCPU_SHIFT	11
    170        1.8      ad #define	ESTCPU_MAX	((PRIO_MAX - 2) << ESTCPU_SHIFT)
    171        1.8      ad #define	ESTCPU_ACCUM	(1 << (ESTCPU_SHIFT - 1))
    172        1.2    yamt #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    173        1.2    yamt 
    174        1.2    yamt /*
    175        1.2    yamt  * Constants for digital decay and forget:
    176        1.8      ad  *	90% of (l_estcpu) usage in 5 * loadav time
    177        1.8      ad  *	95% of (l_pctcpu) usage in 60 seconds (load insensitive)
    178        1.2    yamt  *          Note that, as ps(1) mentions, this can let percentages
    179        1.2    yamt  *          total over 100% (I've seen 137.9% for 3 processes).
    180        1.2    yamt  *
    181        1.8      ad  * Note that hardclock updates l_estcpu and l_cpticks independently.
    182        1.2    yamt  *
    183        1.8      ad  * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds.
    184        1.2    yamt  * That is, the system wants to compute a value of decay such
    185        1.2    yamt  * that the following for loop:
    186        1.2    yamt  * 	for (i = 0; i < (5 * loadavg); i++)
    187        1.8      ad  * 		l_estcpu *= decay;
    188        1.2    yamt  * will compute
    189        1.8      ad  * 	l_estcpu *= 0.1;
    190        1.2    yamt  * for all values of loadavg:
    191        1.2    yamt  *
    192        1.2    yamt  * Mathematically this loop can be expressed by saying:
    193        1.2    yamt  * 	decay ** (5 * loadavg) ~= .1
    194        1.2    yamt  *
    195        1.2    yamt  * The system computes decay as:
    196        1.2    yamt  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    197        1.2    yamt  *
    198        1.2    yamt  * We wish to prove that the system's computation of decay
    199        1.2    yamt  * will always fulfill the equation:
    200        1.2    yamt  * 	decay ** (5 * loadavg) ~= .1
    201        1.2    yamt  *
    202        1.2    yamt  * If we compute b as:
    203        1.2    yamt  * 	b = 2 * loadavg
    204        1.2    yamt  * then
    205        1.2    yamt  * 	decay = b / (b + 1)
    206        1.2    yamt  *
    207        1.2    yamt  * We now need to prove two things:
    208        1.2    yamt  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    209        1.2    yamt  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    210        1.2    yamt  *
    211        1.2    yamt  * Facts:
    212        1.2    yamt  *         For x close to zero, exp(x) =~ 1 + x, since
    213        1.2    yamt  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    214        1.2    yamt  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    215        1.2    yamt  *         For x close to zero, ln(1+x) =~ x, since
    216        1.2    yamt  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    217        1.2    yamt  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    218        1.2    yamt  *         ln(.1) =~ -2.30
    219        1.2    yamt  *
    220        1.2    yamt  * Proof of (1):
    221        1.2    yamt  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    222        1.2    yamt  *	solving for factor,
    223        1.2    yamt  *      ln(factor) =~ (-2.30/5*loadav), or
    224        1.2    yamt  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    225        1.2    yamt  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    226        1.2    yamt  *
    227        1.2    yamt  * Proof of (2):
    228        1.2    yamt  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    229        1.2    yamt  *	solving for power,
    230        1.2    yamt  *      power*ln(b/(b+1)) =~ -2.30, or
    231        1.2    yamt  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    232        1.2    yamt  *
    233        1.2    yamt  * Actual power values for the implemented algorithm are as follows:
    234        1.2    yamt  *      loadav: 1       2       3       4
    235        1.2    yamt  *      power:  5.68    10.32   14.94   19.55
    236        1.2    yamt  */
    237        1.2    yamt 
    238        1.2    yamt /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    239        1.2    yamt #define	loadfactor(loadav)	(2 * (loadav))
    240        1.2    yamt 
    241       1.17    yamt static fixpt_t
    242        1.2    yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    243        1.2    yamt {
    244        1.2    yamt 
    245        1.2    yamt 	if (estcpu == 0) {
    246        1.2    yamt 		return 0;
    247        1.2    yamt 	}
    248        1.2    yamt 
    249        1.2    yamt #if !defined(_LP64)
    250        1.2    yamt 	/* avoid 64bit arithmetics. */
    251        1.2    yamt #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    252        1.2    yamt 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    253        1.2    yamt 		return estcpu * loadfac / (loadfac + FSCALE);
    254        1.2    yamt 	}
    255        1.2    yamt #endif /* !defined(_LP64) */
    256        1.2    yamt 
    257        1.2    yamt 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    258        1.2    yamt }
    259        1.2    yamt 
    260        1.2    yamt /*
    261        1.8      ad  * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
    262        1.8      ad  * sleeping for at least seven times the loadfactor will decay l_estcpu to
    263        1.2    yamt  * less than (1 << ESTCPU_SHIFT).
    264        1.2    yamt  *
    265        1.2    yamt  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    266        1.2    yamt  */
    267        1.2    yamt static fixpt_t
    268        1.2    yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    269        1.2    yamt {
    270        1.2    yamt 
    271        1.2    yamt 	if ((n << FSHIFT) >= 7 * loadfac) {
    272        1.2    yamt 		return 0;
    273        1.2    yamt 	}
    274        1.2    yamt 
    275        1.2    yamt 	while (estcpu != 0 && n > 1) {
    276        1.2    yamt 		estcpu = decay_cpu(loadfac, estcpu);
    277        1.2    yamt 		n--;
    278        1.2    yamt 	}
    279        1.2    yamt 
    280        1.2    yamt 	return estcpu;
    281        1.2    yamt }
    282        1.2    yamt 
    283        1.2    yamt /*
    284        1.2    yamt  * sched_pstats_hook:
    285        1.2    yamt  *
    286        1.2    yamt  * Periodically called from sched_pstats(); used to recalculate priorities.
    287        1.2    yamt  */
    288        1.2    yamt void
    289       1.22   rmind sched_pstats_hook(struct lwp *l, int batch)
    290        1.2    yamt {
    291  1.24.10.1  bouyer 	fixpt_t loadfac;
    292        1.2    yamt 
    293        1.8      ad 	/*
    294        1.8      ad 	 * If the LWP has slept an entire second, stop recalculating
    295        1.8      ad 	 * its priority until it wakes up.
    296        1.8      ad 	 */
    297       1.24   rmind 	KASSERT(lwp_locked(l, NULL));
    298  1.24.10.1  bouyer 	if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    299  1.24.10.1  bouyer 	    l->l_stat == LSSUSPENDED) {
    300  1.24.10.1  bouyer 		if (l->l_slptime > 1) {
    301  1.24.10.1  bouyer 			return;
    302  1.24.10.1  bouyer 		}
    303        1.8      ad 	}
    304  1.24.10.1  bouyer 	loadfac = 2 * (averunnable.ldavg[0]);
    305  1.24.10.1  bouyer 	l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
    306  1.24.10.1  bouyer 	resetpriority(l);
    307        1.2    yamt }
    308        1.2    yamt 
    309        1.2    yamt /*
    310        1.2    yamt  * Recalculate the priority of a process after it has slept for a while.
    311        1.2    yamt  */
    312        1.2    yamt static void
    313        1.2    yamt updatepri(struct lwp *l)
    314        1.2    yamt {
    315        1.2    yamt 	fixpt_t loadfac;
    316        1.2    yamt 
    317        1.3      ad 	KASSERT(lwp_locked(l, NULL));
    318        1.2    yamt 	KASSERT(l->l_slptime > 1);
    319        1.2    yamt 
    320        1.2    yamt 	loadfac = loadfactor(averunnable.ldavg[0]);
    321        1.2    yamt 
    322        1.2    yamt 	l->l_slptime--; /* the first time was done in sched_pstats */
    323        1.8      ad 	l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
    324        1.2    yamt 	resetpriority(l);
    325        1.2    yamt }
    326        1.2    yamt 
    327        1.2    yamt void
    328       1.14    matt sched_rqinit(void)
    329        1.2    yamt {
    330        1.2    yamt 
    331        1.2    yamt }
    332        1.2    yamt 
    333        1.2    yamt void
    334        1.2    yamt sched_setrunnable(struct lwp *l)
    335        1.2    yamt {
    336        1.2    yamt 
    337        1.2    yamt  	if (l->l_slptime > 1)
    338        1.2    yamt  		updatepri(l);
    339        1.2    yamt }
    340        1.2    yamt 
    341        1.2    yamt void
    342        1.8      ad sched_nice(struct proc *p, int n)
    343        1.2    yamt {
    344        1.8      ad 	struct lwp *l;
    345        1.8      ad 
    346       1.20      ad 	KASSERT(mutex_owned(p->p_lock));
    347        1.2    yamt 
    348        1.8      ad 	p->p_nice = n;
    349        1.8      ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    350        1.8      ad 		lwp_lock(l);
    351        1.8      ad 		resetpriority(l);
    352        1.8      ad 		lwp_unlock(l);
    353        1.8      ad 	}
    354        1.2    yamt }
    355        1.2    yamt 
    356        1.2    yamt /*
    357        1.8      ad  * Recompute the priority of an LWP.  Arrange to reschedule if
    358        1.8      ad  * the resulting priority is better than that of the current LWP.
    359        1.2    yamt  */
    360        1.2    yamt static void
    361        1.2    yamt resetpriority(struct lwp *l)
    362        1.2    yamt {
    363        1.8      ad 	pri_t pri;
    364        1.2    yamt 	struct proc *p = l->l_proc;
    365        1.2    yamt 
    366        1.8      ad 	KASSERT(lwp_locked(l, NULL));
    367        1.2    yamt 
    368        1.8      ad 	if (l->l_class != SCHED_OTHER)
    369        1.2    yamt 		return;
    370        1.2    yamt 
    371        1.8      ad 	/* See comments above ESTCPU_SHIFT definition. */
    372        1.8      ad 	pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
    373        1.8      ad 	pri = imax(pri, 0);
    374        1.8      ad 	if (pri != l->l_priority)
    375        1.8      ad 		lwp_changepri(l, pri);
    376        1.2    yamt }
    377        1.2    yamt 
    378        1.2    yamt /*
    379        1.2    yamt  * We adjust the priority of the current process.  The priority of a process
    380        1.8      ad  * gets worse as it accumulates CPU time.  The CPU usage estimator (l_estcpu)
    381        1.2    yamt  * is increased here.  The formula for computing priorities (in kern_synch.c)
    382        1.8      ad  * will compute a different value each time l_estcpu increases. This can
    383        1.2    yamt  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    384        1.2    yamt  * queue will not change.  The CPU usage estimator ramps up quite quickly
    385        1.2    yamt  * when the process is running (linearly), and decays away exponentially, at
    386        1.2    yamt  * a rate which is proportionally slower when the system is busy.  The basic
    387        1.2    yamt  * principle is that the system will 90% forget that the process used a lot
    388        1.2    yamt  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    389        1.2    yamt  * processes which haven't run much recently, and to round-robin among other
    390        1.2    yamt  * processes.
    391        1.2    yamt  */
    392        1.2    yamt 
    393        1.2    yamt void
    394        1.2    yamt sched_schedclock(struct lwp *l)
    395        1.2    yamt {
    396        1.8      ad 
    397        1.8      ad 	if (l->l_class != SCHED_OTHER)
    398        1.8      ad 		return;
    399        1.2    yamt 
    400        1.2    yamt 	KASSERT(!CURCPU_IDLE_P());
    401        1.8      ad 	l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
    402        1.2    yamt 	lwp_lock(l);
    403        1.2    yamt 	resetpriority(l);
    404        1.2    yamt 	lwp_unlock(l);
    405        1.2    yamt }
    406        1.2    yamt 
    407        1.2    yamt /*
    408        1.2    yamt  * sched_proc_fork:
    409        1.2    yamt  *
    410        1.2    yamt  *	Inherit the parent's scheduler history.
    411        1.2    yamt  */
    412        1.2    yamt void
    413        1.2    yamt sched_proc_fork(struct proc *parent, struct proc *child)
    414        1.2    yamt {
    415        1.8      ad 	lwp_t *pl;
    416        1.2    yamt 
    417       1.20      ad 	KASSERT(mutex_owned(parent->p_lock));
    418        1.2    yamt 
    419        1.8      ad 	pl = LIST_FIRST(&parent->p_lwps);
    420        1.8      ad 	child->p_estcpu_inherited = pl->l_estcpu;
    421        1.2    yamt 	child->p_forktime = sched_pstats_ticks;
    422        1.2    yamt }
    423        1.2    yamt 
    424        1.2    yamt /*
    425        1.2    yamt  * sched_proc_exit:
    426        1.2    yamt  *
    427        1.2    yamt  *	Chargeback parents for the sins of their children.
    428        1.2    yamt  */
    429        1.2    yamt void
    430        1.2    yamt sched_proc_exit(struct proc *parent, struct proc *child)
    431        1.2    yamt {
    432        1.2    yamt 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    433        1.2    yamt 	fixpt_t estcpu;
    434        1.8      ad 	lwp_t *pl, *cl;
    435        1.2    yamt 
    436        1.2    yamt 	/* XXX Only if parent != init?? */
    437        1.2    yamt 
    438       1.20      ad 	mutex_enter(parent->p_lock);
    439        1.8      ad 	pl = LIST_FIRST(&parent->p_lwps);
    440        1.8      ad 	cl = LIST_FIRST(&child->p_lwps);
    441        1.2    yamt 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
    442        1.2    yamt 	    sched_pstats_ticks - child->p_forktime);
    443        1.8      ad 	if (cl->l_estcpu > estcpu) {
    444        1.8      ad 		lwp_lock(pl);
    445        1.8      ad 		pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
    446        1.8      ad 		lwp_unlock(pl);
    447        1.8      ad 	}
    448       1.20      ad 	mutex_exit(parent->p_lock);
    449        1.2    yamt }
    450        1.2    yamt 
    451        1.2    yamt void
    452        1.6   rmind sched_wakeup(struct lwp *l)
    453        1.6   rmind {
    454        1.6   rmind 
    455        1.6   rmind }
    456        1.6   rmind 
    457        1.6   rmind void
    458        1.6   rmind sched_slept(struct lwp *l)
    459        1.6   rmind {
    460        1.6   rmind 
    461        1.6   rmind }
    462        1.6   rmind 
    463        1.2    yamt void
    464        1.8      ad sched_lwp_fork(struct lwp *l1, struct lwp *l2)
    465        1.2    yamt {
    466        1.2    yamt 
    467        1.8      ad 	l2->l_estcpu = l1->l_estcpu;
    468        1.2    yamt }
    469        1.2    yamt 
    470        1.2    yamt void
    471        1.8      ad sched_lwp_collect(struct lwp *t)
    472        1.8      ad {
    473        1.8      ad 	lwp_t *l;
    474        1.8      ad 
    475        1.8      ad 	/* Absorb estcpu value of collected LWP. */
    476        1.8      ad 	l = curlwp;
    477        1.8      ad 	lwp_lock(l);
    478        1.8      ad 	l->l_estcpu += t->l_estcpu;
    479        1.8      ad 	lwp_unlock(l);
    480        1.8      ad }
    481        1.8      ad 
    482       1.16      ad void
    483       1.16      ad sched_oncpu(lwp_t *l)
    484       1.16      ad {
    485       1.16      ad 
    486       1.16      ad }
    487       1.16      ad 
    488       1.16      ad void
    489       1.16      ad sched_newts(lwp_t *l)
    490       1.16      ad {
    491       1.16      ad 
    492       1.16      ad }
    493       1.16      ad 
    494        1.5      ad /*
    495       1.12   rmind  * Sysctl nodes and initialization.
    496        1.5      ad  */
    497       1.12   rmind 
    498       1.12   rmind static int
    499       1.12   rmind sysctl_sched_rtts(SYSCTLFN_ARGS)
    500       1.12   rmind {
    501       1.12   rmind 	struct sysctlnode node;
    502       1.12   rmind 	int rttsms = hztoms(rrticks);
    503       1.12   rmind 
    504       1.12   rmind 	node = *rnode;
    505       1.12   rmind 	node.sysctl_data = &rttsms;
    506       1.12   rmind 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    507       1.12   rmind }
    508       1.12   rmind 
    509       1.16      ad SYSCTL_SETUP(sysctl_sched_4bsd_setup, "sysctl sched setup")
    510        1.2    yamt {
    511        1.2    yamt 	const struct sysctlnode *node = NULL;
    512        1.2    yamt 
    513        1.2    yamt 	sysctl_createv(clog, 0, NULL, NULL,
    514        1.2    yamt 		CTLFLAG_PERMANENT,
    515        1.2    yamt 		CTLTYPE_NODE, "kern", NULL,
    516        1.2    yamt 		NULL, 0, NULL, 0,
    517        1.2    yamt 		CTL_KERN, CTL_EOL);
    518        1.2    yamt 	sysctl_createv(clog, 0, NULL, &node,
    519        1.2    yamt 		CTLFLAG_PERMANENT,
    520        1.2    yamt 		CTLTYPE_NODE, "sched",
    521        1.2    yamt 		SYSCTL_DESCR("Scheduler options"),
    522        1.2    yamt 		NULL, 0, NULL, 0,
    523        1.2    yamt 		CTL_KERN, CTL_CREATE, CTL_EOL);
    524        1.2    yamt 
    525       1.16      ad 	if (node == NULL)
    526       1.16      ad 		return;
    527        1.5      ad 
    528       1.16      ad 	rrticks = hz / 10;
    529       1.16      ad 
    530       1.16      ad 	sysctl_createv(NULL, 0, &node, NULL,
    531        1.5      ad 		CTLFLAG_PERMANENT,
    532        1.5      ad 		CTLTYPE_STRING, "name", NULL,
    533        1.5      ad 		NULL, 0, __UNCONST("4.4BSD"), 0,
    534        1.5      ad 		CTL_CREATE, CTL_EOL);
    535       1.16      ad 	sysctl_createv(NULL, 0, &node, NULL,
    536       1.12   rmind 		CTLFLAG_PERMANENT,
    537       1.12   rmind 		CTLTYPE_INT, "rtts",
    538       1.12   rmind 		SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
    539       1.12   rmind 		sysctl_sched_rtts, 0, NULL, 0,
    540       1.12   rmind 		CTL_CREATE, CTL_EOL);
    541        1.2    yamt }
    542