Home | History | Annotate | Line # | Download | only in kern
sched_4bsd.c revision 1.27
      1  1.27  uebayasi /*	$NetBSD: sched_4bsd.c,v 1.27 2011/07/27 14:35:34 uebayasi Exp $	*/
      2   1.2      yamt 
      3   1.2      yamt /*-
      4  1.16        ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5   1.2      yamt  * All rights reserved.
      6   1.2      yamt  *
      7   1.2      yamt  * This code is derived from software contributed to The NetBSD Foundation
      8   1.2      yamt  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9   1.2      yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
     10   1.2      yamt  * Daniel Sieger.
     11   1.2      yamt  *
     12   1.2      yamt  * Redistribution and use in source and binary forms, with or without
     13   1.2      yamt  * modification, are permitted provided that the following conditions
     14   1.2      yamt  * are met:
     15   1.2      yamt  * 1. Redistributions of source code must retain the above copyright
     16   1.2      yamt  *    notice, this list of conditions and the following disclaimer.
     17   1.2      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.2      yamt  *    notice, this list of conditions and the following disclaimer in the
     19   1.2      yamt  *    documentation and/or other materials provided with the distribution.
     20   1.2      yamt  *
     21   1.2      yamt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22   1.2      yamt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23   1.2      yamt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24   1.2      yamt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25   1.2      yamt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26   1.2      yamt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27   1.2      yamt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28   1.2      yamt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29   1.2      yamt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30   1.2      yamt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31   1.2      yamt  * POSSIBILITY OF SUCH DAMAGE.
     32   1.2      yamt  */
     33   1.2      yamt 
     34   1.2      yamt /*-
     35   1.2      yamt  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     36   1.2      yamt  *	The Regents of the University of California.  All rights reserved.
     37   1.2      yamt  * (c) UNIX System Laboratories, Inc.
     38   1.2      yamt  * All or some portions of this file are derived from material licensed
     39   1.2      yamt  * to the University of California by American Telephone and Telegraph
     40   1.2      yamt  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     41   1.2      yamt  * the permission of UNIX System Laboratories, Inc.
     42   1.2      yamt  *
     43   1.2      yamt  * Redistribution and use in source and binary forms, with or without
     44   1.2      yamt  * modification, are permitted provided that the following conditions
     45   1.2      yamt  * are met:
     46   1.2      yamt  * 1. Redistributions of source code must retain the above copyright
     47   1.2      yamt  *    notice, this list of conditions and the following disclaimer.
     48   1.2      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     49   1.2      yamt  *    notice, this list of conditions and the following disclaimer in the
     50   1.2      yamt  *    documentation and/or other materials provided with the distribution.
     51   1.2      yamt  * 3. Neither the name of the University nor the names of its contributors
     52   1.2      yamt  *    may be used to endorse or promote products derived from this software
     53   1.2      yamt  *    without specific prior written permission.
     54   1.2      yamt  *
     55   1.2      yamt  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56   1.2      yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57   1.2      yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58   1.2      yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59   1.2      yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60   1.2      yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61   1.2      yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62   1.2      yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63   1.2      yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64   1.2      yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65   1.2      yamt  * SUCH DAMAGE.
     66   1.2      yamt  *
     67   1.2      yamt  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     68   1.2      yamt  */
     69   1.2      yamt 
     70   1.2      yamt #include <sys/cdefs.h>
     71  1.27  uebayasi __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.27 2011/07/27 14:35:34 uebayasi Exp $");
     72   1.2      yamt 
     73   1.2      yamt #include "opt_ddb.h"
     74   1.2      yamt #include "opt_lockdebug.h"
     75   1.2      yamt #include "opt_perfctrs.h"
     76   1.2      yamt 
     77   1.2      yamt #include <sys/param.h>
     78   1.2      yamt #include <sys/systm.h>
     79   1.2      yamt #include <sys/callout.h>
     80   1.2      yamt #include <sys/cpu.h>
     81   1.2      yamt #include <sys/proc.h>
     82   1.2      yamt #include <sys/kernel.h>
     83   1.2      yamt #include <sys/signalvar.h>
     84   1.2      yamt #include <sys/resourcevar.h>
     85   1.2      yamt #include <sys/sched.h>
     86   1.2      yamt #include <sys/sysctl.h>
     87   1.2      yamt #include <sys/kauth.h>
     88   1.2      yamt #include <sys/lockdebug.h>
     89   1.2      yamt #include <sys/kmem.h>
     90   1.5        ad #include <sys/intr.h>
     91   1.2      yamt 
     92   1.2      yamt static void updatepri(struct lwp *);
     93   1.2      yamt static void resetpriority(struct lwp *);
     94   1.2      yamt 
     95   1.2      yamt extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
     96   1.2      yamt 
     97   1.2      yamt /* Number of hardclock ticks per sched_tick() */
     98  1.12     rmind static int rrticks;
     99   1.2      yamt 
    100   1.2      yamt /*
    101   1.2      yamt  * Force switch among equal priority processes every 100ms.
    102   1.2      yamt  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    103   1.5        ad  *
    104   1.5        ad  * There's no need to lock anywhere in this routine, as it's
    105   1.5        ad  * CPU-local and runs at IPL_SCHED (called from clock interrupt).
    106   1.2      yamt  */
    107   1.2      yamt /* ARGSUSED */
    108   1.2      yamt void
    109   1.2      yamt sched_tick(struct cpu_info *ci)
    110   1.2      yamt {
    111   1.2      yamt 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    112  1.23        ad 	lwp_t *l;
    113   1.2      yamt 
    114   1.2      yamt 	spc->spc_ticks = rrticks;
    115   1.2      yamt 
    116  1.15        ad 	if (CURCPU_IDLE_P()) {
    117  1.15        ad 		cpu_need_resched(ci, 0);
    118   1.7     rmind 		return;
    119  1.15        ad 	}
    120  1.23        ad 	l = ci->ci_data.cpu_onproc;
    121  1.23        ad 	if (l == NULL) {
    122  1.19      yamt 		return;
    123  1.19      yamt 	}
    124  1.23        ad 	switch (l->l_class) {
    125  1.23        ad 	case SCHED_FIFO:
    126  1.23        ad 		/* No timeslicing for FIFO jobs. */
    127  1.23        ad 		break;
    128  1.23        ad 	case SCHED_RR:
    129  1.23        ad 		/* Force it into mi_switch() to look for other jobs to run. */
    130  1.23        ad 		cpu_need_resched(ci, RESCHED_KPREEMPT);
    131  1.23        ad 		break;
    132  1.23        ad 	default:
    133  1.23        ad 		if (spc->spc_flags & SPCF_SHOULDYIELD) {
    134  1.23        ad 			/*
    135  1.23        ad 			 * Process is stuck in kernel somewhere, probably
    136  1.23        ad 			 * due to buggy or inefficient code.  Force a
    137  1.23        ad 			 * kernel preemption.
    138  1.23        ad 			 */
    139  1.23        ad 			cpu_need_resched(ci, RESCHED_KPREEMPT);
    140  1.23        ad 		} else if (spc->spc_flags & SPCF_SEENRR) {
    141  1.23        ad 			/*
    142  1.23        ad 			 * The process has already been through a roundrobin
    143  1.23        ad 			 * without switching and may be hogging the CPU.
    144  1.23        ad 			 * Indicate that the process should yield.
    145  1.23        ad 			 */
    146  1.23        ad 			spc->spc_flags |= SPCF_SHOULDYIELD;
    147  1.23        ad 			cpu_need_resched(ci, 0);
    148  1.23        ad 		} else {
    149  1.23        ad 			spc->spc_flags |= SPCF_SEENRR;
    150  1.23        ad 		}
    151  1.23        ad 		break;
    152  1.23        ad 	}
    153   1.2      yamt }
    154   1.2      yamt 
    155   1.8        ad /*
    156   1.8        ad  * Why PRIO_MAX - 2? From setpriority(2):
    157   1.8        ad  *
    158   1.8        ad  *	prio is a value in the range -20 to 20.  The default priority is
    159   1.8        ad  *	0; lower priorities cause more favorable scheduling.  A value of
    160   1.8        ad  *	19 or 20 will schedule a process only when nothing at priority <=
    161   1.8        ad  *	0 is runnable.
    162   1.8        ad  *
    163   1.8        ad  * This gives estcpu influence over 18 priority levels, and leaves nice
    164   1.8        ad  * with 40 levels.  One way to think about it is that nice has 20 levels
    165   1.8        ad  * either side of estcpu's 18.
    166   1.8        ad  */
    167   1.2      yamt #define	ESTCPU_SHIFT	11
    168   1.8        ad #define	ESTCPU_MAX	((PRIO_MAX - 2) << ESTCPU_SHIFT)
    169   1.8        ad #define	ESTCPU_ACCUM	(1 << (ESTCPU_SHIFT - 1))
    170   1.2      yamt #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    171   1.2      yamt 
    172   1.2      yamt /*
    173   1.2      yamt  * Constants for digital decay and forget:
    174   1.8        ad  *	90% of (l_estcpu) usage in 5 * loadav time
    175   1.8        ad  *	95% of (l_pctcpu) usage in 60 seconds (load insensitive)
    176   1.2      yamt  *          Note that, as ps(1) mentions, this can let percentages
    177   1.2      yamt  *          total over 100% (I've seen 137.9% for 3 processes).
    178   1.2      yamt  *
    179   1.8        ad  * Note that hardclock updates l_estcpu and l_cpticks independently.
    180   1.2      yamt  *
    181   1.8        ad  * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds.
    182   1.2      yamt  * That is, the system wants to compute a value of decay such
    183   1.2      yamt  * that the following for loop:
    184   1.2      yamt  * 	for (i = 0; i < (5 * loadavg); i++)
    185   1.8        ad  * 		l_estcpu *= decay;
    186   1.2      yamt  * will compute
    187   1.8        ad  * 	l_estcpu *= 0.1;
    188   1.2      yamt  * for all values of loadavg:
    189   1.2      yamt  *
    190   1.2      yamt  * Mathematically this loop can be expressed by saying:
    191   1.2      yamt  * 	decay ** (5 * loadavg) ~= .1
    192   1.2      yamt  *
    193   1.2      yamt  * The system computes decay as:
    194   1.2      yamt  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    195   1.2      yamt  *
    196   1.2      yamt  * We wish to prove that the system's computation of decay
    197   1.2      yamt  * will always fulfill the equation:
    198   1.2      yamt  * 	decay ** (5 * loadavg) ~= .1
    199   1.2      yamt  *
    200   1.2      yamt  * If we compute b as:
    201   1.2      yamt  * 	b = 2 * loadavg
    202   1.2      yamt  * then
    203   1.2      yamt  * 	decay = b / (b + 1)
    204   1.2      yamt  *
    205   1.2      yamt  * We now need to prove two things:
    206   1.2      yamt  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    207   1.2      yamt  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    208   1.2      yamt  *
    209   1.2      yamt  * Facts:
    210   1.2      yamt  *         For x close to zero, exp(x) =~ 1 + x, since
    211   1.2      yamt  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    212   1.2      yamt  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    213   1.2      yamt  *         For x close to zero, ln(1+x) =~ x, since
    214   1.2      yamt  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    215   1.2      yamt  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    216   1.2      yamt  *         ln(.1) =~ -2.30
    217   1.2      yamt  *
    218   1.2      yamt  * Proof of (1):
    219   1.2      yamt  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    220   1.2      yamt  *	solving for factor,
    221   1.2      yamt  *      ln(factor) =~ (-2.30/5*loadav), or
    222   1.2      yamt  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    223   1.2      yamt  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    224   1.2      yamt  *
    225   1.2      yamt  * Proof of (2):
    226   1.2      yamt  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    227   1.2      yamt  *	solving for power,
    228   1.2      yamt  *      power*ln(b/(b+1)) =~ -2.30, or
    229   1.2      yamt  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    230   1.2      yamt  *
    231   1.2      yamt  * Actual power values for the implemented algorithm are as follows:
    232   1.2      yamt  *      loadav: 1       2       3       4
    233   1.2      yamt  *      power:  5.68    10.32   14.94   19.55
    234   1.2      yamt  */
    235   1.2      yamt 
    236   1.2      yamt /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    237  1.26      yamt #define	loadfactor(loadav)	(2 * (loadav) / ncpu)
    238   1.2      yamt 
    239  1.17      yamt static fixpt_t
    240   1.2      yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    241   1.2      yamt {
    242   1.2      yamt 
    243   1.2      yamt 	if (estcpu == 0) {
    244   1.2      yamt 		return 0;
    245   1.2      yamt 	}
    246   1.2      yamt 
    247   1.2      yamt #if !defined(_LP64)
    248   1.2      yamt 	/* avoid 64bit arithmetics. */
    249   1.2      yamt #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    250   1.2      yamt 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    251   1.2      yamt 		return estcpu * loadfac / (loadfac + FSCALE);
    252   1.2      yamt 	}
    253   1.2      yamt #endif /* !defined(_LP64) */
    254   1.2      yamt 
    255   1.2      yamt 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    256   1.2      yamt }
    257   1.2      yamt 
    258   1.2      yamt /*
    259   1.8        ad  * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
    260   1.8        ad  * sleeping for at least seven times the loadfactor will decay l_estcpu to
    261   1.2      yamt  * less than (1 << ESTCPU_SHIFT).
    262   1.2      yamt  *
    263   1.2      yamt  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    264   1.2      yamt  */
    265   1.2      yamt static fixpt_t
    266   1.2      yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    267   1.2      yamt {
    268   1.2      yamt 
    269   1.2      yamt 	if ((n << FSHIFT) >= 7 * loadfac) {
    270   1.2      yamt 		return 0;
    271   1.2      yamt 	}
    272   1.2      yamt 
    273   1.2      yamt 	while (estcpu != 0 && n > 1) {
    274   1.2      yamt 		estcpu = decay_cpu(loadfac, estcpu);
    275   1.2      yamt 		n--;
    276   1.2      yamt 	}
    277   1.2      yamt 
    278   1.2      yamt 	return estcpu;
    279   1.2      yamt }
    280   1.2      yamt 
    281   1.2      yamt /*
    282   1.2      yamt  * sched_pstats_hook:
    283   1.2      yamt  *
    284   1.2      yamt  * Periodically called from sched_pstats(); used to recalculate priorities.
    285   1.2      yamt  */
    286   1.2      yamt void
    287  1.22     rmind sched_pstats_hook(struct lwp *l, int batch)
    288   1.2      yamt {
    289  1.25      yamt 	fixpt_t loadfac;
    290   1.2      yamt 
    291   1.8        ad 	/*
    292   1.8        ad 	 * If the LWP has slept an entire second, stop recalculating
    293   1.8        ad 	 * its priority until it wakes up.
    294   1.8        ad 	 */
    295  1.24     rmind 	KASSERT(lwp_locked(l, NULL));
    296  1.25      yamt 	if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    297  1.25      yamt 	    l->l_stat == LSSUSPENDED) {
    298  1.25      yamt 		if (l->l_slptime > 1) {
    299  1.25      yamt 			return;
    300  1.25      yamt 		}
    301   1.8        ad 	}
    302  1.25      yamt 	loadfac = 2 * (averunnable.ldavg[0]);
    303  1.25      yamt 	l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
    304  1.25      yamt 	resetpriority(l);
    305   1.2      yamt }
    306   1.2      yamt 
    307   1.2      yamt /*
    308   1.2      yamt  * Recalculate the priority of a process after it has slept for a while.
    309   1.2      yamt  */
    310   1.2      yamt static void
    311   1.2      yamt updatepri(struct lwp *l)
    312   1.2      yamt {
    313   1.2      yamt 	fixpt_t loadfac;
    314   1.2      yamt 
    315   1.3        ad 	KASSERT(lwp_locked(l, NULL));
    316   1.2      yamt 	KASSERT(l->l_slptime > 1);
    317   1.2      yamt 
    318   1.2      yamt 	loadfac = loadfactor(averunnable.ldavg[0]);
    319   1.2      yamt 
    320   1.2      yamt 	l->l_slptime--; /* the first time was done in sched_pstats */
    321   1.8        ad 	l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
    322   1.2      yamt 	resetpriority(l);
    323   1.2      yamt }
    324   1.2      yamt 
    325   1.2      yamt void
    326  1.14      matt sched_rqinit(void)
    327   1.2      yamt {
    328   1.2      yamt 
    329   1.2      yamt }
    330   1.2      yamt 
    331   1.2      yamt void
    332   1.2      yamt sched_setrunnable(struct lwp *l)
    333   1.2      yamt {
    334   1.2      yamt 
    335   1.2      yamt  	if (l->l_slptime > 1)
    336   1.2      yamt  		updatepri(l);
    337   1.2      yamt }
    338   1.2      yamt 
    339   1.2      yamt void
    340   1.8        ad sched_nice(struct proc *p, int n)
    341   1.2      yamt {
    342   1.8        ad 	struct lwp *l;
    343   1.8        ad 
    344  1.20        ad 	KASSERT(mutex_owned(p->p_lock));
    345   1.2      yamt 
    346   1.8        ad 	p->p_nice = n;
    347   1.8        ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    348   1.8        ad 		lwp_lock(l);
    349   1.8        ad 		resetpriority(l);
    350   1.8        ad 		lwp_unlock(l);
    351   1.8        ad 	}
    352   1.2      yamt }
    353   1.2      yamt 
    354   1.2      yamt /*
    355   1.8        ad  * Recompute the priority of an LWP.  Arrange to reschedule if
    356   1.8        ad  * the resulting priority is better than that of the current LWP.
    357   1.2      yamt  */
    358   1.2      yamt static void
    359   1.2      yamt resetpriority(struct lwp *l)
    360   1.2      yamt {
    361   1.8        ad 	pri_t pri;
    362   1.2      yamt 	struct proc *p = l->l_proc;
    363   1.2      yamt 
    364   1.8        ad 	KASSERT(lwp_locked(l, NULL));
    365   1.2      yamt 
    366   1.8        ad 	if (l->l_class != SCHED_OTHER)
    367   1.2      yamt 		return;
    368   1.2      yamt 
    369   1.8        ad 	/* See comments above ESTCPU_SHIFT definition. */
    370   1.8        ad 	pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
    371   1.8        ad 	pri = imax(pri, 0);
    372   1.8        ad 	if (pri != l->l_priority)
    373   1.8        ad 		lwp_changepri(l, pri);
    374   1.2      yamt }
    375   1.2      yamt 
    376   1.2      yamt /*
    377   1.2      yamt  * We adjust the priority of the current process.  The priority of a process
    378   1.8        ad  * gets worse as it accumulates CPU time.  The CPU usage estimator (l_estcpu)
    379   1.2      yamt  * is increased here.  The formula for computing priorities (in kern_synch.c)
    380   1.8        ad  * will compute a different value each time l_estcpu increases. This can
    381   1.2      yamt  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    382   1.2      yamt  * queue will not change.  The CPU usage estimator ramps up quite quickly
    383   1.2      yamt  * when the process is running (linearly), and decays away exponentially, at
    384   1.2      yamt  * a rate which is proportionally slower when the system is busy.  The basic
    385   1.2      yamt  * principle is that the system will 90% forget that the process used a lot
    386   1.2      yamt  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    387   1.2      yamt  * processes which haven't run much recently, and to round-robin among other
    388   1.2      yamt  * processes.
    389   1.2      yamt  */
    390   1.2      yamt 
    391   1.2      yamt void
    392   1.2      yamt sched_schedclock(struct lwp *l)
    393   1.2      yamt {
    394   1.8        ad 
    395   1.8        ad 	if (l->l_class != SCHED_OTHER)
    396   1.8        ad 		return;
    397   1.2      yamt 
    398   1.2      yamt 	KASSERT(!CURCPU_IDLE_P());
    399   1.8        ad 	l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
    400   1.2      yamt 	lwp_lock(l);
    401   1.2      yamt 	resetpriority(l);
    402   1.2      yamt 	lwp_unlock(l);
    403   1.2      yamt }
    404   1.2      yamt 
    405   1.2      yamt /*
    406   1.2      yamt  * sched_proc_fork:
    407   1.2      yamt  *
    408   1.2      yamt  *	Inherit the parent's scheduler history.
    409   1.2      yamt  */
    410   1.2      yamt void
    411   1.2      yamt sched_proc_fork(struct proc *parent, struct proc *child)
    412   1.2      yamt {
    413   1.8        ad 	lwp_t *pl;
    414   1.2      yamt 
    415  1.20        ad 	KASSERT(mutex_owned(parent->p_lock));
    416   1.2      yamt 
    417   1.8        ad 	pl = LIST_FIRST(&parent->p_lwps);
    418   1.8        ad 	child->p_estcpu_inherited = pl->l_estcpu;
    419   1.2      yamt 	child->p_forktime = sched_pstats_ticks;
    420   1.2      yamt }
    421   1.2      yamt 
    422   1.2      yamt /*
    423   1.2      yamt  * sched_proc_exit:
    424   1.2      yamt  *
    425   1.2      yamt  *	Chargeback parents for the sins of their children.
    426   1.2      yamt  */
    427   1.2      yamt void
    428   1.2      yamt sched_proc_exit(struct proc *parent, struct proc *child)
    429   1.2      yamt {
    430   1.2      yamt 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    431   1.2      yamt 	fixpt_t estcpu;
    432   1.8        ad 	lwp_t *pl, *cl;
    433   1.2      yamt 
    434   1.2      yamt 	/* XXX Only if parent != init?? */
    435   1.2      yamt 
    436  1.20        ad 	mutex_enter(parent->p_lock);
    437   1.8        ad 	pl = LIST_FIRST(&parent->p_lwps);
    438   1.8        ad 	cl = LIST_FIRST(&child->p_lwps);
    439   1.2      yamt 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
    440   1.2      yamt 	    sched_pstats_ticks - child->p_forktime);
    441   1.8        ad 	if (cl->l_estcpu > estcpu) {
    442   1.8        ad 		lwp_lock(pl);
    443   1.8        ad 		pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
    444   1.8        ad 		lwp_unlock(pl);
    445   1.8        ad 	}
    446  1.20        ad 	mutex_exit(parent->p_lock);
    447   1.2      yamt }
    448   1.2      yamt 
    449   1.2      yamt void
    450   1.6     rmind sched_wakeup(struct lwp *l)
    451   1.6     rmind {
    452   1.6     rmind 
    453   1.6     rmind }
    454   1.6     rmind 
    455   1.6     rmind void
    456   1.6     rmind sched_slept(struct lwp *l)
    457   1.6     rmind {
    458   1.6     rmind 
    459   1.6     rmind }
    460   1.6     rmind 
    461   1.2      yamt void
    462   1.8        ad sched_lwp_fork(struct lwp *l1, struct lwp *l2)
    463   1.2      yamt {
    464   1.2      yamt 
    465   1.8        ad 	l2->l_estcpu = l1->l_estcpu;
    466   1.2      yamt }
    467   1.2      yamt 
    468   1.2      yamt void
    469   1.8        ad sched_lwp_collect(struct lwp *t)
    470   1.8        ad {
    471   1.8        ad 	lwp_t *l;
    472   1.8        ad 
    473   1.8        ad 	/* Absorb estcpu value of collected LWP. */
    474   1.8        ad 	l = curlwp;
    475   1.8        ad 	lwp_lock(l);
    476   1.8        ad 	l->l_estcpu += t->l_estcpu;
    477   1.8        ad 	lwp_unlock(l);
    478   1.8        ad }
    479   1.8        ad 
    480  1.16        ad void
    481  1.16        ad sched_oncpu(lwp_t *l)
    482  1.16        ad {
    483  1.16        ad 
    484  1.16        ad }
    485  1.16        ad 
    486  1.16        ad void
    487  1.16        ad sched_newts(lwp_t *l)
    488  1.16        ad {
    489  1.16        ad 
    490  1.16        ad }
    491  1.16        ad 
    492   1.5        ad /*
    493  1.12     rmind  * Sysctl nodes and initialization.
    494   1.5        ad  */
    495  1.12     rmind 
    496  1.12     rmind static int
    497  1.12     rmind sysctl_sched_rtts(SYSCTLFN_ARGS)
    498  1.12     rmind {
    499  1.12     rmind 	struct sysctlnode node;
    500  1.12     rmind 	int rttsms = hztoms(rrticks);
    501  1.12     rmind 
    502  1.12     rmind 	node = *rnode;
    503  1.12     rmind 	node.sysctl_data = &rttsms;
    504  1.12     rmind 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    505  1.12     rmind }
    506  1.12     rmind 
    507  1.16        ad SYSCTL_SETUP(sysctl_sched_4bsd_setup, "sysctl sched setup")
    508   1.2      yamt {
    509   1.2      yamt 	const struct sysctlnode *node = NULL;
    510   1.2      yamt 
    511   1.2      yamt 	sysctl_createv(clog, 0, NULL, NULL,
    512   1.2      yamt 		CTLFLAG_PERMANENT,
    513   1.2      yamt 		CTLTYPE_NODE, "kern", NULL,
    514   1.2      yamt 		NULL, 0, NULL, 0,
    515   1.2      yamt 		CTL_KERN, CTL_EOL);
    516   1.2      yamt 	sysctl_createv(clog, 0, NULL, &node,
    517   1.2      yamt 		CTLFLAG_PERMANENT,
    518   1.2      yamt 		CTLTYPE_NODE, "sched",
    519   1.2      yamt 		SYSCTL_DESCR("Scheduler options"),
    520   1.2      yamt 		NULL, 0, NULL, 0,
    521   1.2      yamt 		CTL_KERN, CTL_CREATE, CTL_EOL);
    522   1.2      yamt 
    523  1.16        ad 	if (node == NULL)
    524  1.16        ad 		return;
    525   1.5        ad 
    526  1.16        ad 	rrticks = hz / 10;
    527  1.16        ad 
    528  1.16        ad 	sysctl_createv(NULL, 0, &node, NULL,
    529   1.5        ad 		CTLFLAG_PERMANENT,
    530   1.5        ad 		CTLTYPE_STRING, "name", NULL,
    531   1.5        ad 		NULL, 0, __UNCONST("4.4BSD"), 0,
    532   1.5        ad 		CTL_CREATE, CTL_EOL);
    533  1.16        ad 	sysctl_createv(NULL, 0, &node, NULL,
    534  1.12     rmind 		CTLFLAG_PERMANENT,
    535  1.12     rmind 		CTLTYPE_INT, "rtts",
    536  1.12     rmind 		SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
    537  1.12     rmind 		sysctl_sched_rtts, 0, NULL, 0,
    538  1.12     rmind 		CTL_CREATE, CTL_EOL);
    539   1.2      yamt }
    540