Home | History | Annotate | Line # | Download | only in kern
sched_4bsd.c revision 1.28.12.1
      1  1.28.12.1  rmind /*	$NetBSD: sched_4bsd.c,v 1.28.12.1 2014/05/18 17:46:07 rmind Exp $	*/
      2        1.2   yamt 
      3        1.2   yamt /*-
      4       1.16     ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5        1.2   yamt  * All rights reserved.
      6        1.2   yamt  *
      7        1.2   yamt  * This code is derived from software contributed to The NetBSD Foundation
      8        1.2   yamt  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9        1.2   yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
     10        1.2   yamt  * Daniel Sieger.
     11        1.2   yamt  *
     12        1.2   yamt  * Redistribution and use in source and binary forms, with or without
     13        1.2   yamt  * modification, are permitted provided that the following conditions
     14        1.2   yamt  * are met:
     15        1.2   yamt  * 1. Redistributions of source code must retain the above copyright
     16        1.2   yamt  *    notice, this list of conditions and the following disclaimer.
     17        1.2   yamt  * 2. Redistributions in binary form must reproduce the above copyright
     18        1.2   yamt  *    notice, this list of conditions and the following disclaimer in the
     19        1.2   yamt  *    documentation and/or other materials provided with the distribution.
     20        1.2   yamt  *
     21        1.2   yamt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22        1.2   yamt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23        1.2   yamt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24        1.2   yamt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25        1.2   yamt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26        1.2   yamt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27        1.2   yamt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28        1.2   yamt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29        1.2   yamt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30        1.2   yamt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31        1.2   yamt  * POSSIBILITY OF SUCH DAMAGE.
     32        1.2   yamt  */
     33        1.2   yamt 
     34        1.2   yamt /*-
     35        1.2   yamt  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     36        1.2   yamt  *	The Regents of the University of California.  All rights reserved.
     37        1.2   yamt  * (c) UNIX System Laboratories, Inc.
     38        1.2   yamt  * All or some portions of this file are derived from material licensed
     39        1.2   yamt  * to the University of California by American Telephone and Telegraph
     40        1.2   yamt  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     41        1.2   yamt  * the permission of UNIX System Laboratories, Inc.
     42        1.2   yamt  *
     43        1.2   yamt  * Redistribution and use in source and binary forms, with or without
     44        1.2   yamt  * modification, are permitted provided that the following conditions
     45        1.2   yamt  * are met:
     46        1.2   yamt  * 1. Redistributions of source code must retain the above copyright
     47        1.2   yamt  *    notice, this list of conditions and the following disclaimer.
     48        1.2   yamt  * 2. Redistributions in binary form must reproduce the above copyright
     49        1.2   yamt  *    notice, this list of conditions and the following disclaimer in the
     50        1.2   yamt  *    documentation and/or other materials provided with the distribution.
     51        1.2   yamt  * 3. Neither the name of the University nor the names of its contributors
     52        1.2   yamt  *    may be used to endorse or promote products derived from this software
     53        1.2   yamt  *    without specific prior written permission.
     54        1.2   yamt  *
     55        1.2   yamt  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56        1.2   yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57        1.2   yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58        1.2   yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59        1.2   yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60        1.2   yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61        1.2   yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62        1.2   yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63        1.2   yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64        1.2   yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65        1.2   yamt  * SUCH DAMAGE.
     66        1.2   yamt  *
     67        1.2   yamt  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     68        1.2   yamt  */
     69        1.2   yamt 
     70        1.2   yamt #include <sys/cdefs.h>
     71  1.28.12.1  rmind __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.28.12.1 2014/05/18 17:46:07 rmind Exp $");
     72        1.2   yamt 
     73        1.2   yamt #include "opt_ddb.h"
     74        1.2   yamt #include "opt_lockdebug.h"
     75        1.2   yamt #include "opt_perfctrs.h"
     76        1.2   yamt 
     77        1.2   yamt #include <sys/param.h>
     78        1.2   yamt #include <sys/systm.h>
     79        1.2   yamt #include <sys/callout.h>
     80        1.2   yamt #include <sys/cpu.h>
     81        1.2   yamt #include <sys/proc.h>
     82        1.2   yamt #include <sys/kernel.h>
     83        1.2   yamt #include <sys/signalvar.h>
     84        1.2   yamt #include <sys/resourcevar.h>
     85        1.2   yamt #include <sys/sched.h>
     86        1.2   yamt #include <sys/sysctl.h>
     87        1.2   yamt #include <sys/kauth.h>
     88        1.2   yamt #include <sys/lockdebug.h>
     89        1.2   yamt #include <sys/kmem.h>
     90        1.5     ad #include <sys/intr.h>
     91        1.2   yamt 
     92        1.2   yamt static void updatepri(struct lwp *);
     93        1.2   yamt static void resetpriority(struct lwp *);
     94        1.2   yamt 
     95        1.2   yamt extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
     96        1.2   yamt 
     97        1.2   yamt /* Number of hardclock ticks per sched_tick() */
     98       1.12  rmind static int rrticks;
     99        1.2   yamt 
    100        1.2   yamt /*
    101        1.2   yamt  * Force switch among equal priority processes every 100ms.
    102        1.2   yamt  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    103        1.5     ad  *
    104        1.5     ad  * There's no need to lock anywhere in this routine, as it's
    105        1.5     ad  * CPU-local and runs at IPL_SCHED (called from clock interrupt).
    106        1.2   yamt  */
    107        1.2   yamt /* ARGSUSED */
    108        1.2   yamt void
    109        1.2   yamt sched_tick(struct cpu_info *ci)
    110        1.2   yamt {
    111        1.2   yamt 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    112       1.23     ad 	lwp_t *l;
    113        1.2   yamt 
    114        1.2   yamt 	spc->spc_ticks = rrticks;
    115        1.2   yamt 
    116       1.15     ad 	if (CURCPU_IDLE_P()) {
    117       1.15     ad 		cpu_need_resched(ci, 0);
    118        1.7  rmind 		return;
    119       1.15     ad 	}
    120       1.23     ad 	l = ci->ci_data.cpu_onproc;
    121       1.23     ad 	if (l == NULL) {
    122       1.19   yamt 		return;
    123       1.19   yamt 	}
    124       1.23     ad 	switch (l->l_class) {
    125       1.23     ad 	case SCHED_FIFO:
    126       1.23     ad 		/* No timeslicing for FIFO jobs. */
    127       1.23     ad 		break;
    128       1.23     ad 	case SCHED_RR:
    129       1.23     ad 		/* Force it into mi_switch() to look for other jobs to run. */
    130       1.23     ad 		cpu_need_resched(ci, RESCHED_KPREEMPT);
    131       1.23     ad 		break;
    132       1.23     ad 	default:
    133       1.23     ad 		if (spc->spc_flags & SPCF_SHOULDYIELD) {
    134       1.23     ad 			/*
    135       1.23     ad 			 * Process is stuck in kernel somewhere, probably
    136       1.23     ad 			 * due to buggy or inefficient code.  Force a
    137       1.23     ad 			 * kernel preemption.
    138       1.23     ad 			 */
    139       1.23     ad 			cpu_need_resched(ci, RESCHED_KPREEMPT);
    140       1.23     ad 		} else if (spc->spc_flags & SPCF_SEENRR) {
    141       1.23     ad 			/*
    142       1.23     ad 			 * The process has already been through a roundrobin
    143       1.23     ad 			 * without switching and may be hogging the CPU.
    144       1.23     ad 			 * Indicate that the process should yield.
    145       1.23     ad 			 */
    146       1.23     ad 			spc->spc_flags |= SPCF_SHOULDYIELD;
    147       1.23     ad 			cpu_need_resched(ci, 0);
    148       1.23     ad 		} else {
    149       1.23     ad 			spc->spc_flags |= SPCF_SEENRR;
    150       1.23     ad 		}
    151       1.23     ad 		break;
    152       1.23     ad 	}
    153        1.2   yamt }
    154        1.2   yamt 
    155        1.8     ad /*
    156        1.8     ad  * Why PRIO_MAX - 2? From setpriority(2):
    157        1.8     ad  *
    158        1.8     ad  *	prio is a value in the range -20 to 20.  The default priority is
    159        1.8     ad  *	0; lower priorities cause more favorable scheduling.  A value of
    160        1.8     ad  *	19 or 20 will schedule a process only when nothing at priority <=
    161        1.8     ad  *	0 is runnable.
    162        1.8     ad  *
    163        1.8     ad  * This gives estcpu influence over 18 priority levels, and leaves nice
    164        1.8     ad  * with 40 levels.  One way to think about it is that nice has 20 levels
    165        1.8     ad  * either side of estcpu's 18.
    166        1.8     ad  */
    167        1.2   yamt #define	ESTCPU_SHIFT	11
    168        1.8     ad #define	ESTCPU_MAX	((PRIO_MAX - 2) << ESTCPU_SHIFT)
    169        1.8     ad #define	ESTCPU_ACCUM	(1 << (ESTCPU_SHIFT - 1))
    170        1.2   yamt #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    171        1.2   yamt 
    172        1.2   yamt /*
    173        1.2   yamt  * Constants for digital decay and forget:
    174        1.8     ad  *	90% of (l_estcpu) usage in 5 * loadav time
    175        1.8     ad  *	95% of (l_pctcpu) usage in 60 seconds (load insensitive)
    176        1.2   yamt  *          Note that, as ps(1) mentions, this can let percentages
    177        1.2   yamt  *          total over 100% (I've seen 137.9% for 3 processes).
    178        1.2   yamt  *
    179        1.8     ad  * Note that hardclock updates l_estcpu and l_cpticks independently.
    180        1.2   yamt  *
    181        1.8     ad  * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds.
    182        1.2   yamt  * That is, the system wants to compute a value of decay such
    183        1.2   yamt  * that the following for loop:
    184        1.2   yamt  * 	for (i = 0; i < (5 * loadavg); i++)
    185        1.8     ad  * 		l_estcpu *= decay;
    186        1.2   yamt  * will compute
    187        1.8     ad  * 	l_estcpu *= 0.1;
    188        1.2   yamt  * for all values of loadavg:
    189        1.2   yamt  *
    190        1.2   yamt  * Mathematically this loop can be expressed by saying:
    191        1.2   yamt  * 	decay ** (5 * loadavg) ~= .1
    192        1.2   yamt  *
    193        1.2   yamt  * The system computes decay as:
    194        1.2   yamt  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    195        1.2   yamt  *
    196        1.2   yamt  * We wish to prove that the system's computation of decay
    197        1.2   yamt  * will always fulfill the equation:
    198        1.2   yamt  * 	decay ** (5 * loadavg) ~= .1
    199        1.2   yamt  *
    200        1.2   yamt  * If we compute b as:
    201        1.2   yamt  * 	b = 2 * loadavg
    202        1.2   yamt  * then
    203        1.2   yamt  * 	decay = b / (b + 1)
    204        1.2   yamt  *
    205        1.2   yamt  * We now need to prove two things:
    206        1.2   yamt  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    207        1.2   yamt  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    208        1.2   yamt  *
    209        1.2   yamt  * Facts:
    210        1.2   yamt  *         For x close to zero, exp(x) =~ 1 + x, since
    211        1.2   yamt  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    212        1.2   yamt  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    213        1.2   yamt  *         For x close to zero, ln(1+x) =~ x, since
    214        1.2   yamt  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    215        1.2   yamt  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    216        1.2   yamt  *         ln(.1) =~ -2.30
    217        1.2   yamt  *
    218        1.2   yamt  * Proof of (1):
    219        1.2   yamt  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    220        1.2   yamt  *	solving for factor,
    221        1.2   yamt  *      ln(factor) =~ (-2.30/5*loadav), or
    222        1.2   yamt  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    223        1.2   yamt  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    224        1.2   yamt  *
    225        1.2   yamt  * Proof of (2):
    226        1.2   yamt  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    227        1.2   yamt  *	solving for power,
    228        1.2   yamt  *      power*ln(b/(b+1)) =~ -2.30, or
    229        1.2   yamt  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    230        1.2   yamt  *
    231        1.2   yamt  * Actual power values for the implemented algorithm are as follows:
    232        1.2   yamt  *      loadav: 1       2       3       4
    233        1.2   yamt  *      power:  5.68    10.32   14.94   19.55
    234        1.2   yamt  */
    235        1.2   yamt 
    236        1.2   yamt /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    237       1.26   yamt #define	loadfactor(loadav)	(2 * (loadav) / ncpu)
    238        1.2   yamt 
    239       1.17   yamt static fixpt_t
    240        1.2   yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    241        1.2   yamt {
    242        1.2   yamt 
    243        1.2   yamt 	if (estcpu == 0) {
    244        1.2   yamt 		return 0;
    245        1.2   yamt 	}
    246        1.2   yamt 
    247        1.2   yamt #if !defined(_LP64)
    248        1.2   yamt 	/* avoid 64bit arithmetics. */
    249        1.2   yamt #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    250        1.2   yamt 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    251        1.2   yamt 		return estcpu * loadfac / (loadfac + FSCALE);
    252        1.2   yamt 	}
    253        1.2   yamt #endif /* !defined(_LP64) */
    254        1.2   yamt 
    255        1.2   yamt 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    256        1.2   yamt }
    257        1.2   yamt 
    258        1.2   yamt /*
    259        1.8     ad  * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
    260        1.8     ad  * sleeping for at least seven times the loadfactor will decay l_estcpu to
    261        1.2   yamt  * less than (1 << ESTCPU_SHIFT).
    262        1.2   yamt  *
    263        1.2   yamt  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    264        1.2   yamt  */
    265        1.2   yamt static fixpt_t
    266        1.2   yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    267        1.2   yamt {
    268        1.2   yamt 
    269        1.2   yamt 	if ((n << FSHIFT) >= 7 * loadfac) {
    270        1.2   yamt 		return 0;
    271        1.2   yamt 	}
    272        1.2   yamt 
    273        1.2   yamt 	while (estcpu != 0 && n > 1) {
    274        1.2   yamt 		estcpu = decay_cpu(loadfac, estcpu);
    275        1.2   yamt 		n--;
    276        1.2   yamt 	}
    277        1.2   yamt 
    278        1.2   yamt 	return estcpu;
    279        1.2   yamt }
    280        1.2   yamt 
    281        1.2   yamt /*
    282        1.2   yamt  * sched_pstats_hook:
    283        1.2   yamt  *
    284        1.2   yamt  * Periodically called from sched_pstats(); used to recalculate priorities.
    285        1.2   yamt  */
    286        1.2   yamt void
    287       1.22  rmind sched_pstats_hook(struct lwp *l, int batch)
    288        1.2   yamt {
    289       1.25   yamt 	fixpt_t loadfac;
    290        1.2   yamt 
    291        1.8     ad 	/*
    292        1.8     ad 	 * If the LWP has slept an entire second, stop recalculating
    293        1.8     ad 	 * its priority until it wakes up.
    294        1.8     ad 	 */
    295       1.24  rmind 	KASSERT(lwp_locked(l, NULL));
    296       1.25   yamt 	if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    297       1.25   yamt 	    l->l_stat == LSSUSPENDED) {
    298       1.25   yamt 		if (l->l_slptime > 1) {
    299       1.25   yamt 			return;
    300       1.25   yamt 		}
    301        1.8     ad 	}
    302       1.25   yamt 	loadfac = 2 * (averunnable.ldavg[0]);
    303       1.25   yamt 	l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
    304       1.25   yamt 	resetpriority(l);
    305        1.2   yamt }
    306        1.2   yamt 
    307        1.2   yamt /*
    308        1.2   yamt  * Recalculate the priority of a process after it has slept for a while.
    309        1.2   yamt  */
    310        1.2   yamt static void
    311        1.2   yamt updatepri(struct lwp *l)
    312        1.2   yamt {
    313        1.2   yamt 	fixpt_t loadfac;
    314        1.2   yamt 
    315        1.3     ad 	KASSERT(lwp_locked(l, NULL));
    316        1.2   yamt 	KASSERT(l->l_slptime > 1);
    317        1.2   yamt 
    318        1.2   yamt 	loadfac = loadfactor(averunnable.ldavg[0]);
    319        1.2   yamt 
    320        1.2   yamt 	l->l_slptime--; /* the first time was done in sched_pstats */
    321        1.8     ad 	l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
    322        1.2   yamt 	resetpriority(l);
    323        1.2   yamt }
    324        1.2   yamt 
    325        1.2   yamt void
    326       1.14   matt sched_rqinit(void)
    327        1.2   yamt {
    328        1.2   yamt 
    329        1.2   yamt }
    330        1.2   yamt 
    331        1.2   yamt void
    332        1.2   yamt sched_setrunnable(struct lwp *l)
    333        1.2   yamt {
    334        1.2   yamt 
    335        1.2   yamt  	if (l->l_slptime > 1)
    336        1.2   yamt  		updatepri(l);
    337        1.2   yamt }
    338        1.2   yamt 
    339        1.2   yamt void
    340        1.8     ad sched_nice(struct proc *p, int n)
    341        1.2   yamt {
    342        1.8     ad 	struct lwp *l;
    343        1.8     ad 
    344       1.20     ad 	KASSERT(mutex_owned(p->p_lock));
    345        1.2   yamt 
    346        1.8     ad 	p->p_nice = n;
    347        1.8     ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    348        1.8     ad 		lwp_lock(l);
    349        1.8     ad 		resetpriority(l);
    350        1.8     ad 		lwp_unlock(l);
    351        1.8     ad 	}
    352        1.2   yamt }
    353        1.2   yamt 
    354        1.2   yamt /*
    355        1.8     ad  * Recompute the priority of an LWP.  Arrange to reschedule if
    356        1.8     ad  * the resulting priority is better than that of the current LWP.
    357        1.2   yamt  */
    358        1.2   yamt static void
    359        1.2   yamt resetpriority(struct lwp *l)
    360        1.2   yamt {
    361        1.8     ad 	pri_t pri;
    362        1.2   yamt 	struct proc *p = l->l_proc;
    363        1.2   yamt 
    364        1.8     ad 	KASSERT(lwp_locked(l, NULL));
    365        1.2   yamt 
    366        1.8     ad 	if (l->l_class != SCHED_OTHER)
    367        1.2   yamt 		return;
    368        1.2   yamt 
    369        1.8     ad 	/* See comments above ESTCPU_SHIFT definition. */
    370        1.8     ad 	pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
    371        1.8     ad 	pri = imax(pri, 0);
    372        1.8     ad 	if (pri != l->l_priority)
    373        1.8     ad 		lwp_changepri(l, pri);
    374        1.2   yamt }
    375        1.2   yamt 
    376        1.2   yamt /*
    377       1.28   yamt  * We adjust the priority of the current LWP.  The priority of a LWP
    378        1.8     ad  * gets worse as it accumulates CPU time.  The CPU usage estimator (l_estcpu)
    379       1.28   yamt  * is increased here.  The formula for computing priorities will compute a
    380       1.28   yamt  * different value each time l_estcpu increases. This can cause a switch,
    381       1.28   yamt  * but unless the priority crosses a PPQ boundary the actual queue will not
    382       1.28   yamt  * change.  The CPU usage estimator ramps up quite quickly when the process
    383       1.28   yamt  * is running (linearly), and decays away exponentially, at a rate which is
    384       1.28   yamt  * proportionally slower when the system is busy.  The basic principle is
    385       1.28   yamt  * that the system will 90% forget that the process used a lot of CPU time
    386       1.28   yamt  * in 5 * loadav seconds.  This causes the system to favor processes which
    387       1.28   yamt  * haven't run much recently, and to round-robin among other processes.
    388        1.2   yamt  */
    389        1.2   yamt 
    390        1.2   yamt void
    391        1.2   yamt sched_schedclock(struct lwp *l)
    392        1.2   yamt {
    393        1.8     ad 
    394        1.8     ad 	if (l->l_class != SCHED_OTHER)
    395        1.8     ad 		return;
    396        1.2   yamt 
    397        1.2   yamt 	KASSERT(!CURCPU_IDLE_P());
    398        1.8     ad 	l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
    399        1.2   yamt 	lwp_lock(l);
    400        1.2   yamt 	resetpriority(l);
    401        1.2   yamt 	lwp_unlock(l);
    402        1.2   yamt }
    403        1.2   yamt 
    404        1.2   yamt /*
    405        1.2   yamt  * sched_proc_fork:
    406        1.2   yamt  *
    407        1.2   yamt  *	Inherit the parent's scheduler history.
    408        1.2   yamt  */
    409        1.2   yamt void
    410        1.2   yamt sched_proc_fork(struct proc *parent, struct proc *child)
    411        1.2   yamt {
    412        1.8     ad 	lwp_t *pl;
    413        1.2   yamt 
    414       1.20     ad 	KASSERT(mutex_owned(parent->p_lock));
    415        1.2   yamt 
    416        1.8     ad 	pl = LIST_FIRST(&parent->p_lwps);
    417        1.8     ad 	child->p_estcpu_inherited = pl->l_estcpu;
    418        1.2   yamt 	child->p_forktime = sched_pstats_ticks;
    419        1.2   yamt }
    420        1.2   yamt 
    421        1.2   yamt /*
    422        1.2   yamt  * sched_proc_exit:
    423        1.2   yamt  *
    424        1.2   yamt  *	Chargeback parents for the sins of their children.
    425        1.2   yamt  */
    426        1.2   yamt void
    427        1.2   yamt sched_proc_exit(struct proc *parent, struct proc *child)
    428        1.2   yamt {
    429        1.2   yamt 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    430        1.2   yamt 	fixpt_t estcpu;
    431        1.8     ad 	lwp_t *pl, *cl;
    432        1.2   yamt 
    433        1.2   yamt 	/* XXX Only if parent != init?? */
    434        1.2   yamt 
    435       1.20     ad 	mutex_enter(parent->p_lock);
    436        1.8     ad 	pl = LIST_FIRST(&parent->p_lwps);
    437        1.8     ad 	cl = LIST_FIRST(&child->p_lwps);
    438        1.2   yamt 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
    439        1.2   yamt 	    sched_pstats_ticks - child->p_forktime);
    440        1.8     ad 	if (cl->l_estcpu > estcpu) {
    441        1.8     ad 		lwp_lock(pl);
    442        1.8     ad 		pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
    443        1.8     ad 		lwp_unlock(pl);
    444        1.8     ad 	}
    445       1.20     ad 	mutex_exit(parent->p_lock);
    446        1.2   yamt }
    447        1.2   yamt 
    448        1.2   yamt void
    449        1.6  rmind sched_wakeup(struct lwp *l)
    450        1.6  rmind {
    451        1.6  rmind 
    452        1.6  rmind }
    453        1.6  rmind 
    454        1.6  rmind void
    455        1.6  rmind sched_slept(struct lwp *l)
    456        1.6  rmind {
    457        1.6  rmind 
    458        1.6  rmind }
    459        1.6  rmind 
    460        1.2   yamt void
    461        1.8     ad sched_lwp_fork(struct lwp *l1, struct lwp *l2)
    462        1.2   yamt {
    463        1.2   yamt 
    464        1.8     ad 	l2->l_estcpu = l1->l_estcpu;
    465        1.2   yamt }
    466        1.2   yamt 
    467        1.2   yamt void
    468        1.8     ad sched_lwp_collect(struct lwp *t)
    469        1.8     ad {
    470        1.8     ad 	lwp_t *l;
    471        1.8     ad 
    472        1.8     ad 	/* Absorb estcpu value of collected LWP. */
    473        1.8     ad 	l = curlwp;
    474        1.8     ad 	lwp_lock(l);
    475        1.8     ad 	l->l_estcpu += t->l_estcpu;
    476        1.8     ad 	lwp_unlock(l);
    477        1.8     ad }
    478        1.8     ad 
    479       1.16     ad void
    480       1.16     ad sched_oncpu(lwp_t *l)
    481       1.16     ad {
    482       1.16     ad 
    483       1.16     ad }
    484       1.16     ad 
    485       1.16     ad void
    486       1.16     ad sched_newts(lwp_t *l)
    487       1.16     ad {
    488       1.16     ad 
    489       1.16     ad }
    490       1.16     ad 
    491        1.5     ad /*
    492       1.12  rmind  * Sysctl nodes and initialization.
    493        1.5     ad  */
    494       1.12  rmind 
    495       1.12  rmind static int
    496       1.12  rmind sysctl_sched_rtts(SYSCTLFN_ARGS)
    497       1.12  rmind {
    498       1.12  rmind 	struct sysctlnode node;
    499       1.12  rmind 	int rttsms = hztoms(rrticks);
    500       1.12  rmind 
    501       1.12  rmind 	node = *rnode;
    502       1.12  rmind 	node.sysctl_data = &rttsms;
    503       1.12  rmind 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    504       1.12  rmind }
    505       1.12  rmind 
    506       1.16     ad SYSCTL_SETUP(sysctl_sched_4bsd_setup, "sysctl sched setup")
    507        1.2   yamt {
    508        1.2   yamt 	const struct sysctlnode *node = NULL;
    509        1.2   yamt 
    510        1.2   yamt 	sysctl_createv(clog, 0, NULL, &node,
    511        1.2   yamt 		CTLFLAG_PERMANENT,
    512        1.2   yamt 		CTLTYPE_NODE, "sched",
    513        1.2   yamt 		SYSCTL_DESCR("Scheduler options"),
    514        1.2   yamt 		NULL, 0, NULL, 0,
    515        1.2   yamt 		CTL_KERN, CTL_CREATE, CTL_EOL);
    516        1.2   yamt 
    517       1.16     ad 	if (node == NULL)
    518       1.16     ad 		return;
    519        1.5     ad 
    520       1.16     ad 	rrticks = hz / 10;
    521       1.16     ad 
    522       1.16     ad 	sysctl_createv(NULL, 0, &node, NULL,
    523        1.5     ad 		CTLFLAG_PERMANENT,
    524        1.5     ad 		CTLTYPE_STRING, "name", NULL,
    525        1.5     ad 		NULL, 0, __UNCONST("4.4BSD"), 0,
    526        1.5     ad 		CTL_CREATE, CTL_EOL);
    527       1.16     ad 	sysctl_createv(NULL, 0, &node, NULL,
    528       1.12  rmind 		CTLFLAG_PERMANENT,
    529       1.12  rmind 		CTLTYPE_INT, "rtts",
    530       1.12  rmind 		SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
    531       1.12  rmind 		sysctl_sched_rtts, 0, NULL, 0,
    532       1.12  rmind 		CTL_CREATE, CTL_EOL);
    533        1.2   yamt }
    534