Home | History | Annotate | Line # | Download | only in kern
sched_4bsd.c revision 1.3.8.1
      1  1.3.8.1  jmcneill /*	$NetBSD: sched_4bsd.c,v 1.3.8.1 2007/08/04 12:33:15 jmcneill Exp $	*/
      2      1.2      yamt 
      3      1.2      yamt /*-
      4      1.2      yamt  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5      1.2      yamt  * All rights reserved.
      6      1.2      yamt  *
      7      1.2      yamt  * This code is derived from software contributed to The NetBSD Foundation
      8      1.2      yamt  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9      1.2      yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
     10      1.2      yamt  * Daniel Sieger.
     11      1.2      yamt  *
     12      1.2      yamt  * Redistribution and use in source and binary forms, with or without
     13      1.2      yamt  * modification, are permitted provided that the following conditions
     14      1.2      yamt  * are met:
     15      1.2      yamt  * 1. Redistributions of source code must retain the above copyright
     16      1.2      yamt  *    notice, this list of conditions and the following disclaimer.
     17      1.2      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     18      1.2      yamt  *    notice, this list of conditions and the following disclaimer in the
     19      1.2      yamt  *    documentation and/or other materials provided with the distribution.
     20      1.2      yamt  * 3. All advertising materials mentioning features or use of this software
     21      1.2      yamt  *    must display the following acknowledgement:
     22      1.2      yamt  *	This product includes software developed by the NetBSD
     23      1.2      yamt  *	Foundation, Inc. and its contributors.
     24      1.2      yamt  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25      1.2      yamt  *    contributors may be used to endorse or promote products derived
     26      1.2      yamt  *    from this software without specific prior written permission.
     27      1.2      yamt  *
     28      1.2      yamt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29      1.2      yamt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30      1.2      yamt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31      1.2      yamt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32      1.2      yamt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33      1.2      yamt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34      1.2      yamt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35      1.2      yamt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36      1.2      yamt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37      1.2      yamt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38      1.2      yamt  * POSSIBILITY OF SUCH DAMAGE.
     39      1.2      yamt  */
     40      1.2      yamt 
     41      1.2      yamt /*-
     42      1.2      yamt  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43      1.2      yamt  *	The Regents of the University of California.  All rights reserved.
     44      1.2      yamt  * (c) UNIX System Laboratories, Inc.
     45      1.2      yamt  * All or some portions of this file are derived from material licensed
     46      1.2      yamt  * to the University of California by American Telephone and Telegraph
     47      1.2      yamt  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48      1.2      yamt  * the permission of UNIX System Laboratories, Inc.
     49      1.2      yamt  *
     50      1.2      yamt  * Redistribution and use in source and binary forms, with or without
     51      1.2      yamt  * modification, are permitted provided that the following conditions
     52      1.2      yamt  * are met:
     53      1.2      yamt  * 1. Redistributions of source code must retain the above copyright
     54      1.2      yamt  *    notice, this list of conditions and the following disclaimer.
     55      1.2      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     56      1.2      yamt  *    notice, this list of conditions and the following disclaimer in the
     57      1.2      yamt  *    documentation and/or other materials provided with the distribution.
     58      1.2      yamt  * 3. Neither the name of the University nor the names of its contributors
     59      1.2      yamt  *    may be used to endorse or promote products derived from this software
     60      1.2      yamt  *    without specific prior written permission.
     61      1.2      yamt  *
     62      1.2      yamt  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63      1.2      yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64      1.2      yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65      1.2      yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66      1.2      yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67      1.2      yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68      1.2      yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69      1.2      yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70      1.2      yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71      1.2      yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72      1.2      yamt  * SUCH DAMAGE.
     73      1.2      yamt  *
     74      1.2      yamt  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75      1.2      yamt  */
     76      1.2      yamt 
     77      1.2      yamt #include <sys/cdefs.h>
     78  1.3.8.1  jmcneill __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.3.8.1 2007/08/04 12:33:15 jmcneill Exp $");
     79      1.2      yamt 
     80      1.2      yamt #include "opt_ddb.h"
     81      1.2      yamt #include "opt_lockdebug.h"
     82      1.2      yamt #include "opt_perfctrs.h"
     83      1.2      yamt 
     84      1.2      yamt #define	__MUTEX_PRIVATE
     85      1.2      yamt 
     86      1.2      yamt #include <sys/param.h>
     87      1.2      yamt #include <sys/systm.h>
     88      1.2      yamt #include <sys/callout.h>
     89      1.2      yamt #include <sys/cpu.h>
     90      1.2      yamt #include <sys/proc.h>
     91      1.2      yamt #include <sys/kernel.h>
     92      1.2      yamt #include <sys/signalvar.h>
     93      1.2      yamt #include <sys/resourcevar.h>
     94      1.2      yamt #include <sys/sched.h>
     95      1.2      yamt #include <sys/sysctl.h>
     96      1.2      yamt #include <sys/kauth.h>
     97      1.2      yamt #include <sys/lockdebug.h>
     98      1.2      yamt #include <sys/kmem.h>
     99      1.2      yamt 
    100      1.2      yamt #include <uvm/uvm_extern.h>
    101      1.2      yamt 
    102      1.2      yamt /*
    103      1.2      yamt  * Run queues.
    104      1.2      yamt  *
    105      1.2      yamt  * We have 32 run queues in descending priority of 0..31.  We maintain
    106      1.2      yamt  * a bitmask of non-empty queues in order speed up finding the first
    107      1.2      yamt  * runnable process.  The bitmask is maintained only by machine-dependent
    108      1.2      yamt  * code, allowing the most efficient instructions to be used to find the
    109      1.2      yamt  * first non-empty queue.
    110      1.2      yamt  */
    111      1.2      yamt 
    112      1.2      yamt #define	RUNQUE_NQS		32      /* number of runqueues */
    113      1.2      yamt #define	PPQ	(128 / RUNQUE_NQS)	/* priorities per queue */
    114      1.2      yamt 
    115      1.2      yamt typedef struct subqueue {
    116      1.2      yamt 	TAILQ_HEAD(, lwp) sq_queue;
    117      1.2      yamt } subqueue_t;
    118      1.2      yamt typedef struct runqueue {
    119      1.2      yamt 	subqueue_t rq_subqueues[RUNQUE_NQS];	/* run queues */
    120      1.2      yamt 	uint32_t rq_bitmap;	/* bitmap of non-empty queues */
    121      1.2      yamt } runqueue_t;
    122      1.2      yamt static runqueue_t global_queue;
    123      1.2      yamt 
    124      1.2      yamt static void updatepri(struct lwp *);
    125      1.2      yamt static void resetpriority(struct lwp *);
    126      1.2      yamt static void resetprocpriority(struct proc *);
    127      1.2      yamt 
    128      1.2      yamt extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
    129      1.2      yamt 
    130      1.2      yamt /* The global scheduler state */
    131      1.2      yamt kmutex_t sched_mutex;
    132      1.2      yamt 
    133      1.2      yamt /* Number of hardclock ticks per sched_tick() */
    134      1.2      yamt int rrticks;
    135      1.2      yamt 
    136      1.2      yamt /*
    137      1.2      yamt  * Force switch among equal priority processes every 100ms.
    138      1.2      yamt  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    139      1.2      yamt  */
    140      1.2      yamt /* ARGSUSED */
    141      1.2      yamt void
    142      1.2      yamt sched_tick(struct cpu_info *ci)
    143      1.2      yamt {
    144      1.2      yamt 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    145      1.2      yamt 
    146      1.2      yamt 	spc->spc_ticks = rrticks;
    147      1.2      yamt 
    148  1.3.8.1  jmcneill 	spc_lock(ci);
    149      1.2      yamt 	if (!CURCPU_IDLE_P()) {
    150      1.2      yamt 		if (spc->spc_flags & SPCF_SEENRR) {
    151      1.2      yamt 			/*
    152      1.2      yamt 			 * The process has already been through a roundrobin
    153      1.2      yamt 			 * without switching and may be hogging the CPU.
    154      1.2      yamt 			 * Indicate that the process should yield.
    155      1.2      yamt 			 */
    156      1.2      yamt 			spc->spc_flags |= SPCF_SHOULDYIELD;
    157      1.2      yamt 		} else
    158      1.2      yamt 			spc->spc_flags |= SPCF_SEENRR;
    159      1.2      yamt 	}
    160      1.2      yamt 	cpu_need_resched(curcpu(), 0);
    161  1.3.8.1  jmcneill 	spc_unlock(ci);
    162      1.2      yamt }
    163      1.2      yamt 
    164      1.2      yamt #define	NICE_WEIGHT 2			/* priorities per nice level */
    165      1.2      yamt 
    166      1.2      yamt #define	ESTCPU_SHIFT	11
    167      1.2      yamt #define	ESTCPU_MAX	((NICE_WEIGHT * PRIO_MAX - PPQ) << ESTCPU_SHIFT)
    168      1.2      yamt #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    169      1.2      yamt 
    170      1.2      yamt /*
    171      1.2      yamt  * Constants for digital decay and forget:
    172      1.2      yamt  *	90% of (p_estcpu) usage in 5 * loadav time
    173      1.2      yamt  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
    174      1.2      yamt  *          Note that, as ps(1) mentions, this can let percentages
    175      1.2      yamt  *          total over 100% (I've seen 137.9% for 3 processes).
    176      1.2      yamt  *
    177      1.2      yamt  * Note that hardclock updates p_estcpu and p_cpticks independently.
    178      1.2      yamt  *
    179      1.2      yamt  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
    180      1.2      yamt  * That is, the system wants to compute a value of decay such
    181      1.2      yamt  * that the following for loop:
    182      1.2      yamt  * 	for (i = 0; i < (5 * loadavg); i++)
    183      1.2      yamt  * 		p_estcpu *= decay;
    184      1.2      yamt  * will compute
    185      1.2      yamt  * 	p_estcpu *= 0.1;
    186      1.2      yamt  * for all values of loadavg:
    187      1.2      yamt  *
    188      1.2      yamt  * Mathematically this loop can be expressed by saying:
    189      1.2      yamt  * 	decay ** (5 * loadavg) ~= .1
    190      1.2      yamt  *
    191      1.2      yamt  * The system computes decay as:
    192      1.2      yamt  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    193      1.2      yamt  *
    194      1.2      yamt  * We wish to prove that the system's computation of decay
    195      1.2      yamt  * will always fulfill the equation:
    196      1.2      yamt  * 	decay ** (5 * loadavg) ~= .1
    197      1.2      yamt  *
    198      1.2      yamt  * If we compute b as:
    199      1.2      yamt  * 	b = 2 * loadavg
    200      1.2      yamt  * then
    201      1.2      yamt  * 	decay = b / (b + 1)
    202      1.2      yamt  *
    203      1.2      yamt  * We now need to prove two things:
    204      1.2      yamt  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    205      1.2      yamt  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    206      1.2      yamt  *
    207      1.2      yamt  * Facts:
    208      1.2      yamt  *         For x close to zero, exp(x) =~ 1 + x, since
    209      1.2      yamt  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    210      1.2      yamt  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    211      1.2      yamt  *         For x close to zero, ln(1+x) =~ x, since
    212      1.2      yamt  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    213      1.2      yamt  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    214      1.2      yamt  *         ln(.1) =~ -2.30
    215      1.2      yamt  *
    216      1.2      yamt  * Proof of (1):
    217      1.2      yamt  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    218      1.2      yamt  *	solving for factor,
    219      1.2      yamt  *      ln(factor) =~ (-2.30/5*loadav), or
    220      1.2      yamt  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    221      1.2      yamt  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    222      1.2      yamt  *
    223      1.2      yamt  * Proof of (2):
    224      1.2      yamt  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    225      1.2      yamt  *	solving for power,
    226      1.2      yamt  *      power*ln(b/(b+1)) =~ -2.30, or
    227      1.2      yamt  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    228      1.2      yamt  *
    229      1.2      yamt  * Actual power values for the implemented algorithm are as follows:
    230      1.2      yamt  *      loadav: 1       2       3       4
    231      1.2      yamt  *      power:  5.68    10.32   14.94   19.55
    232      1.2      yamt  */
    233      1.2      yamt 
    234      1.2      yamt /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    235      1.2      yamt #define	loadfactor(loadav)	(2 * (loadav))
    236      1.2      yamt 
    237      1.2      yamt static fixpt_t
    238      1.2      yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    239      1.2      yamt {
    240      1.2      yamt 
    241      1.2      yamt 	if (estcpu == 0) {
    242      1.2      yamt 		return 0;
    243      1.2      yamt 	}
    244      1.2      yamt 
    245      1.2      yamt #if !defined(_LP64)
    246      1.2      yamt 	/* avoid 64bit arithmetics. */
    247      1.2      yamt #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    248      1.2      yamt 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    249      1.2      yamt 		return estcpu * loadfac / (loadfac + FSCALE);
    250      1.2      yamt 	}
    251      1.2      yamt #endif /* !defined(_LP64) */
    252      1.2      yamt 
    253      1.2      yamt 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    254      1.2      yamt }
    255      1.2      yamt 
    256      1.2      yamt /*
    257      1.2      yamt  * For all load averages >= 1 and max p_estcpu of (255 << ESTCPU_SHIFT),
    258      1.2      yamt  * sleeping for at least seven times the loadfactor will decay p_estcpu to
    259      1.2      yamt  * less than (1 << ESTCPU_SHIFT).
    260      1.2      yamt  *
    261      1.2      yamt  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    262      1.2      yamt  */
    263      1.2      yamt static fixpt_t
    264      1.2      yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    265      1.2      yamt {
    266      1.2      yamt 
    267      1.2      yamt 	if ((n << FSHIFT) >= 7 * loadfac) {
    268      1.2      yamt 		return 0;
    269      1.2      yamt 	}
    270      1.2      yamt 
    271      1.2      yamt 	while (estcpu != 0 && n > 1) {
    272      1.2      yamt 		estcpu = decay_cpu(loadfac, estcpu);
    273      1.2      yamt 		n--;
    274      1.2      yamt 	}
    275      1.2      yamt 
    276      1.2      yamt 	return estcpu;
    277      1.2      yamt }
    278      1.2      yamt 
    279      1.2      yamt /*
    280      1.2      yamt  * sched_pstats_hook:
    281      1.2      yamt  *
    282      1.2      yamt  * Periodically called from sched_pstats(); used to recalculate priorities.
    283      1.2      yamt  */
    284      1.2      yamt void
    285      1.2      yamt sched_pstats_hook(struct proc *p, int minslp)
    286      1.2      yamt {
    287      1.2      yamt 	struct lwp *l;
    288      1.2      yamt 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    289      1.2      yamt 
    290      1.2      yamt 	/*
    291      1.2      yamt 	 * If the process has slept the entire second,
    292      1.2      yamt 	 * stop recalculating its priority until it wakes up.
    293      1.2      yamt 	 */
    294      1.2      yamt 	if (minslp <= 1) {
    295      1.2      yamt 		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
    296      1.2      yamt 
    297      1.2      yamt 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    298      1.2      yamt 			if ((l->l_flag & LW_IDLE) != 0)
    299      1.2      yamt 				continue;
    300      1.2      yamt 			lwp_lock(l);
    301      1.2      yamt 			if (l->l_slptime <= 1 && l->l_priority >= PUSER)
    302      1.2      yamt 				resetpriority(l);
    303      1.2      yamt 			lwp_unlock(l);
    304      1.2      yamt 		}
    305      1.2      yamt 	}
    306      1.2      yamt }
    307      1.2      yamt 
    308      1.2      yamt /*
    309      1.2      yamt  * Recalculate the priority of a process after it has slept for a while.
    310      1.2      yamt  */
    311      1.2      yamt static void
    312      1.2      yamt updatepri(struct lwp *l)
    313      1.2      yamt {
    314      1.2      yamt 	struct proc *p = l->l_proc;
    315      1.2      yamt 	fixpt_t loadfac;
    316      1.2      yamt 
    317      1.3        ad 	KASSERT(lwp_locked(l, NULL));
    318      1.2      yamt 	KASSERT(l->l_slptime > 1);
    319      1.2      yamt 
    320      1.2      yamt 	loadfac = loadfactor(averunnable.ldavg[0]);
    321      1.2      yamt 
    322      1.2      yamt 	l->l_slptime--; /* the first time was done in sched_pstats */
    323      1.2      yamt 	/* XXX NJWLWP */
    324      1.2      yamt 	/* XXXSMP occasionally unlocked, should be per-LWP */
    325      1.2      yamt 	p->p_estcpu = decay_cpu_batch(loadfac, p->p_estcpu, l->l_slptime);
    326      1.2      yamt 	resetpriority(l);
    327      1.2      yamt }
    328      1.2      yamt 
    329      1.2      yamt /*
    330      1.2      yamt  * On some architectures, it's faster to use a MSB ordering for the priorites
    331      1.2      yamt  * than the traditional LSB ordering.
    332      1.2      yamt  */
    333      1.2      yamt #define	RQMASK(n) (0x00000001 << (n))
    334      1.2      yamt 
    335      1.2      yamt /*
    336      1.2      yamt  * The primitives that manipulate the run queues.  whichqs tells which
    337      1.2      yamt  * of the 32 queues qs have processes in them.  sched_enqueue() puts processes
    338      1.2      yamt  * into queues, sched_dequeue removes them from queues.  The running process is
    339      1.2      yamt  * on no queue, other processes are on a queue related to p->p_priority,
    340      1.2      yamt  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
    341      1.2      yamt  * available queues.
    342      1.2      yamt  */
    343      1.2      yamt #ifdef RQDEBUG
    344      1.2      yamt static void
    345      1.2      yamt runqueue_check(const runqueue_t *rq, int whichq, struct lwp *l)
    346      1.2      yamt {
    347      1.2      yamt 	const subqueue_t * const sq = &rq->rq_subqueues[whichq];
    348      1.2      yamt 	const uint32_t bitmap = rq->rq_bitmap;
    349      1.2      yamt 	struct lwp *l2;
    350      1.2      yamt 	int found = 0;
    351      1.2      yamt 	int die = 0;
    352      1.2      yamt 	int empty = 1;
    353      1.2      yamt 
    354      1.2      yamt 	TAILQ_FOREACH(l2, &sq->sq_queue, l_runq) {
    355      1.2      yamt 		if (l2->l_stat != LSRUN) {
    356      1.2      yamt 			printf("runqueue_check[%d]: lwp %p state (%d) "
    357      1.2      yamt 			    " != LSRUN\n", whichq, l2, l2->l_stat);
    358      1.2      yamt 		}
    359      1.2      yamt 		if (l2 == l)
    360      1.2      yamt 			found = 1;
    361      1.2      yamt 		empty = 0;
    362      1.2      yamt 	}
    363      1.2      yamt 	if (empty && (bitmap & RQMASK(whichq)) != 0) {
    364      1.2      yamt 		printf("runqueue_check[%d]: bit set for empty run-queue %p\n",
    365      1.2      yamt 		    whichq, rq);
    366      1.2      yamt 		die = 1;
    367      1.2      yamt 	} else if (!empty && (bitmap & RQMASK(whichq)) == 0) {
    368      1.2      yamt 		printf("runqueue_check[%d]: bit clear for non-empty "
    369      1.2      yamt 		    "run-queue %p\n", whichq, rq);
    370      1.2      yamt 		die = 1;
    371      1.2      yamt 	}
    372      1.2      yamt 	if (l != NULL && (bitmap & RQMASK(whichq)) == 0) {
    373      1.2      yamt 		printf("runqueue_check[%d]: bit clear for active lwp %p\n",
    374      1.2      yamt 		    whichq, l);
    375      1.2      yamt 		die = 1;
    376      1.2      yamt 	}
    377      1.2      yamt 	if (l != NULL && empty) {
    378      1.2      yamt 		printf("runqueue_check[%d]: empty run-queue %p with "
    379      1.2      yamt 		    "active lwp %p\n", whichq, rq, l);
    380      1.2      yamt 		die = 1;
    381      1.2      yamt 	}
    382      1.2      yamt 	if (l != NULL && !found) {
    383      1.2      yamt 		printf("runqueue_check[%d]: lwp %p not in runqueue %p!",
    384      1.2      yamt 		    whichq, l, rq);
    385      1.2      yamt 		die = 1;
    386      1.2      yamt 	}
    387      1.2      yamt 	if (die)
    388      1.2      yamt 		panic("runqueue_check: inconsistency found");
    389      1.2      yamt }
    390      1.2      yamt #else /* RQDEBUG */
    391      1.2      yamt #define	runqueue_check(a, b, c)	/* nothing */
    392      1.2      yamt #endif /* RQDEBUG */
    393      1.2      yamt 
    394      1.2      yamt static void
    395      1.2      yamt runqueue_init(runqueue_t *rq)
    396      1.2      yamt {
    397      1.2      yamt 	int i;
    398      1.2      yamt 
    399      1.2      yamt 	for (i = 0; i < RUNQUE_NQS; i++)
    400      1.2      yamt 		TAILQ_INIT(&rq->rq_subqueues[i].sq_queue);
    401      1.2      yamt }
    402      1.2      yamt 
    403      1.2      yamt static void
    404      1.2      yamt runqueue_enqueue(runqueue_t *rq, struct lwp *l)
    405      1.2      yamt {
    406      1.2      yamt 	subqueue_t *sq;
    407      1.2      yamt 	const int whichq = lwp_eprio(l) / PPQ;
    408      1.2      yamt 
    409      1.2      yamt 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    410      1.2      yamt 
    411      1.2      yamt 	runqueue_check(rq, whichq, NULL);
    412      1.2      yamt 	rq->rq_bitmap |= RQMASK(whichq);
    413      1.2      yamt 	sq = &rq->rq_subqueues[whichq];
    414      1.2      yamt 	TAILQ_INSERT_TAIL(&sq->sq_queue, l, l_runq);
    415      1.2      yamt 	runqueue_check(rq, whichq, l);
    416      1.2      yamt }
    417      1.2      yamt 
    418      1.2      yamt static void
    419      1.2      yamt runqueue_dequeue(runqueue_t *rq, struct lwp *l)
    420      1.2      yamt {
    421      1.2      yamt 	subqueue_t *sq;
    422      1.2      yamt 	const int whichq = lwp_eprio(l) / PPQ;
    423      1.2      yamt 
    424      1.2      yamt 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    425      1.2      yamt 
    426      1.2      yamt 	runqueue_check(rq, whichq, l);
    427      1.2      yamt 	KASSERT((rq->rq_bitmap & RQMASK(whichq)) != 0);
    428      1.2      yamt 	sq = &rq->rq_subqueues[whichq];
    429      1.2      yamt 	TAILQ_REMOVE(&sq->sq_queue, l, l_runq);
    430      1.2      yamt 	if (TAILQ_EMPTY(&sq->sq_queue))
    431      1.2      yamt 		rq->rq_bitmap &= ~RQMASK(whichq);
    432      1.2      yamt 	runqueue_check(rq, whichq, NULL);
    433      1.2      yamt }
    434      1.2      yamt 
    435      1.2      yamt static struct lwp *
    436      1.2      yamt runqueue_nextlwp(runqueue_t *rq)
    437      1.2      yamt {
    438      1.2      yamt 	const uint32_t bitmap = rq->rq_bitmap;
    439      1.2      yamt 	int whichq;
    440      1.2      yamt 
    441      1.2      yamt 	if (bitmap == 0) {
    442      1.2      yamt 		return NULL;
    443      1.2      yamt 	}
    444      1.2      yamt 	whichq = ffs(bitmap) - 1;
    445      1.2      yamt 	return TAILQ_FIRST(&rq->rq_subqueues[whichq].sq_queue);
    446      1.2      yamt }
    447      1.2      yamt 
    448      1.2      yamt #if defined(DDB)
    449      1.2      yamt static void
    450      1.2      yamt runqueue_print(const runqueue_t *rq, void (*pr)(const char *, ...))
    451      1.2      yamt {
    452      1.2      yamt 	const uint32_t bitmap = rq->rq_bitmap;
    453      1.2      yamt 	struct lwp *l;
    454      1.2      yamt 	int i, first;
    455      1.2      yamt 
    456      1.2      yamt 	for (i = 0; i < RUNQUE_NQS; i++) {
    457      1.2      yamt 		const subqueue_t *sq;
    458      1.2      yamt 		first = 1;
    459      1.2      yamt 		sq = &rq->rq_subqueues[i];
    460      1.2      yamt 		TAILQ_FOREACH(l, &sq->sq_queue, l_runq) {
    461      1.2      yamt 			if (first) {
    462      1.2      yamt 				(*pr)("%c%d",
    463      1.2      yamt 				    (bitmap & RQMASK(i)) ? ' ' : '!', i);
    464      1.2      yamt 				first = 0;
    465      1.2      yamt 			}
    466      1.2      yamt 			(*pr)("\t%d.%d (%s) pri=%d usrpri=%d\n",
    467      1.2      yamt 			    l->l_proc->p_pid,
    468      1.2      yamt 			    l->l_lid, l->l_proc->p_comm,
    469      1.2      yamt 			    (int)l->l_priority, (int)l->l_usrpri);
    470      1.2      yamt 		}
    471      1.2      yamt 	}
    472      1.2      yamt }
    473      1.2      yamt #endif /* defined(DDB) */
    474      1.2      yamt #undef RQMASK
    475      1.2      yamt 
    476      1.2      yamt /*
    477      1.2      yamt  * Initialize the (doubly-linked) run queues
    478      1.2      yamt  * to be empty.
    479      1.2      yamt  */
    480      1.2      yamt void
    481      1.2      yamt sched_rqinit()
    482      1.2      yamt {
    483      1.2      yamt 
    484      1.2      yamt 	runqueue_init(&global_queue);
    485      1.2      yamt 	mutex_init(&sched_mutex, MUTEX_SPIN, IPL_SCHED);
    486      1.2      yamt 	/* Initialize the lock pointer for lwp0 */
    487      1.2      yamt 	lwp0.l_mutex = &curcpu()->ci_schedstate.spc_lwplock;
    488      1.2      yamt }
    489      1.2      yamt 
    490      1.2      yamt void
    491      1.2      yamt sched_cpuattach(struct cpu_info *ci)
    492      1.2      yamt {
    493      1.2      yamt 	runqueue_t *rq;
    494      1.2      yamt 
    495      1.2      yamt 	ci->ci_schedstate.spc_mutex = &sched_mutex;
    496      1.2      yamt 	rq = kmem_zalloc(sizeof(*rq), KM_NOSLEEP);
    497      1.2      yamt 	runqueue_init(rq);
    498      1.2      yamt 	ci->ci_schedstate.spc_sched_info = rq;
    499      1.2      yamt }
    500      1.2      yamt 
    501      1.2      yamt void
    502      1.2      yamt sched_setup()
    503      1.2      yamt {
    504      1.2      yamt 
    505      1.2      yamt 	rrticks = hz / 10;
    506      1.2      yamt }
    507      1.2      yamt 
    508      1.2      yamt void
    509      1.2      yamt sched_setrunnable(struct lwp *l)
    510      1.2      yamt {
    511      1.2      yamt 
    512      1.2      yamt  	if (l->l_slptime > 1)
    513      1.2      yamt  		updatepri(l);
    514      1.2      yamt }
    515      1.2      yamt 
    516      1.2      yamt bool
    517      1.2      yamt sched_curcpu_runnable_p(void)
    518      1.2      yamt {
    519  1.3.8.1  jmcneill 	struct schedstate_percpu *spc;
    520  1.3.8.1  jmcneill 	runqueue_t *rq;
    521  1.3.8.1  jmcneill 
    522  1.3.8.1  jmcneill 	spc = &curcpu()->ci_schedstate;
    523  1.3.8.1  jmcneill 	rq = spc->spc_sched_info;
    524      1.2      yamt 
    525  1.3.8.1  jmcneill 	if (__predict_true((spc->spc_flags & SPCF_OFFLINE) == 0))
    526  1.3.8.1  jmcneill 		return (global_queue.rq_bitmap | rq->rq_bitmap) != 0;
    527  1.3.8.1  jmcneill 	return rq->rq_bitmap != 0;
    528      1.2      yamt }
    529      1.2      yamt 
    530      1.2      yamt void
    531      1.2      yamt sched_nice(struct proc *chgp, int n)
    532      1.2      yamt {
    533      1.2      yamt 
    534      1.2      yamt 	chgp->p_nice = n;
    535      1.2      yamt 	(void)resetprocpriority(chgp);
    536      1.2      yamt }
    537      1.2      yamt 
    538      1.2      yamt /*
    539      1.2      yamt  * Compute the priority of a process when running in user mode.
    540      1.2      yamt  * Arrange to reschedule if the resulting priority is better
    541      1.2      yamt  * than that of the current process.
    542      1.2      yamt  */
    543      1.2      yamt static void
    544      1.2      yamt resetpriority(struct lwp *l)
    545      1.2      yamt {
    546      1.2      yamt 	unsigned int newpriority;
    547      1.2      yamt 	struct proc *p = l->l_proc;
    548      1.2      yamt 
    549      1.2      yamt 	/* XXXSMP LOCK_ASSERT(mutex_owned(&p->p_stmutex)); */
    550      1.2      yamt 	LOCK_ASSERT(lwp_locked(l, NULL));
    551      1.2      yamt 
    552      1.2      yamt 	if ((l->l_flag & LW_SYSTEM) != 0)
    553      1.2      yamt 		return;
    554      1.2      yamt 
    555      1.2      yamt 	newpriority = PUSER + (p->p_estcpu >> ESTCPU_SHIFT) +
    556      1.2      yamt 	    NICE_WEIGHT * (p->p_nice - NZERO);
    557      1.2      yamt 	newpriority = min(newpriority, MAXPRI);
    558      1.2      yamt 	lwp_changepri(l, newpriority);
    559      1.2      yamt }
    560      1.2      yamt 
    561      1.2      yamt /*
    562      1.2      yamt  * Recompute priority for all LWPs in a process.
    563      1.2      yamt  */
    564      1.2      yamt static void
    565      1.2      yamt resetprocpriority(struct proc *p)
    566      1.2      yamt {
    567      1.2      yamt 	struct lwp *l;
    568      1.2      yamt 
    569      1.3        ad 	KASSERT(mutex_owned(&p->p_stmutex));
    570      1.2      yamt 
    571      1.2      yamt 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    572      1.2      yamt 		lwp_lock(l);
    573      1.2      yamt 		resetpriority(l);
    574      1.2      yamt 		lwp_unlock(l);
    575      1.2      yamt 	}
    576      1.2      yamt }
    577      1.2      yamt 
    578      1.2      yamt /*
    579      1.2      yamt  * We adjust the priority of the current process.  The priority of a process
    580      1.2      yamt  * gets worse as it accumulates CPU time.  The CPU usage estimator (p_estcpu)
    581      1.2      yamt  * is increased here.  The formula for computing priorities (in kern_synch.c)
    582      1.2      yamt  * will compute a different value each time p_estcpu increases. This can
    583      1.2      yamt  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    584      1.2      yamt  * queue will not change.  The CPU usage estimator ramps up quite quickly
    585      1.2      yamt  * when the process is running (linearly), and decays away exponentially, at
    586      1.2      yamt  * a rate which is proportionally slower when the system is busy.  The basic
    587      1.2      yamt  * principle is that the system will 90% forget that the process used a lot
    588      1.2      yamt  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    589      1.2      yamt  * processes which haven't run much recently, and to round-robin among other
    590      1.2      yamt  * processes.
    591      1.2      yamt  */
    592      1.2      yamt 
    593      1.2      yamt void
    594      1.2      yamt sched_schedclock(struct lwp *l)
    595      1.2      yamt {
    596      1.2      yamt 	struct proc *p = l->l_proc;
    597      1.2      yamt 
    598      1.2      yamt 	KASSERT(!CURCPU_IDLE_P());
    599      1.2      yamt 	mutex_spin_enter(&p->p_stmutex);
    600      1.2      yamt 	p->p_estcpu = ESTCPULIM(p->p_estcpu + (1 << ESTCPU_SHIFT));
    601      1.2      yamt 	lwp_lock(l);
    602      1.2      yamt 	resetpriority(l);
    603      1.2      yamt 	mutex_spin_exit(&p->p_stmutex);
    604      1.2      yamt 	if ((l->l_flag & LW_SYSTEM) == 0 && l->l_priority >= PUSER)
    605      1.2      yamt 		l->l_priority = l->l_usrpri;
    606      1.2      yamt 	lwp_unlock(l);
    607      1.2      yamt }
    608      1.2      yamt 
    609      1.2      yamt /*
    610      1.2      yamt  * sched_proc_fork:
    611      1.2      yamt  *
    612      1.2      yamt  *	Inherit the parent's scheduler history.
    613      1.2      yamt  */
    614      1.2      yamt void
    615      1.2      yamt sched_proc_fork(struct proc *parent, struct proc *child)
    616      1.2      yamt {
    617      1.2      yamt 
    618      1.3        ad 	KASSERT(mutex_owned(&parent->p_smutex));
    619      1.2      yamt 
    620      1.2      yamt 	child->p_estcpu = child->p_estcpu_inherited = parent->p_estcpu;
    621      1.2      yamt 	child->p_forktime = sched_pstats_ticks;
    622      1.2      yamt }
    623      1.2      yamt 
    624      1.2      yamt /*
    625      1.2      yamt  * sched_proc_exit:
    626      1.2      yamt  *
    627      1.2      yamt  *	Chargeback parents for the sins of their children.
    628      1.2      yamt  */
    629      1.2      yamt void
    630      1.2      yamt sched_proc_exit(struct proc *parent, struct proc *child)
    631      1.2      yamt {
    632      1.2      yamt 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    633      1.2      yamt 	fixpt_t estcpu;
    634      1.2      yamt 
    635      1.2      yamt 	/* XXX Only if parent != init?? */
    636      1.2      yamt 
    637      1.2      yamt 	mutex_spin_enter(&parent->p_stmutex);
    638      1.2      yamt 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
    639      1.2      yamt 	    sched_pstats_ticks - child->p_forktime);
    640      1.2      yamt 	if (child->p_estcpu > estcpu)
    641      1.2      yamt 		parent->p_estcpu =
    642      1.2      yamt 		    ESTCPULIM(parent->p_estcpu + child->p_estcpu - estcpu);
    643      1.2      yamt 	mutex_spin_exit(&parent->p_stmutex);
    644      1.2      yamt }
    645      1.2      yamt 
    646      1.2      yamt void
    647      1.2      yamt sched_enqueue(struct lwp *l, bool ctxswitch)
    648      1.2      yamt {
    649      1.2      yamt 
    650      1.2      yamt 	if ((l->l_flag & LW_BOUND) != 0)
    651      1.2      yamt 		runqueue_enqueue(l->l_cpu->ci_schedstate.spc_sched_info, l);
    652      1.2      yamt 	else
    653      1.2      yamt 		runqueue_enqueue(&global_queue, l);
    654      1.2      yamt }
    655      1.2      yamt 
    656      1.2      yamt /*
    657      1.2      yamt  * XXXSMP When LWP dispatch (cpu_switch()) is changed to use sched_dequeue(),
    658      1.2      yamt  * drop of the effective priority level from kernel to user needs to be
    659      1.2      yamt  * moved here from userret().  The assignment in userret() is currently
    660      1.2      yamt  * done unlocked.
    661      1.2      yamt  */
    662      1.2      yamt void
    663      1.2      yamt sched_dequeue(struct lwp *l)
    664      1.2      yamt {
    665      1.2      yamt 
    666      1.2      yamt 	if ((l->l_flag & LW_BOUND) != 0)
    667      1.2      yamt 		runqueue_dequeue(l->l_cpu->ci_schedstate.spc_sched_info, l);
    668      1.2      yamt 	else
    669      1.2      yamt 		runqueue_dequeue(&global_queue, l);
    670      1.2      yamt }
    671      1.2      yamt 
    672      1.2      yamt struct lwp *
    673      1.2      yamt sched_nextlwp(void)
    674      1.2      yamt {
    675  1.3.8.1  jmcneill 	struct schedstate_percpu *spc;
    676      1.2      yamt 	lwp_t *l1, *l2;
    677      1.2      yamt 
    678  1.3.8.1  jmcneill 	spc = &curcpu()->ci_schedstate;
    679  1.3.8.1  jmcneill 
    680      1.2      yamt 	/* For now, just pick the highest priority LWP. */
    681  1.3.8.1  jmcneill 	l1 = runqueue_nextlwp(spc->spc_sched_info);
    682  1.3.8.1  jmcneill 	if (__predict_false((spc->spc_flags & SPCF_OFFLINE) != 0))
    683  1.3.8.1  jmcneill 		return l1;
    684      1.2      yamt 	l2 = runqueue_nextlwp(&global_queue);
    685      1.2      yamt 
    686      1.2      yamt 	if (l1 == NULL)
    687      1.2      yamt 		return l2;
    688      1.2      yamt 	if (l2 == NULL)
    689      1.2      yamt 		return l1;
    690      1.2      yamt 	if (lwp_eprio(l2) < lwp_eprio(l1))
    691      1.2      yamt 		return l2;
    692      1.2      yamt 	else
    693      1.2      yamt 		return l1;
    694      1.2      yamt }
    695      1.2      yamt 
    696      1.2      yamt /* Dummy */
    697      1.2      yamt void
    698      1.2      yamt sched_lwp_fork(struct lwp *l)
    699      1.2      yamt {
    700      1.2      yamt 
    701      1.2      yamt }
    702      1.2      yamt 
    703      1.2      yamt void
    704      1.2      yamt sched_lwp_exit(struct lwp *l)
    705      1.2      yamt {
    706      1.2      yamt 
    707      1.2      yamt }
    708      1.2      yamt 
    709      1.2      yamt /* SysCtl */
    710      1.2      yamt 
    711      1.2      yamt SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
    712      1.2      yamt {
    713      1.2      yamt 	const struct sysctlnode *node = NULL;
    714      1.2      yamt 
    715      1.2      yamt 	sysctl_createv(clog, 0, NULL, NULL,
    716      1.2      yamt 		CTLFLAG_PERMANENT,
    717      1.2      yamt 		CTLTYPE_NODE, "kern", NULL,
    718      1.2      yamt 		NULL, 0, NULL, 0,
    719      1.2      yamt 		CTL_KERN, CTL_EOL);
    720      1.2      yamt 	sysctl_createv(clog, 0, NULL, &node,
    721      1.2      yamt 		CTLFLAG_PERMANENT,
    722      1.2      yamt 		CTLTYPE_NODE, "sched",
    723      1.2      yamt 		SYSCTL_DESCR("Scheduler options"),
    724      1.2      yamt 		NULL, 0, NULL, 0,
    725      1.2      yamt 		CTL_KERN, CTL_CREATE, CTL_EOL);
    726      1.2      yamt 
    727      1.2      yamt 	if (node != NULL) {
    728      1.2      yamt 		sysctl_createv(clog, 0, &node, NULL,
    729      1.2      yamt 			CTLFLAG_PERMANENT,
    730      1.2      yamt 			CTLTYPE_STRING, "name", NULL,
    731      1.2      yamt 			NULL, 0, __UNCONST("4.4BSD"), 0,
    732      1.2      yamt 			CTL_CREATE, CTL_EOL);
    733      1.2      yamt 	}
    734      1.2      yamt }
    735      1.2      yamt 
    736      1.2      yamt #if defined(DDB)
    737      1.2      yamt void
    738      1.2      yamt sched_print_runqueue(void (*pr)(const char *, ...))
    739      1.2      yamt {
    740      1.2      yamt 
    741      1.2      yamt 	runqueue_print(&global_queue, pr);
    742      1.2      yamt }
    743      1.2      yamt #endif /* defined(DDB) */
    744