sched_4bsd.c revision 1.27 1 1.27 uebayasi /* $NetBSD: sched_4bsd.c,v 1.27 2011/07/27 14:35:34 uebayasi Exp $ */
2 1.2 yamt
3 1.2 yamt /*-
4 1.16 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 yamt * All rights reserved.
6 1.2 yamt *
7 1.2 yamt * This code is derived from software contributed to The NetBSD Foundation
8 1.2 yamt * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.2 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
10 1.2 yamt * Daniel Sieger.
11 1.2 yamt *
12 1.2 yamt * Redistribution and use in source and binary forms, with or without
13 1.2 yamt * modification, are permitted provided that the following conditions
14 1.2 yamt * are met:
15 1.2 yamt * 1. Redistributions of source code must retain the above copyright
16 1.2 yamt * notice, this list of conditions and the following disclaimer.
17 1.2 yamt * 2. Redistributions in binary form must reproduce the above copyright
18 1.2 yamt * notice, this list of conditions and the following disclaimer in the
19 1.2 yamt * documentation and/or other materials provided with the distribution.
20 1.2 yamt *
21 1.2 yamt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 1.2 yamt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 1.2 yamt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 1.2 yamt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 1.2 yamt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 1.2 yamt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 1.2 yamt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.2 yamt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 1.2 yamt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 1.2 yamt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 1.2 yamt * POSSIBILITY OF SUCH DAMAGE.
32 1.2 yamt */
33 1.2 yamt
34 1.2 yamt /*-
35 1.2 yamt * Copyright (c) 1982, 1986, 1990, 1991, 1993
36 1.2 yamt * The Regents of the University of California. All rights reserved.
37 1.2 yamt * (c) UNIX System Laboratories, Inc.
38 1.2 yamt * All or some portions of this file are derived from material licensed
39 1.2 yamt * to the University of California by American Telephone and Telegraph
40 1.2 yamt * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 1.2 yamt * the permission of UNIX System Laboratories, Inc.
42 1.2 yamt *
43 1.2 yamt * Redistribution and use in source and binary forms, with or without
44 1.2 yamt * modification, are permitted provided that the following conditions
45 1.2 yamt * are met:
46 1.2 yamt * 1. Redistributions of source code must retain the above copyright
47 1.2 yamt * notice, this list of conditions and the following disclaimer.
48 1.2 yamt * 2. Redistributions in binary form must reproduce the above copyright
49 1.2 yamt * notice, this list of conditions and the following disclaimer in the
50 1.2 yamt * documentation and/or other materials provided with the distribution.
51 1.2 yamt * 3. Neither the name of the University nor the names of its contributors
52 1.2 yamt * may be used to endorse or promote products derived from this software
53 1.2 yamt * without specific prior written permission.
54 1.2 yamt *
55 1.2 yamt * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.2 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.2 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.2 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.2 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.2 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.2 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.2 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.2 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.2 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.2 yamt * SUCH DAMAGE.
66 1.2 yamt *
67 1.2 yamt * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
68 1.2 yamt */
69 1.2 yamt
70 1.2 yamt #include <sys/cdefs.h>
71 1.27 uebayasi __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.27 2011/07/27 14:35:34 uebayasi Exp $");
72 1.2 yamt
73 1.2 yamt #include "opt_ddb.h"
74 1.2 yamt #include "opt_lockdebug.h"
75 1.2 yamt #include "opt_perfctrs.h"
76 1.2 yamt
77 1.2 yamt #include <sys/param.h>
78 1.2 yamt #include <sys/systm.h>
79 1.2 yamt #include <sys/callout.h>
80 1.2 yamt #include <sys/cpu.h>
81 1.2 yamt #include <sys/proc.h>
82 1.2 yamt #include <sys/kernel.h>
83 1.2 yamt #include <sys/signalvar.h>
84 1.2 yamt #include <sys/resourcevar.h>
85 1.2 yamt #include <sys/sched.h>
86 1.2 yamt #include <sys/sysctl.h>
87 1.2 yamt #include <sys/kauth.h>
88 1.2 yamt #include <sys/lockdebug.h>
89 1.2 yamt #include <sys/kmem.h>
90 1.5 ad #include <sys/intr.h>
91 1.2 yamt
92 1.2 yamt static void updatepri(struct lwp *);
93 1.2 yamt static void resetpriority(struct lwp *);
94 1.2 yamt
95 1.2 yamt extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
96 1.2 yamt
97 1.2 yamt /* Number of hardclock ticks per sched_tick() */
98 1.12 rmind static int rrticks;
99 1.2 yamt
100 1.2 yamt /*
101 1.2 yamt * Force switch among equal priority processes every 100ms.
102 1.2 yamt * Called from hardclock every hz/10 == rrticks hardclock ticks.
103 1.5 ad *
104 1.5 ad * There's no need to lock anywhere in this routine, as it's
105 1.5 ad * CPU-local and runs at IPL_SCHED (called from clock interrupt).
106 1.2 yamt */
107 1.2 yamt /* ARGSUSED */
108 1.2 yamt void
109 1.2 yamt sched_tick(struct cpu_info *ci)
110 1.2 yamt {
111 1.2 yamt struct schedstate_percpu *spc = &ci->ci_schedstate;
112 1.23 ad lwp_t *l;
113 1.2 yamt
114 1.2 yamt spc->spc_ticks = rrticks;
115 1.2 yamt
116 1.15 ad if (CURCPU_IDLE_P()) {
117 1.15 ad cpu_need_resched(ci, 0);
118 1.7 rmind return;
119 1.15 ad }
120 1.23 ad l = ci->ci_data.cpu_onproc;
121 1.23 ad if (l == NULL) {
122 1.19 yamt return;
123 1.19 yamt }
124 1.23 ad switch (l->l_class) {
125 1.23 ad case SCHED_FIFO:
126 1.23 ad /* No timeslicing for FIFO jobs. */
127 1.23 ad break;
128 1.23 ad case SCHED_RR:
129 1.23 ad /* Force it into mi_switch() to look for other jobs to run. */
130 1.23 ad cpu_need_resched(ci, RESCHED_KPREEMPT);
131 1.23 ad break;
132 1.23 ad default:
133 1.23 ad if (spc->spc_flags & SPCF_SHOULDYIELD) {
134 1.23 ad /*
135 1.23 ad * Process is stuck in kernel somewhere, probably
136 1.23 ad * due to buggy or inefficient code. Force a
137 1.23 ad * kernel preemption.
138 1.23 ad */
139 1.23 ad cpu_need_resched(ci, RESCHED_KPREEMPT);
140 1.23 ad } else if (spc->spc_flags & SPCF_SEENRR) {
141 1.23 ad /*
142 1.23 ad * The process has already been through a roundrobin
143 1.23 ad * without switching and may be hogging the CPU.
144 1.23 ad * Indicate that the process should yield.
145 1.23 ad */
146 1.23 ad spc->spc_flags |= SPCF_SHOULDYIELD;
147 1.23 ad cpu_need_resched(ci, 0);
148 1.23 ad } else {
149 1.23 ad spc->spc_flags |= SPCF_SEENRR;
150 1.23 ad }
151 1.23 ad break;
152 1.23 ad }
153 1.2 yamt }
154 1.2 yamt
155 1.8 ad /*
156 1.8 ad * Why PRIO_MAX - 2? From setpriority(2):
157 1.8 ad *
158 1.8 ad * prio is a value in the range -20 to 20. The default priority is
159 1.8 ad * 0; lower priorities cause more favorable scheduling. A value of
160 1.8 ad * 19 or 20 will schedule a process only when nothing at priority <=
161 1.8 ad * 0 is runnable.
162 1.8 ad *
163 1.8 ad * This gives estcpu influence over 18 priority levels, and leaves nice
164 1.8 ad * with 40 levels. One way to think about it is that nice has 20 levels
165 1.8 ad * either side of estcpu's 18.
166 1.8 ad */
167 1.2 yamt #define ESTCPU_SHIFT 11
168 1.8 ad #define ESTCPU_MAX ((PRIO_MAX - 2) << ESTCPU_SHIFT)
169 1.8 ad #define ESTCPU_ACCUM (1 << (ESTCPU_SHIFT - 1))
170 1.2 yamt #define ESTCPULIM(e) min((e), ESTCPU_MAX)
171 1.2 yamt
172 1.2 yamt /*
173 1.2 yamt * Constants for digital decay and forget:
174 1.8 ad * 90% of (l_estcpu) usage in 5 * loadav time
175 1.8 ad * 95% of (l_pctcpu) usage in 60 seconds (load insensitive)
176 1.2 yamt * Note that, as ps(1) mentions, this can let percentages
177 1.2 yamt * total over 100% (I've seen 137.9% for 3 processes).
178 1.2 yamt *
179 1.8 ad * Note that hardclock updates l_estcpu and l_cpticks independently.
180 1.2 yamt *
181 1.8 ad * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds.
182 1.2 yamt * That is, the system wants to compute a value of decay such
183 1.2 yamt * that the following for loop:
184 1.2 yamt * for (i = 0; i < (5 * loadavg); i++)
185 1.8 ad * l_estcpu *= decay;
186 1.2 yamt * will compute
187 1.8 ad * l_estcpu *= 0.1;
188 1.2 yamt * for all values of loadavg:
189 1.2 yamt *
190 1.2 yamt * Mathematically this loop can be expressed by saying:
191 1.2 yamt * decay ** (5 * loadavg) ~= .1
192 1.2 yamt *
193 1.2 yamt * The system computes decay as:
194 1.2 yamt * decay = (2 * loadavg) / (2 * loadavg + 1)
195 1.2 yamt *
196 1.2 yamt * We wish to prove that the system's computation of decay
197 1.2 yamt * will always fulfill the equation:
198 1.2 yamt * decay ** (5 * loadavg) ~= .1
199 1.2 yamt *
200 1.2 yamt * If we compute b as:
201 1.2 yamt * b = 2 * loadavg
202 1.2 yamt * then
203 1.2 yamt * decay = b / (b + 1)
204 1.2 yamt *
205 1.2 yamt * We now need to prove two things:
206 1.2 yamt * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
207 1.2 yamt * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
208 1.2 yamt *
209 1.2 yamt * Facts:
210 1.2 yamt * For x close to zero, exp(x) =~ 1 + x, since
211 1.2 yamt * exp(x) = 0! + x**1/1! + x**2/2! + ... .
212 1.2 yamt * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
213 1.2 yamt * For x close to zero, ln(1+x) =~ x, since
214 1.2 yamt * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
215 1.2 yamt * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
216 1.2 yamt * ln(.1) =~ -2.30
217 1.2 yamt *
218 1.2 yamt * Proof of (1):
219 1.2 yamt * Solve (factor)**(power) =~ .1 given power (5*loadav):
220 1.2 yamt * solving for factor,
221 1.2 yamt * ln(factor) =~ (-2.30/5*loadav), or
222 1.2 yamt * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
223 1.2 yamt * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
224 1.2 yamt *
225 1.2 yamt * Proof of (2):
226 1.2 yamt * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
227 1.2 yamt * solving for power,
228 1.2 yamt * power*ln(b/(b+1)) =~ -2.30, or
229 1.2 yamt * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
230 1.2 yamt *
231 1.2 yamt * Actual power values for the implemented algorithm are as follows:
232 1.2 yamt * loadav: 1 2 3 4
233 1.2 yamt * power: 5.68 10.32 14.94 19.55
234 1.2 yamt */
235 1.2 yamt
236 1.2 yamt /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
237 1.26 yamt #define loadfactor(loadav) (2 * (loadav) / ncpu)
238 1.2 yamt
239 1.17 yamt static fixpt_t
240 1.2 yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
241 1.2 yamt {
242 1.2 yamt
243 1.2 yamt if (estcpu == 0) {
244 1.2 yamt return 0;
245 1.2 yamt }
246 1.2 yamt
247 1.2 yamt #if !defined(_LP64)
248 1.2 yamt /* avoid 64bit arithmetics. */
249 1.2 yamt #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
250 1.2 yamt if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
251 1.2 yamt return estcpu * loadfac / (loadfac + FSCALE);
252 1.2 yamt }
253 1.2 yamt #endif /* !defined(_LP64) */
254 1.2 yamt
255 1.2 yamt return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
256 1.2 yamt }
257 1.2 yamt
258 1.2 yamt /*
259 1.8 ad * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
260 1.8 ad * sleeping for at least seven times the loadfactor will decay l_estcpu to
261 1.2 yamt * less than (1 << ESTCPU_SHIFT).
262 1.2 yamt *
263 1.2 yamt * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
264 1.2 yamt */
265 1.2 yamt static fixpt_t
266 1.2 yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
267 1.2 yamt {
268 1.2 yamt
269 1.2 yamt if ((n << FSHIFT) >= 7 * loadfac) {
270 1.2 yamt return 0;
271 1.2 yamt }
272 1.2 yamt
273 1.2 yamt while (estcpu != 0 && n > 1) {
274 1.2 yamt estcpu = decay_cpu(loadfac, estcpu);
275 1.2 yamt n--;
276 1.2 yamt }
277 1.2 yamt
278 1.2 yamt return estcpu;
279 1.2 yamt }
280 1.2 yamt
281 1.2 yamt /*
282 1.2 yamt * sched_pstats_hook:
283 1.2 yamt *
284 1.2 yamt * Periodically called from sched_pstats(); used to recalculate priorities.
285 1.2 yamt */
286 1.2 yamt void
287 1.22 rmind sched_pstats_hook(struct lwp *l, int batch)
288 1.2 yamt {
289 1.25 yamt fixpt_t loadfac;
290 1.2 yamt
291 1.8 ad /*
292 1.8 ad * If the LWP has slept an entire second, stop recalculating
293 1.8 ad * its priority until it wakes up.
294 1.8 ad */
295 1.24 rmind KASSERT(lwp_locked(l, NULL));
296 1.25 yamt if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
297 1.25 yamt l->l_stat == LSSUSPENDED) {
298 1.25 yamt if (l->l_slptime > 1) {
299 1.25 yamt return;
300 1.25 yamt }
301 1.8 ad }
302 1.25 yamt loadfac = 2 * (averunnable.ldavg[0]);
303 1.25 yamt l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
304 1.25 yamt resetpriority(l);
305 1.2 yamt }
306 1.2 yamt
307 1.2 yamt /*
308 1.2 yamt * Recalculate the priority of a process after it has slept for a while.
309 1.2 yamt */
310 1.2 yamt static void
311 1.2 yamt updatepri(struct lwp *l)
312 1.2 yamt {
313 1.2 yamt fixpt_t loadfac;
314 1.2 yamt
315 1.3 ad KASSERT(lwp_locked(l, NULL));
316 1.2 yamt KASSERT(l->l_slptime > 1);
317 1.2 yamt
318 1.2 yamt loadfac = loadfactor(averunnable.ldavg[0]);
319 1.2 yamt
320 1.2 yamt l->l_slptime--; /* the first time was done in sched_pstats */
321 1.8 ad l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
322 1.2 yamt resetpriority(l);
323 1.2 yamt }
324 1.2 yamt
325 1.2 yamt void
326 1.14 matt sched_rqinit(void)
327 1.2 yamt {
328 1.2 yamt
329 1.2 yamt }
330 1.2 yamt
331 1.2 yamt void
332 1.2 yamt sched_setrunnable(struct lwp *l)
333 1.2 yamt {
334 1.2 yamt
335 1.2 yamt if (l->l_slptime > 1)
336 1.2 yamt updatepri(l);
337 1.2 yamt }
338 1.2 yamt
339 1.2 yamt void
340 1.8 ad sched_nice(struct proc *p, int n)
341 1.2 yamt {
342 1.8 ad struct lwp *l;
343 1.8 ad
344 1.20 ad KASSERT(mutex_owned(p->p_lock));
345 1.2 yamt
346 1.8 ad p->p_nice = n;
347 1.8 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
348 1.8 ad lwp_lock(l);
349 1.8 ad resetpriority(l);
350 1.8 ad lwp_unlock(l);
351 1.8 ad }
352 1.2 yamt }
353 1.2 yamt
354 1.2 yamt /*
355 1.8 ad * Recompute the priority of an LWP. Arrange to reschedule if
356 1.8 ad * the resulting priority is better than that of the current LWP.
357 1.2 yamt */
358 1.2 yamt static void
359 1.2 yamt resetpriority(struct lwp *l)
360 1.2 yamt {
361 1.8 ad pri_t pri;
362 1.2 yamt struct proc *p = l->l_proc;
363 1.2 yamt
364 1.8 ad KASSERT(lwp_locked(l, NULL));
365 1.2 yamt
366 1.8 ad if (l->l_class != SCHED_OTHER)
367 1.2 yamt return;
368 1.2 yamt
369 1.8 ad /* See comments above ESTCPU_SHIFT definition. */
370 1.8 ad pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
371 1.8 ad pri = imax(pri, 0);
372 1.8 ad if (pri != l->l_priority)
373 1.8 ad lwp_changepri(l, pri);
374 1.2 yamt }
375 1.2 yamt
376 1.2 yamt /*
377 1.2 yamt * We adjust the priority of the current process. The priority of a process
378 1.8 ad * gets worse as it accumulates CPU time. The CPU usage estimator (l_estcpu)
379 1.2 yamt * is increased here. The formula for computing priorities (in kern_synch.c)
380 1.8 ad * will compute a different value each time l_estcpu increases. This can
381 1.2 yamt * cause a switch, but unless the priority crosses a PPQ boundary the actual
382 1.2 yamt * queue will not change. The CPU usage estimator ramps up quite quickly
383 1.2 yamt * when the process is running (linearly), and decays away exponentially, at
384 1.2 yamt * a rate which is proportionally slower when the system is busy. The basic
385 1.2 yamt * principle is that the system will 90% forget that the process used a lot
386 1.2 yamt * of CPU time in 5 * loadav seconds. This causes the system to favor
387 1.2 yamt * processes which haven't run much recently, and to round-robin among other
388 1.2 yamt * processes.
389 1.2 yamt */
390 1.2 yamt
391 1.2 yamt void
392 1.2 yamt sched_schedclock(struct lwp *l)
393 1.2 yamt {
394 1.8 ad
395 1.8 ad if (l->l_class != SCHED_OTHER)
396 1.8 ad return;
397 1.2 yamt
398 1.2 yamt KASSERT(!CURCPU_IDLE_P());
399 1.8 ad l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
400 1.2 yamt lwp_lock(l);
401 1.2 yamt resetpriority(l);
402 1.2 yamt lwp_unlock(l);
403 1.2 yamt }
404 1.2 yamt
405 1.2 yamt /*
406 1.2 yamt * sched_proc_fork:
407 1.2 yamt *
408 1.2 yamt * Inherit the parent's scheduler history.
409 1.2 yamt */
410 1.2 yamt void
411 1.2 yamt sched_proc_fork(struct proc *parent, struct proc *child)
412 1.2 yamt {
413 1.8 ad lwp_t *pl;
414 1.2 yamt
415 1.20 ad KASSERT(mutex_owned(parent->p_lock));
416 1.2 yamt
417 1.8 ad pl = LIST_FIRST(&parent->p_lwps);
418 1.8 ad child->p_estcpu_inherited = pl->l_estcpu;
419 1.2 yamt child->p_forktime = sched_pstats_ticks;
420 1.2 yamt }
421 1.2 yamt
422 1.2 yamt /*
423 1.2 yamt * sched_proc_exit:
424 1.2 yamt *
425 1.2 yamt * Chargeback parents for the sins of their children.
426 1.2 yamt */
427 1.2 yamt void
428 1.2 yamt sched_proc_exit(struct proc *parent, struct proc *child)
429 1.2 yamt {
430 1.2 yamt fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
431 1.2 yamt fixpt_t estcpu;
432 1.8 ad lwp_t *pl, *cl;
433 1.2 yamt
434 1.2 yamt /* XXX Only if parent != init?? */
435 1.2 yamt
436 1.20 ad mutex_enter(parent->p_lock);
437 1.8 ad pl = LIST_FIRST(&parent->p_lwps);
438 1.8 ad cl = LIST_FIRST(&child->p_lwps);
439 1.2 yamt estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
440 1.2 yamt sched_pstats_ticks - child->p_forktime);
441 1.8 ad if (cl->l_estcpu > estcpu) {
442 1.8 ad lwp_lock(pl);
443 1.8 ad pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
444 1.8 ad lwp_unlock(pl);
445 1.8 ad }
446 1.20 ad mutex_exit(parent->p_lock);
447 1.2 yamt }
448 1.2 yamt
449 1.2 yamt void
450 1.6 rmind sched_wakeup(struct lwp *l)
451 1.6 rmind {
452 1.6 rmind
453 1.6 rmind }
454 1.6 rmind
455 1.6 rmind void
456 1.6 rmind sched_slept(struct lwp *l)
457 1.6 rmind {
458 1.6 rmind
459 1.6 rmind }
460 1.6 rmind
461 1.2 yamt void
462 1.8 ad sched_lwp_fork(struct lwp *l1, struct lwp *l2)
463 1.2 yamt {
464 1.2 yamt
465 1.8 ad l2->l_estcpu = l1->l_estcpu;
466 1.2 yamt }
467 1.2 yamt
468 1.2 yamt void
469 1.8 ad sched_lwp_collect(struct lwp *t)
470 1.8 ad {
471 1.8 ad lwp_t *l;
472 1.8 ad
473 1.8 ad /* Absorb estcpu value of collected LWP. */
474 1.8 ad l = curlwp;
475 1.8 ad lwp_lock(l);
476 1.8 ad l->l_estcpu += t->l_estcpu;
477 1.8 ad lwp_unlock(l);
478 1.8 ad }
479 1.8 ad
480 1.16 ad void
481 1.16 ad sched_oncpu(lwp_t *l)
482 1.16 ad {
483 1.16 ad
484 1.16 ad }
485 1.16 ad
486 1.16 ad void
487 1.16 ad sched_newts(lwp_t *l)
488 1.16 ad {
489 1.16 ad
490 1.16 ad }
491 1.16 ad
492 1.5 ad /*
493 1.12 rmind * Sysctl nodes and initialization.
494 1.5 ad */
495 1.12 rmind
496 1.12 rmind static int
497 1.12 rmind sysctl_sched_rtts(SYSCTLFN_ARGS)
498 1.12 rmind {
499 1.12 rmind struct sysctlnode node;
500 1.12 rmind int rttsms = hztoms(rrticks);
501 1.12 rmind
502 1.12 rmind node = *rnode;
503 1.12 rmind node.sysctl_data = &rttsms;
504 1.12 rmind return sysctl_lookup(SYSCTLFN_CALL(&node));
505 1.12 rmind }
506 1.12 rmind
507 1.16 ad SYSCTL_SETUP(sysctl_sched_4bsd_setup, "sysctl sched setup")
508 1.2 yamt {
509 1.2 yamt const struct sysctlnode *node = NULL;
510 1.2 yamt
511 1.2 yamt sysctl_createv(clog, 0, NULL, NULL,
512 1.2 yamt CTLFLAG_PERMANENT,
513 1.2 yamt CTLTYPE_NODE, "kern", NULL,
514 1.2 yamt NULL, 0, NULL, 0,
515 1.2 yamt CTL_KERN, CTL_EOL);
516 1.2 yamt sysctl_createv(clog, 0, NULL, &node,
517 1.2 yamt CTLFLAG_PERMANENT,
518 1.2 yamt CTLTYPE_NODE, "sched",
519 1.2 yamt SYSCTL_DESCR("Scheduler options"),
520 1.2 yamt NULL, 0, NULL, 0,
521 1.2 yamt CTL_KERN, CTL_CREATE, CTL_EOL);
522 1.2 yamt
523 1.16 ad if (node == NULL)
524 1.16 ad return;
525 1.5 ad
526 1.16 ad rrticks = hz / 10;
527 1.16 ad
528 1.16 ad sysctl_createv(NULL, 0, &node, NULL,
529 1.5 ad CTLFLAG_PERMANENT,
530 1.5 ad CTLTYPE_STRING, "name", NULL,
531 1.5 ad NULL, 0, __UNCONST("4.4BSD"), 0,
532 1.5 ad CTL_CREATE, CTL_EOL);
533 1.16 ad sysctl_createv(NULL, 0, &node, NULL,
534 1.12 rmind CTLFLAG_PERMANENT,
535 1.12 rmind CTLTYPE_INT, "rtts",
536 1.12 rmind SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
537 1.12 rmind sysctl_sched_rtts, 0, NULL, 0,
538 1.12 rmind CTL_CREATE, CTL_EOL);
539 1.2 yamt }
540