Home | History | Annotate | Line # | Download | only in kern
sched_4bsd.c revision 1.28.8.1
      1      1.27  uebayasi /*	$NetBSD: sched_4bsd.c,v 1.28.8.1 2014/08/20 00:04:29 tls Exp $	*/
      2       1.2      yamt 
      3       1.2      yamt /*-
      4      1.16        ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5       1.2      yamt  * All rights reserved.
      6       1.2      yamt  *
      7       1.2      yamt  * This code is derived from software contributed to The NetBSD Foundation
      8       1.2      yamt  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9       1.2      yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
     10       1.2      yamt  * Daniel Sieger.
     11       1.2      yamt  *
     12       1.2      yamt  * Redistribution and use in source and binary forms, with or without
     13       1.2      yamt  * modification, are permitted provided that the following conditions
     14       1.2      yamt  * are met:
     15       1.2      yamt  * 1. Redistributions of source code must retain the above copyright
     16       1.2      yamt  *    notice, this list of conditions and the following disclaimer.
     17       1.2      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     18       1.2      yamt  *    notice, this list of conditions and the following disclaimer in the
     19       1.2      yamt  *    documentation and/or other materials provided with the distribution.
     20       1.2      yamt  *
     21       1.2      yamt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22       1.2      yamt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23       1.2      yamt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24       1.2      yamt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25       1.2      yamt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26       1.2      yamt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27       1.2      yamt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28       1.2      yamt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29       1.2      yamt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30       1.2      yamt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31       1.2      yamt  * POSSIBILITY OF SUCH DAMAGE.
     32       1.2      yamt  */
     33       1.2      yamt 
     34       1.2      yamt /*-
     35       1.2      yamt  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     36       1.2      yamt  *	The Regents of the University of California.  All rights reserved.
     37       1.2      yamt  * (c) UNIX System Laboratories, Inc.
     38       1.2      yamt  * All or some portions of this file are derived from material licensed
     39       1.2      yamt  * to the University of California by American Telephone and Telegraph
     40       1.2      yamt  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     41       1.2      yamt  * the permission of UNIX System Laboratories, Inc.
     42       1.2      yamt  *
     43       1.2      yamt  * Redistribution and use in source and binary forms, with or without
     44       1.2      yamt  * modification, are permitted provided that the following conditions
     45       1.2      yamt  * are met:
     46       1.2      yamt  * 1. Redistributions of source code must retain the above copyright
     47       1.2      yamt  *    notice, this list of conditions and the following disclaimer.
     48       1.2      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     49       1.2      yamt  *    notice, this list of conditions and the following disclaimer in the
     50       1.2      yamt  *    documentation and/or other materials provided with the distribution.
     51       1.2      yamt  * 3. Neither the name of the University nor the names of its contributors
     52       1.2      yamt  *    may be used to endorse or promote products derived from this software
     53       1.2      yamt  *    without specific prior written permission.
     54       1.2      yamt  *
     55       1.2      yamt  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56       1.2      yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57       1.2      yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58       1.2      yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59       1.2      yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60       1.2      yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61       1.2      yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62       1.2      yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63       1.2      yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64       1.2      yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65       1.2      yamt  * SUCH DAMAGE.
     66       1.2      yamt  *
     67       1.2      yamt  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     68       1.2      yamt  */
     69       1.2      yamt 
     70       1.2      yamt #include <sys/cdefs.h>
     71      1.27  uebayasi __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.28.8.1 2014/08/20 00:04:29 tls Exp $");
     72       1.2      yamt 
     73       1.2      yamt #include "opt_ddb.h"
     74       1.2      yamt #include "opt_lockdebug.h"
     75       1.2      yamt #include "opt_perfctrs.h"
     76       1.2      yamt 
     77       1.2      yamt #include <sys/param.h>
     78       1.2      yamt #include <sys/systm.h>
     79       1.2      yamt #include <sys/callout.h>
     80       1.2      yamt #include <sys/cpu.h>
     81       1.2      yamt #include <sys/proc.h>
     82       1.2      yamt #include <sys/kernel.h>
     83       1.2      yamt #include <sys/signalvar.h>
     84       1.2      yamt #include <sys/resourcevar.h>
     85       1.2      yamt #include <sys/sched.h>
     86       1.2      yamt #include <sys/sysctl.h>
     87       1.2      yamt #include <sys/kauth.h>
     88       1.2      yamt #include <sys/lockdebug.h>
     89       1.2      yamt #include <sys/kmem.h>
     90       1.5        ad #include <sys/intr.h>
     91       1.2      yamt 
     92       1.2      yamt static void updatepri(struct lwp *);
     93       1.2      yamt static void resetpriority(struct lwp *);
     94       1.2      yamt 
     95       1.2      yamt extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
     96       1.2      yamt 
     97       1.2      yamt /* Number of hardclock ticks per sched_tick() */
     98      1.12     rmind static int rrticks;
     99       1.2      yamt 
    100       1.2      yamt /*
    101       1.2      yamt  * Force switch among equal priority processes every 100ms.
    102       1.2      yamt  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    103       1.5        ad  *
    104       1.5        ad  * There's no need to lock anywhere in this routine, as it's
    105       1.5        ad  * CPU-local and runs at IPL_SCHED (called from clock interrupt).
    106       1.2      yamt  */
    107       1.2      yamt /* ARGSUSED */
    108       1.2      yamt void
    109       1.2      yamt sched_tick(struct cpu_info *ci)
    110       1.2      yamt {
    111       1.2      yamt 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    112      1.23        ad 	lwp_t *l;
    113       1.2      yamt 
    114       1.2      yamt 	spc->spc_ticks = rrticks;
    115       1.2      yamt 
    116      1.15        ad 	if (CURCPU_IDLE_P()) {
    117      1.15        ad 		cpu_need_resched(ci, 0);
    118       1.7     rmind 		return;
    119      1.15        ad 	}
    120      1.23        ad 	l = ci->ci_data.cpu_onproc;
    121      1.23        ad 	if (l == NULL) {
    122      1.19      yamt 		return;
    123      1.19      yamt 	}
    124      1.23        ad 	switch (l->l_class) {
    125      1.23        ad 	case SCHED_FIFO:
    126      1.23        ad 		/* No timeslicing for FIFO jobs. */
    127      1.23        ad 		break;
    128      1.23        ad 	case SCHED_RR:
    129      1.23        ad 		/* Force it into mi_switch() to look for other jobs to run. */
    130      1.23        ad 		cpu_need_resched(ci, RESCHED_KPREEMPT);
    131      1.23        ad 		break;
    132      1.23        ad 	default:
    133      1.23        ad 		if (spc->spc_flags & SPCF_SHOULDYIELD) {
    134      1.23        ad 			/*
    135      1.23        ad 			 * Process is stuck in kernel somewhere, probably
    136      1.23        ad 			 * due to buggy or inefficient code.  Force a
    137      1.23        ad 			 * kernel preemption.
    138      1.23        ad 			 */
    139      1.23        ad 			cpu_need_resched(ci, RESCHED_KPREEMPT);
    140      1.23        ad 		} else if (spc->spc_flags & SPCF_SEENRR) {
    141      1.23        ad 			/*
    142      1.23        ad 			 * The process has already been through a roundrobin
    143      1.23        ad 			 * without switching and may be hogging the CPU.
    144      1.23        ad 			 * Indicate that the process should yield.
    145      1.23        ad 			 */
    146      1.23        ad 			spc->spc_flags |= SPCF_SHOULDYIELD;
    147      1.23        ad 			cpu_need_resched(ci, 0);
    148      1.23        ad 		} else {
    149      1.23        ad 			spc->spc_flags |= SPCF_SEENRR;
    150      1.23        ad 		}
    151      1.23        ad 		break;
    152      1.23        ad 	}
    153       1.2      yamt }
    154       1.2      yamt 
    155       1.8        ad /*
    156       1.8        ad  * Why PRIO_MAX - 2? From setpriority(2):
    157       1.8        ad  *
    158       1.8        ad  *	prio is a value in the range -20 to 20.  The default priority is
    159       1.8        ad  *	0; lower priorities cause more favorable scheduling.  A value of
    160       1.8        ad  *	19 or 20 will schedule a process only when nothing at priority <=
    161       1.8        ad  *	0 is runnable.
    162       1.8        ad  *
    163       1.8        ad  * This gives estcpu influence over 18 priority levels, and leaves nice
    164       1.8        ad  * with 40 levels.  One way to think about it is that nice has 20 levels
    165       1.8        ad  * either side of estcpu's 18.
    166       1.8        ad  */
    167       1.2      yamt #define	ESTCPU_SHIFT	11
    168       1.8        ad #define	ESTCPU_MAX	((PRIO_MAX - 2) << ESTCPU_SHIFT)
    169       1.8        ad #define	ESTCPU_ACCUM	(1 << (ESTCPU_SHIFT - 1))
    170       1.2      yamt #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    171       1.2      yamt 
    172       1.2      yamt /*
    173       1.2      yamt  * Constants for digital decay and forget:
    174       1.8        ad  *	90% of (l_estcpu) usage in 5 * loadav time
    175       1.8        ad  *	95% of (l_pctcpu) usage in 60 seconds (load insensitive)
    176       1.2      yamt  *          Note that, as ps(1) mentions, this can let percentages
    177       1.2      yamt  *          total over 100% (I've seen 137.9% for 3 processes).
    178       1.2      yamt  *
    179       1.8        ad  * Note that hardclock updates l_estcpu and l_cpticks independently.
    180       1.2      yamt  *
    181       1.8        ad  * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds.
    182       1.2      yamt  * That is, the system wants to compute a value of decay such
    183       1.2      yamt  * that the following for loop:
    184       1.2      yamt  * 	for (i = 0; i < (5 * loadavg); i++)
    185       1.8        ad  * 		l_estcpu *= decay;
    186       1.2      yamt  * will compute
    187       1.8        ad  * 	l_estcpu *= 0.1;
    188       1.2      yamt  * for all values of loadavg:
    189       1.2      yamt  *
    190       1.2      yamt  * Mathematically this loop can be expressed by saying:
    191       1.2      yamt  * 	decay ** (5 * loadavg) ~= .1
    192       1.2      yamt  *
    193       1.2      yamt  * The system computes decay as:
    194       1.2      yamt  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    195       1.2      yamt  *
    196       1.2      yamt  * We wish to prove that the system's computation of decay
    197       1.2      yamt  * will always fulfill the equation:
    198       1.2      yamt  * 	decay ** (5 * loadavg) ~= .1
    199       1.2      yamt  *
    200       1.2      yamt  * If we compute b as:
    201       1.2      yamt  * 	b = 2 * loadavg
    202       1.2      yamt  * then
    203       1.2      yamt  * 	decay = b / (b + 1)
    204       1.2      yamt  *
    205       1.2      yamt  * We now need to prove two things:
    206       1.2      yamt  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    207       1.2      yamt  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    208       1.2      yamt  *
    209       1.2      yamt  * Facts:
    210       1.2      yamt  *         For x close to zero, exp(x) =~ 1 + x, since
    211       1.2      yamt  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    212       1.2      yamt  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    213       1.2      yamt  *         For x close to zero, ln(1+x) =~ x, since
    214       1.2      yamt  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    215       1.2      yamt  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    216       1.2      yamt  *         ln(.1) =~ -2.30
    217       1.2      yamt  *
    218       1.2      yamt  * Proof of (1):
    219       1.2      yamt  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    220       1.2      yamt  *	solving for factor,
    221       1.2      yamt  *      ln(factor) =~ (-2.30/5*loadav), or
    222       1.2      yamt  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    223       1.2      yamt  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    224       1.2      yamt  *
    225       1.2      yamt  * Proof of (2):
    226       1.2      yamt  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    227       1.2      yamt  *	solving for power,
    228       1.2      yamt  *      power*ln(b/(b+1)) =~ -2.30, or
    229       1.2      yamt  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    230       1.2      yamt  *
    231       1.2      yamt  * Actual power values for the implemented algorithm are as follows:
    232       1.2      yamt  *      loadav: 1       2       3       4
    233       1.2      yamt  *      power:  5.68    10.32   14.94   19.55
    234       1.2      yamt  */
    235       1.2      yamt 
    236       1.2      yamt /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    237      1.26      yamt #define	loadfactor(loadav)	(2 * (loadav) / ncpu)
    238       1.2      yamt 
    239      1.17      yamt static fixpt_t
    240       1.2      yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    241       1.2      yamt {
    242       1.2      yamt 
    243       1.2      yamt 	if (estcpu == 0) {
    244       1.2      yamt 		return 0;
    245       1.2      yamt 	}
    246       1.2      yamt 
    247       1.2      yamt #if !defined(_LP64)
    248       1.2      yamt 	/* avoid 64bit arithmetics. */
    249       1.2      yamt #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    250       1.2      yamt 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    251       1.2      yamt 		return estcpu * loadfac / (loadfac + FSCALE);
    252       1.2      yamt 	}
    253       1.2      yamt #endif /* !defined(_LP64) */
    254       1.2      yamt 
    255       1.2      yamt 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    256       1.2      yamt }
    257       1.2      yamt 
    258       1.2      yamt /*
    259       1.8        ad  * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
    260       1.8        ad  * sleeping for at least seven times the loadfactor will decay l_estcpu to
    261       1.2      yamt  * less than (1 << ESTCPU_SHIFT).
    262       1.2      yamt  *
    263       1.2      yamt  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    264       1.2      yamt  */
    265       1.2      yamt static fixpt_t
    266       1.2      yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    267       1.2      yamt {
    268       1.2      yamt 
    269       1.2      yamt 	if ((n << FSHIFT) >= 7 * loadfac) {
    270       1.2      yamt 		return 0;
    271       1.2      yamt 	}
    272       1.2      yamt 
    273       1.2      yamt 	while (estcpu != 0 && n > 1) {
    274       1.2      yamt 		estcpu = decay_cpu(loadfac, estcpu);
    275       1.2      yamt 		n--;
    276       1.2      yamt 	}
    277       1.2      yamt 
    278       1.2      yamt 	return estcpu;
    279       1.2      yamt }
    280       1.2      yamt 
    281       1.2      yamt /*
    282       1.2      yamt  * sched_pstats_hook:
    283       1.2      yamt  *
    284       1.2      yamt  * Periodically called from sched_pstats(); used to recalculate priorities.
    285       1.2      yamt  */
    286       1.2      yamt void
    287      1.22     rmind sched_pstats_hook(struct lwp *l, int batch)
    288       1.2      yamt {
    289      1.25      yamt 	fixpt_t loadfac;
    290       1.2      yamt 
    291       1.8        ad 	/*
    292       1.8        ad 	 * If the LWP has slept an entire second, stop recalculating
    293       1.8        ad 	 * its priority until it wakes up.
    294       1.8        ad 	 */
    295      1.24     rmind 	KASSERT(lwp_locked(l, NULL));
    296      1.25      yamt 	if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    297      1.25      yamt 	    l->l_stat == LSSUSPENDED) {
    298      1.25      yamt 		if (l->l_slptime > 1) {
    299      1.25      yamt 			return;
    300      1.25      yamt 		}
    301       1.8        ad 	}
    302      1.25      yamt 	loadfac = 2 * (averunnable.ldavg[0]);
    303      1.25      yamt 	l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
    304      1.25      yamt 	resetpriority(l);
    305       1.2      yamt }
    306       1.2      yamt 
    307       1.2      yamt /*
    308       1.2      yamt  * Recalculate the priority of a process after it has slept for a while.
    309       1.2      yamt  */
    310       1.2      yamt static void
    311       1.2      yamt updatepri(struct lwp *l)
    312       1.2      yamt {
    313       1.2      yamt 	fixpt_t loadfac;
    314       1.2      yamt 
    315       1.3        ad 	KASSERT(lwp_locked(l, NULL));
    316       1.2      yamt 	KASSERT(l->l_slptime > 1);
    317       1.2      yamt 
    318       1.2      yamt 	loadfac = loadfactor(averunnable.ldavg[0]);
    319       1.2      yamt 
    320       1.2      yamt 	l->l_slptime--; /* the first time was done in sched_pstats */
    321       1.8        ad 	l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
    322       1.2      yamt 	resetpriority(l);
    323       1.2      yamt }
    324       1.2      yamt 
    325       1.2      yamt void
    326      1.14      matt sched_rqinit(void)
    327       1.2      yamt {
    328       1.2      yamt 
    329       1.2      yamt }
    330       1.2      yamt 
    331       1.2      yamt void
    332       1.2      yamt sched_setrunnable(struct lwp *l)
    333       1.2      yamt {
    334       1.2      yamt 
    335       1.2      yamt  	if (l->l_slptime > 1)
    336       1.2      yamt  		updatepri(l);
    337       1.2      yamt }
    338       1.2      yamt 
    339       1.2      yamt void
    340       1.8        ad sched_nice(struct proc *p, int n)
    341       1.2      yamt {
    342       1.8        ad 	struct lwp *l;
    343       1.8        ad 
    344      1.20        ad 	KASSERT(mutex_owned(p->p_lock));
    345       1.2      yamt 
    346       1.8        ad 	p->p_nice = n;
    347       1.8        ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    348       1.8        ad 		lwp_lock(l);
    349       1.8        ad 		resetpriority(l);
    350       1.8        ad 		lwp_unlock(l);
    351       1.8        ad 	}
    352       1.2      yamt }
    353       1.2      yamt 
    354       1.2      yamt /*
    355       1.8        ad  * Recompute the priority of an LWP.  Arrange to reschedule if
    356       1.8        ad  * the resulting priority is better than that of the current LWP.
    357       1.2      yamt  */
    358       1.2      yamt static void
    359       1.2      yamt resetpriority(struct lwp *l)
    360       1.2      yamt {
    361       1.8        ad 	pri_t pri;
    362       1.2      yamt 	struct proc *p = l->l_proc;
    363       1.2      yamt 
    364       1.8        ad 	KASSERT(lwp_locked(l, NULL));
    365       1.2      yamt 
    366       1.8        ad 	if (l->l_class != SCHED_OTHER)
    367       1.2      yamt 		return;
    368       1.2      yamt 
    369       1.8        ad 	/* See comments above ESTCPU_SHIFT definition. */
    370       1.8        ad 	pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
    371       1.8        ad 	pri = imax(pri, 0);
    372       1.8        ad 	if (pri != l->l_priority)
    373       1.8        ad 		lwp_changepri(l, pri);
    374       1.2      yamt }
    375       1.2      yamt 
    376       1.2      yamt /*
    377      1.28      yamt  * We adjust the priority of the current LWP.  The priority of a LWP
    378       1.8        ad  * gets worse as it accumulates CPU time.  The CPU usage estimator (l_estcpu)
    379      1.28      yamt  * is increased here.  The formula for computing priorities will compute a
    380      1.28      yamt  * different value each time l_estcpu increases. This can cause a switch,
    381      1.28      yamt  * but unless the priority crosses a PPQ boundary the actual queue will not
    382      1.28      yamt  * change.  The CPU usage estimator ramps up quite quickly when the process
    383      1.28      yamt  * is running (linearly), and decays away exponentially, at a rate which is
    384      1.28      yamt  * proportionally slower when the system is busy.  The basic principle is
    385      1.28      yamt  * that the system will 90% forget that the process used a lot of CPU time
    386      1.28      yamt  * in 5 * loadav seconds.  This causes the system to favor processes which
    387      1.28      yamt  * haven't run much recently, and to round-robin among other processes.
    388       1.2      yamt  */
    389       1.2      yamt 
    390       1.2      yamt void
    391       1.2      yamt sched_schedclock(struct lwp *l)
    392       1.2      yamt {
    393       1.8        ad 
    394       1.8        ad 	if (l->l_class != SCHED_OTHER)
    395       1.8        ad 		return;
    396       1.2      yamt 
    397       1.2      yamt 	KASSERT(!CURCPU_IDLE_P());
    398       1.8        ad 	l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
    399       1.2      yamt 	lwp_lock(l);
    400       1.2      yamt 	resetpriority(l);
    401       1.2      yamt 	lwp_unlock(l);
    402       1.2      yamt }
    403       1.2      yamt 
    404       1.2      yamt /*
    405       1.2      yamt  * sched_proc_fork:
    406       1.2      yamt  *
    407       1.2      yamt  *	Inherit the parent's scheduler history.
    408       1.2      yamt  */
    409       1.2      yamt void
    410       1.2      yamt sched_proc_fork(struct proc *parent, struct proc *child)
    411       1.2      yamt {
    412       1.8        ad 	lwp_t *pl;
    413       1.2      yamt 
    414      1.20        ad 	KASSERT(mutex_owned(parent->p_lock));
    415       1.2      yamt 
    416       1.8        ad 	pl = LIST_FIRST(&parent->p_lwps);
    417       1.8        ad 	child->p_estcpu_inherited = pl->l_estcpu;
    418       1.2      yamt 	child->p_forktime = sched_pstats_ticks;
    419       1.2      yamt }
    420       1.2      yamt 
    421       1.2      yamt /*
    422       1.2      yamt  * sched_proc_exit:
    423       1.2      yamt  *
    424       1.2      yamt  *	Chargeback parents for the sins of their children.
    425       1.2      yamt  */
    426       1.2      yamt void
    427       1.2      yamt sched_proc_exit(struct proc *parent, struct proc *child)
    428       1.2      yamt {
    429       1.2      yamt 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    430       1.2      yamt 	fixpt_t estcpu;
    431       1.8        ad 	lwp_t *pl, *cl;
    432       1.2      yamt 
    433       1.2      yamt 	/* XXX Only if parent != init?? */
    434       1.2      yamt 
    435      1.20        ad 	mutex_enter(parent->p_lock);
    436       1.8        ad 	pl = LIST_FIRST(&parent->p_lwps);
    437       1.8        ad 	cl = LIST_FIRST(&child->p_lwps);
    438       1.2      yamt 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
    439       1.2      yamt 	    sched_pstats_ticks - child->p_forktime);
    440       1.8        ad 	if (cl->l_estcpu > estcpu) {
    441       1.8        ad 		lwp_lock(pl);
    442       1.8        ad 		pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
    443       1.8        ad 		lwp_unlock(pl);
    444       1.8        ad 	}
    445      1.20        ad 	mutex_exit(parent->p_lock);
    446       1.2      yamt }
    447       1.2      yamt 
    448       1.2      yamt void
    449       1.6     rmind sched_wakeup(struct lwp *l)
    450       1.6     rmind {
    451       1.6     rmind 
    452       1.6     rmind }
    453       1.6     rmind 
    454       1.6     rmind void
    455       1.6     rmind sched_slept(struct lwp *l)
    456       1.6     rmind {
    457       1.6     rmind 
    458       1.6     rmind }
    459       1.6     rmind 
    460       1.2      yamt void
    461       1.8        ad sched_lwp_fork(struct lwp *l1, struct lwp *l2)
    462       1.2      yamt {
    463       1.2      yamt 
    464       1.8        ad 	l2->l_estcpu = l1->l_estcpu;
    465       1.2      yamt }
    466       1.2      yamt 
    467       1.2      yamt void
    468       1.8        ad sched_lwp_collect(struct lwp *t)
    469       1.8        ad {
    470       1.8        ad 	lwp_t *l;
    471       1.8        ad 
    472       1.8        ad 	/* Absorb estcpu value of collected LWP. */
    473       1.8        ad 	l = curlwp;
    474       1.8        ad 	lwp_lock(l);
    475       1.8        ad 	l->l_estcpu += t->l_estcpu;
    476       1.8        ad 	lwp_unlock(l);
    477       1.8        ad }
    478       1.8        ad 
    479      1.16        ad void
    480      1.16        ad sched_oncpu(lwp_t *l)
    481      1.16        ad {
    482      1.16        ad 
    483      1.16        ad }
    484      1.16        ad 
    485      1.16        ad void
    486      1.16        ad sched_newts(lwp_t *l)
    487      1.16        ad {
    488      1.16        ad 
    489      1.16        ad }
    490      1.16        ad 
    491       1.5        ad /*
    492      1.12     rmind  * Sysctl nodes and initialization.
    493       1.5        ad  */
    494      1.12     rmind 
    495      1.12     rmind static int
    496      1.12     rmind sysctl_sched_rtts(SYSCTLFN_ARGS)
    497      1.12     rmind {
    498      1.12     rmind 	struct sysctlnode node;
    499      1.12     rmind 	int rttsms = hztoms(rrticks);
    500      1.12     rmind 
    501      1.12     rmind 	node = *rnode;
    502      1.12     rmind 	node.sysctl_data = &rttsms;
    503      1.12     rmind 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    504      1.12     rmind }
    505      1.12     rmind 
    506      1.16        ad SYSCTL_SETUP(sysctl_sched_4bsd_setup, "sysctl sched setup")
    507       1.2      yamt {
    508       1.2      yamt 	const struct sysctlnode *node = NULL;
    509       1.2      yamt 
    510       1.2      yamt 	sysctl_createv(clog, 0, NULL, &node,
    511       1.2      yamt 		CTLFLAG_PERMANENT,
    512       1.2      yamt 		CTLTYPE_NODE, "sched",
    513       1.2      yamt 		SYSCTL_DESCR("Scheduler options"),
    514       1.2      yamt 		NULL, 0, NULL, 0,
    515       1.2      yamt 		CTL_KERN, CTL_CREATE, CTL_EOL);
    516       1.2      yamt 
    517      1.16        ad 	if (node == NULL)
    518      1.16        ad 		return;
    519       1.5        ad 
    520      1.16        ad 	rrticks = hz / 10;
    521      1.16        ad 
    522      1.16        ad 	sysctl_createv(NULL, 0, &node, NULL,
    523       1.5        ad 		CTLFLAG_PERMANENT,
    524       1.5        ad 		CTLTYPE_STRING, "name", NULL,
    525       1.5        ad 		NULL, 0, __UNCONST("4.4BSD"), 0,
    526       1.5        ad 		CTL_CREATE, CTL_EOL);
    527      1.16        ad 	sysctl_createv(NULL, 0, &node, NULL,
    528      1.12     rmind 		CTLFLAG_PERMANENT,
    529      1.12     rmind 		CTLTYPE_INT, "rtts",
    530  1.28.8.1       tls 		SYSCTL_DESCR("Round-robin time quantum (in milliseconds)"),
    531      1.12     rmind 		sysctl_sched_rtts, 0, NULL, 0,
    532      1.12     rmind 		CTL_CREATE, CTL_EOL);
    533       1.2      yamt }
    534