Home | History | Annotate | Line # | Download | only in kern
sched_4bsd.c revision 1.3.8.4
      1  1.3.8.4  jmcneill /*	$NetBSD: sched_4bsd.c,v 1.3.8.4 2007/12/09 19:38:22 jmcneill Exp $	*/
      2      1.2      yamt 
      3      1.2      yamt /*-
      4      1.2      yamt  * Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
      5      1.2      yamt  * All rights reserved.
      6      1.2      yamt  *
      7      1.2      yamt  * This code is derived from software contributed to The NetBSD Foundation
      8      1.2      yamt  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9      1.2      yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
     10      1.2      yamt  * Daniel Sieger.
     11      1.2      yamt  *
     12      1.2      yamt  * Redistribution and use in source and binary forms, with or without
     13      1.2      yamt  * modification, are permitted provided that the following conditions
     14      1.2      yamt  * are met:
     15      1.2      yamt  * 1. Redistributions of source code must retain the above copyright
     16      1.2      yamt  *    notice, this list of conditions and the following disclaimer.
     17      1.2      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     18      1.2      yamt  *    notice, this list of conditions and the following disclaimer in the
     19      1.2      yamt  *    documentation and/or other materials provided with the distribution.
     20      1.2      yamt  * 3. All advertising materials mentioning features or use of this software
     21      1.2      yamt  *    must display the following acknowledgement:
     22      1.2      yamt  *	This product includes software developed by the NetBSD
     23      1.2      yamt  *	Foundation, Inc. and its contributors.
     24      1.2      yamt  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25      1.2      yamt  *    contributors may be used to endorse or promote products derived
     26      1.2      yamt  *    from this software without specific prior written permission.
     27      1.2      yamt  *
     28      1.2      yamt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29      1.2      yamt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30      1.2      yamt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31      1.2      yamt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32      1.2      yamt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33      1.2      yamt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34      1.2      yamt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35      1.2      yamt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36      1.2      yamt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37      1.2      yamt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38      1.2      yamt  * POSSIBILITY OF SUCH DAMAGE.
     39      1.2      yamt  */
     40      1.2      yamt 
     41      1.2      yamt /*-
     42      1.2      yamt  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     43      1.2      yamt  *	The Regents of the University of California.  All rights reserved.
     44      1.2      yamt  * (c) UNIX System Laboratories, Inc.
     45      1.2      yamt  * All or some portions of this file are derived from material licensed
     46      1.2      yamt  * to the University of California by American Telephone and Telegraph
     47      1.2      yamt  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     48      1.2      yamt  * the permission of UNIX System Laboratories, Inc.
     49      1.2      yamt  *
     50      1.2      yamt  * Redistribution and use in source and binary forms, with or without
     51      1.2      yamt  * modification, are permitted provided that the following conditions
     52      1.2      yamt  * are met:
     53      1.2      yamt  * 1. Redistributions of source code must retain the above copyright
     54      1.2      yamt  *    notice, this list of conditions and the following disclaimer.
     55      1.2      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     56      1.2      yamt  *    notice, this list of conditions and the following disclaimer in the
     57      1.2      yamt  *    documentation and/or other materials provided with the distribution.
     58      1.2      yamt  * 3. Neither the name of the University nor the names of its contributors
     59      1.2      yamt  *    may be used to endorse or promote products derived from this software
     60      1.2      yamt  *    without specific prior written permission.
     61      1.2      yamt  *
     62      1.2      yamt  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     63      1.2      yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     64      1.2      yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     65      1.2      yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     66      1.2      yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     67      1.2      yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     68      1.2      yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     69      1.2      yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     70      1.2      yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     71      1.2      yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     72      1.2      yamt  * SUCH DAMAGE.
     73      1.2      yamt  *
     74      1.2      yamt  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     75      1.2      yamt  */
     76      1.2      yamt 
     77      1.2      yamt #include <sys/cdefs.h>
     78  1.3.8.4  jmcneill __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.3.8.4 2007/12/09 19:38:22 jmcneill Exp $");
     79      1.2      yamt 
     80      1.2      yamt #include "opt_ddb.h"
     81      1.2      yamt #include "opt_lockdebug.h"
     82      1.2      yamt #include "opt_perfctrs.h"
     83      1.2      yamt 
     84      1.2      yamt #define	__MUTEX_PRIVATE
     85      1.2      yamt 
     86      1.2      yamt #include <sys/param.h>
     87      1.2      yamt #include <sys/systm.h>
     88      1.2      yamt #include <sys/callout.h>
     89      1.2      yamt #include <sys/cpu.h>
     90      1.2      yamt #include <sys/proc.h>
     91      1.2      yamt #include <sys/kernel.h>
     92      1.2      yamt #include <sys/signalvar.h>
     93      1.2      yamt #include <sys/resourcevar.h>
     94      1.2      yamt #include <sys/sched.h>
     95      1.2      yamt #include <sys/sysctl.h>
     96      1.2      yamt #include <sys/kauth.h>
     97      1.2      yamt #include <sys/lockdebug.h>
     98      1.2      yamt #include <sys/kmem.h>
     99  1.3.8.2     joerg #include <sys/intr.h>
    100      1.2      yamt 
    101      1.2      yamt #include <uvm/uvm_extern.h>
    102      1.2      yamt 
    103      1.2      yamt /*
    104      1.2      yamt  * Run queues.
    105      1.2      yamt  *
    106  1.3.8.3     joerg  * We maintain bitmasks of non-empty queues in order speed up finding
    107  1.3.8.3     joerg  * the first runnable process.  Since there can be (by definition) few
    108  1.3.8.3     joerg  * real time LWPs in the the system, we maintain them on a linked list,
    109  1.3.8.3     joerg  * sorted by priority.
    110      1.2      yamt  */
    111      1.2      yamt 
    112  1.3.8.3     joerg #define	PPB_SHIFT	5
    113  1.3.8.3     joerg #define	PPB_MASK	31
    114  1.3.8.3     joerg 
    115  1.3.8.3     joerg #define	NUM_Q		(NPRI_KERNEL + NPRI_USER)
    116  1.3.8.3     joerg #define	NUM_PPB		(1 << PPB_SHIFT)
    117  1.3.8.3     joerg #define	NUM_B		(NUM_Q / NUM_PPB)
    118  1.3.8.3     joerg 
    119      1.2      yamt typedef struct runqueue {
    120  1.3.8.3     joerg 	TAILQ_HEAD(, lwp) rq_fixedpri;		/* realtime, kthread */
    121  1.3.8.3     joerg 	u_int		rq_count;		/* total # jobs */
    122  1.3.8.3     joerg 	uint32_t	rq_bitmap[NUM_B];	/* bitmap of queues */
    123  1.3.8.3     joerg 	TAILQ_HEAD(, lwp) rq_queue[NUM_Q];	/* user+kernel */
    124      1.2      yamt } runqueue_t;
    125  1.3.8.3     joerg 
    126      1.2      yamt static runqueue_t global_queue;
    127      1.2      yamt 
    128      1.2      yamt static void updatepri(struct lwp *);
    129      1.2      yamt static void resetpriority(struct lwp *);
    130      1.2      yamt 
    131  1.3.8.2     joerg fixpt_t decay_cpu(fixpt_t, fixpt_t);
    132  1.3.8.2     joerg 
    133      1.2      yamt extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
    134      1.2      yamt 
    135      1.2      yamt /* The global scheduler state */
    136      1.2      yamt kmutex_t sched_mutex;
    137      1.2      yamt 
    138      1.2      yamt /* Number of hardclock ticks per sched_tick() */
    139      1.2      yamt int rrticks;
    140      1.2      yamt 
    141  1.3.8.3     joerg const int schedppq = 1;
    142  1.3.8.3     joerg 
    143      1.2      yamt /*
    144      1.2      yamt  * Force switch among equal priority processes every 100ms.
    145      1.2      yamt  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    146  1.3.8.2     joerg  *
    147  1.3.8.2     joerg  * There's no need to lock anywhere in this routine, as it's
    148  1.3.8.2     joerg  * CPU-local and runs at IPL_SCHED (called from clock interrupt).
    149      1.2      yamt  */
    150      1.2      yamt /* ARGSUSED */
    151      1.2      yamt void
    152      1.2      yamt sched_tick(struct cpu_info *ci)
    153      1.2      yamt {
    154      1.2      yamt 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    155      1.2      yamt 
    156      1.2      yamt 	spc->spc_ticks = rrticks;
    157      1.2      yamt 
    158  1.3.8.2     joerg 	if (CURCPU_IDLE_P())
    159  1.3.8.2     joerg 		return;
    160  1.3.8.2     joerg 
    161  1.3.8.2     joerg 	if (spc->spc_flags & SPCF_SEENRR) {
    162  1.3.8.2     joerg 		/*
    163  1.3.8.2     joerg 		 * The process has already been through a roundrobin
    164  1.3.8.2     joerg 		 * without switching and may be hogging the CPU.
    165  1.3.8.2     joerg 		 * Indicate that the process should yield.
    166  1.3.8.2     joerg 		 */
    167  1.3.8.2     joerg 		spc->spc_flags |= SPCF_SHOULDYIELD;
    168  1.3.8.2     joerg 	} else
    169  1.3.8.2     joerg 		spc->spc_flags |= SPCF_SEENRR;
    170  1.3.8.2     joerg 
    171  1.3.8.2     joerg 	cpu_need_resched(ci, 0);
    172      1.2      yamt }
    173      1.2      yamt 
    174  1.3.8.3     joerg /*
    175  1.3.8.3     joerg  * Why PRIO_MAX - 2? From setpriority(2):
    176  1.3.8.3     joerg  *
    177  1.3.8.3     joerg  *	prio is a value in the range -20 to 20.  The default priority is
    178  1.3.8.3     joerg  *	0; lower priorities cause more favorable scheduling.  A value of
    179  1.3.8.3     joerg  *	19 or 20 will schedule a process only when nothing at priority <=
    180  1.3.8.3     joerg  *	0 is runnable.
    181  1.3.8.3     joerg  *
    182  1.3.8.3     joerg  * This gives estcpu influence over 18 priority levels, and leaves nice
    183  1.3.8.3     joerg  * with 40 levels.  One way to think about it is that nice has 20 levels
    184  1.3.8.3     joerg  * either side of estcpu's 18.
    185  1.3.8.3     joerg  */
    186      1.2      yamt #define	ESTCPU_SHIFT	11
    187  1.3.8.3     joerg #define	ESTCPU_MAX	((PRIO_MAX - 2) << ESTCPU_SHIFT)
    188  1.3.8.3     joerg #define	ESTCPU_ACCUM	(1 << (ESTCPU_SHIFT - 1))
    189      1.2      yamt #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    190      1.2      yamt 
    191      1.2      yamt /*
    192      1.2      yamt  * Constants for digital decay and forget:
    193  1.3.8.3     joerg  *	90% of (l_estcpu) usage in 5 * loadav time
    194  1.3.8.3     joerg  *	95% of (l_pctcpu) usage in 60 seconds (load insensitive)
    195      1.2      yamt  *          Note that, as ps(1) mentions, this can let percentages
    196      1.2      yamt  *          total over 100% (I've seen 137.9% for 3 processes).
    197      1.2      yamt  *
    198  1.3.8.3     joerg  * Note that hardclock updates l_estcpu and l_cpticks independently.
    199      1.2      yamt  *
    200  1.3.8.3     joerg  * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds.
    201      1.2      yamt  * That is, the system wants to compute a value of decay such
    202      1.2      yamt  * that the following for loop:
    203      1.2      yamt  * 	for (i = 0; i < (5 * loadavg); i++)
    204  1.3.8.3     joerg  * 		l_estcpu *= decay;
    205      1.2      yamt  * will compute
    206  1.3.8.3     joerg  * 	l_estcpu *= 0.1;
    207      1.2      yamt  * for all values of loadavg:
    208      1.2      yamt  *
    209      1.2      yamt  * Mathematically this loop can be expressed by saying:
    210      1.2      yamt  * 	decay ** (5 * loadavg) ~= .1
    211      1.2      yamt  *
    212      1.2      yamt  * The system computes decay as:
    213      1.2      yamt  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
    214      1.2      yamt  *
    215      1.2      yamt  * We wish to prove that the system's computation of decay
    216      1.2      yamt  * will always fulfill the equation:
    217      1.2      yamt  * 	decay ** (5 * loadavg) ~= .1
    218      1.2      yamt  *
    219      1.2      yamt  * If we compute b as:
    220      1.2      yamt  * 	b = 2 * loadavg
    221      1.2      yamt  * then
    222      1.2      yamt  * 	decay = b / (b + 1)
    223      1.2      yamt  *
    224      1.2      yamt  * We now need to prove two things:
    225      1.2      yamt  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
    226      1.2      yamt  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
    227      1.2      yamt  *
    228      1.2      yamt  * Facts:
    229      1.2      yamt  *         For x close to zero, exp(x) =~ 1 + x, since
    230      1.2      yamt  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
    231      1.2      yamt  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    232      1.2      yamt  *         For x close to zero, ln(1+x) =~ x, since
    233      1.2      yamt  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
    234      1.2      yamt  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    235      1.2      yamt  *         ln(.1) =~ -2.30
    236      1.2      yamt  *
    237      1.2      yamt  * Proof of (1):
    238      1.2      yamt  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
    239      1.2      yamt  *	solving for factor,
    240      1.2      yamt  *      ln(factor) =~ (-2.30/5*loadav), or
    241      1.2      yamt  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
    242      1.2      yamt  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
    243      1.2      yamt  *
    244      1.2      yamt  * Proof of (2):
    245      1.2      yamt  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
    246      1.2      yamt  *	solving for power,
    247      1.2      yamt  *      power*ln(b/(b+1)) =~ -2.30, or
    248      1.2      yamt  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
    249      1.2      yamt  *
    250      1.2      yamt  * Actual power values for the implemented algorithm are as follows:
    251      1.2      yamt  *      loadav: 1       2       3       4
    252      1.2      yamt  *      power:  5.68    10.32   14.94   19.55
    253      1.2      yamt  */
    254      1.2      yamt 
    255      1.2      yamt /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
    256      1.2      yamt #define	loadfactor(loadav)	(2 * (loadav))
    257      1.2      yamt 
    258  1.3.8.2     joerg fixpt_t
    259      1.2      yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    260      1.2      yamt {
    261      1.2      yamt 
    262      1.2      yamt 	if (estcpu == 0) {
    263      1.2      yamt 		return 0;
    264      1.2      yamt 	}
    265      1.2      yamt 
    266      1.2      yamt #if !defined(_LP64)
    267      1.2      yamt 	/* avoid 64bit arithmetics. */
    268      1.2      yamt #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    269      1.2      yamt 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    270      1.2      yamt 		return estcpu * loadfac / (loadfac + FSCALE);
    271      1.2      yamt 	}
    272      1.2      yamt #endif /* !defined(_LP64) */
    273      1.2      yamt 
    274      1.2      yamt 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    275      1.2      yamt }
    276      1.2      yamt 
    277      1.2      yamt /*
    278  1.3.8.3     joerg  * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
    279  1.3.8.3     joerg  * sleeping for at least seven times the loadfactor will decay l_estcpu to
    280      1.2      yamt  * less than (1 << ESTCPU_SHIFT).
    281      1.2      yamt  *
    282      1.2      yamt  * note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
    283      1.2      yamt  */
    284      1.2      yamt static fixpt_t
    285      1.2      yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    286      1.2      yamt {
    287      1.2      yamt 
    288      1.2      yamt 	if ((n << FSHIFT) >= 7 * loadfac) {
    289      1.2      yamt 		return 0;
    290      1.2      yamt 	}
    291      1.2      yamt 
    292      1.2      yamt 	while (estcpu != 0 && n > 1) {
    293      1.2      yamt 		estcpu = decay_cpu(loadfac, estcpu);
    294      1.2      yamt 		n--;
    295      1.2      yamt 	}
    296      1.2      yamt 
    297      1.2      yamt 	return estcpu;
    298      1.2      yamt }
    299      1.2      yamt 
    300      1.2      yamt /*
    301      1.2      yamt  * sched_pstats_hook:
    302      1.2      yamt  *
    303      1.2      yamt  * Periodically called from sched_pstats(); used to recalculate priorities.
    304      1.2      yamt  */
    305      1.2      yamt void
    306  1.3.8.2     joerg sched_pstats_hook(struct lwp *l)
    307      1.2      yamt {
    308  1.3.8.3     joerg 	fixpt_t loadfac;
    309  1.3.8.3     joerg 	int sleeptm;
    310      1.2      yamt 
    311  1.3.8.3     joerg 	/*
    312  1.3.8.3     joerg 	 * If the LWP has slept an entire second, stop recalculating
    313  1.3.8.3     joerg 	 * its priority until it wakes up.
    314  1.3.8.3     joerg 	 */
    315  1.3.8.3     joerg 	if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    316  1.3.8.3     joerg 	    l->l_stat == LSSUSPENDED) {
    317  1.3.8.3     joerg 		l->l_slptime++;
    318  1.3.8.3     joerg 		sleeptm = 1;
    319  1.3.8.3     joerg 	} else {
    320  1.3.8.3     joerg 		sleeptm = 0x7fffffff;
    321  1.3.8.3     joerg 	}
    322  1.3.8.3     joerg 
    323  1.3.8.3     joerg 	if (l->l_slptime <= sleeptm) {
    324  1.3.8.3     joerg 		loadfac = 2 * (averunnable.ldavg[0]);
    325  1.3.8.3     joerg 		l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
    326  1.3.8.2     joerg 		resetpriority(l);
    327  1.3.8.3     joerg 	}
    328      1.2      yamt }
    329      1.2      yamt 
    330      1.2      yamt /*
    331      1.2      yamt  * Recalculate the priority of a process after it has slept for a while.
    332      1.2      yamt  */
    333      1.2      yamt static void
    334      1.2      yamt updatepri(struct lwp *l)
    335      1.2      yamt {
    336      1.2      yamt 	fixpt_t loadfac;
    337      1.2      yamt 
    338      1.3        ad 	KASSERT(lwp_locked(l, NULL));
    339      1.2      yamt 	KASSERT(l->l_slptime > 1);
    340      1.2      yamt 
    341      1.2      yamt 	loadfac = loadfactor(averunnable.ldavg[0]);
    342      1.2      yamt 
    343      1.2      yamt 	l->l_slptime--; /* the first time was done in sched_pstats */
    344  1.3.8.3     joerg 	l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
    345      1.2      yamt 	resetpriority(l);
    346      1.2      yamt }
    347      1.2      yamt 
    348      1.2      yamt static void
    349      1.2      yamt runqueue_init(runqueue_t *rq)
    350      1.2      yamt {
    351      1.2      yamt 	int i;
    352      1.2      yamt 
    353  1.3.8.3     joerg 	for (i = 0; i < NUM_Q; i++)
    354  1.3.8.3     joerg 		TAILQ_INIT(&rq->rq_queue[i]);
    355  1.3.8.3     joerg 	for (i = 0; i < NUM_B; i++)
    356  1.3.8.3     joerg 		rq->rq_bitmap[i] = 0;
    357  1.3.8.3     joerg 	TAILQ_INIT(&rq->rq_fixedpri);
    358  1.3.8.3     joerg 	rq->rq_count = 0;
    359      1.2      yamt }
    360      1.2      yamt 
    361      1.2      yamt static void
    362      1.2      yamt runqueue_enqueue(runqueue_t *rq, struct lwp *l)
    363      1.2      yamt {
    364  1.3.8.3     joerg 	pri_t pri;
    365  1.3.8.3     joerg 	lwp_t *l2;
    366      1.2      yamt 
    367      1.2      yamt 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    368      1.2      yamt 
    369  1.3.8.3     joerg 	pri = lwp_eprio(l);
    370  1.3.8.3     joerg 	rq->rq_count++;
    371  1.3.8.3     joerg 
    372  1.3.8.3     joerg 	if (pri >= PRI_KTHREAD) {
    373  1.3.8.3     joerg 		TAILQ_FOREACH(l2, &rq->rq_fixedpri, l_runq) {
    374  1.3.8.3     joerg 			if (lwp_eprio(l2) < pri) {
    375  1.3.8.3     joerg 				TAILQ_INSERT_BEFORE(l2, l, l_runq);
    376  1.3.8.3     joerg 				return;
    377  1.3.8.3     joerg 			}
    378  1.3.8.3     joerg 		}
    379  1.3.8.3     joerg 		TAILQ_INSERT_TAIL(&rq->rq_fixedpri, l, l_runq);
    380  1.3.8.3     joerg 		return;
    381  1.3.8.3     joerg 	}
    382  1.3.8.3     joerg 
    383  1.3.8.3     joerg 	rq->rq_bitmap[pri >> PPB_SHIFT] |=
    384  1.3.8.3     joerg 	    (0x80000000U >> (pri & PPB_MASK));
    385  1.3.8.3     joerg 	TAILQ_INSERT_TAIL(&rq->rq_queue[pri], l, l_runq);
    386      1.2      yamt }
    387      1.2      yamt 
    388      1.2      yamt static void
    389      1.2      yamt runqueue_dequeue(runqueue_t *rq, struct lwp *l)
    390      1.2      yamt {
    391  1.3.8.3     joerg 	pri_t pri;
    392      1.2      yamt 
    393      1.2      yamt 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
    394      1.2      yamt 
    395  1.3.8.3     joerg 	pri = lwp_eprio(l);
    396  1.3.8.3     joerg 	rq->rq_count--;
    397  1.3.8.3     joerg 
    398  1.3.8.3     joerg 	if (pri >= PRI_KTHREAD) {
    399  1.3.8.3     joerg 		TAILQ_REMOVE(&rq->rq_fixedpri, l, l_runq);
    400  1.3.8.3     joerg 		return;
    401  1.3.8.3     joerg 	}
    402  1.3.8.3     joerg 
    403  1.3.8.3     joerg 	TAILQ_REMOVE(&rq->rq_queue[pri], l, l_runq);
    404  1.3.8.3     joerg 	if (TAILQ_EMPTY(&rq->rq_queue[pri]))
    405  1.3.8.3     joerg 		rq->rq_bitmap[pri >> PPB_SHIFT] ^=
    406  1.3.8.3     joerg 		    (0x80000000U >> (pri & PPB_MASK));
    407      1.2      yamt }
    408      1.2      yamt 
    409  1.3.8.3     joerg #if (NUM_B != 3) || (NUM_Q != 96)
    410  1.3.8.3     joerg #error adjust runqueue_nextlwp
    411  1.3.8.3     joerg #endif
    412  1.3.8.3     joerg 
    413      1.2      yamt static struct lwp *
    414      1.2      yamt runqueue_nextlwp(runqueue_t *rq)
    415      1.2      yamt {
    416  1.3.8.3     joerg 	pri_t pri;
    417      1.2      yamt 
    418  1.3.8.3     joerg 	KASSERT(rq->rq_count != 0);
    419  1.3.8.3     joerg 
    420  1.3.8.3     joerg 	if (!TAILQ_EMPTY(&rq->rq_fixedpri))
    421  1.3.8.3     joerg 		return TAILQ_FIRST(&rq->rq_fixedpri);
    422  1.3.8.3     joerg 
    423  1.3.8.3     joerg 	if (rq->rq_bitmap[2] != 0)
    424  1.3.8.3     joerg 		pri = 96 - ffs(rq->rq_bitmap[2]);
    425  1.3.8.3     joerg 	else if (rq->rq_bitmap[1] != 0)
    426  1.3.8.3     joerg 		pri = 64 - ffs(rq->rq_bitmap[1]);
    427  1.3.8.3     joerg 	else
    428  1.3.8.3     joerg 		pri = 32 - ffs(rq->rq_bitmap[0]);
    429  1.3.8.3     joerg 	return TAILQ_FIRST(&rq->rq_queue[pri]);
    430      1.2      yamt }
    431      1.2      yamt 
    432      1.2      yamt #if defined(DDB)
    433      1.2      yamt static void
    434      1.2      yamt runqueue_print(const runqueue_t *rq, void (*pr)(const char *, ...))
    435      1.2      yamt {
    436  1.3.8.3     joerg 	CPU_INFO_ITERATOR cii;
    437  1.3.8.3     joerg 	struct cpu_info *ci;
    438  1.3.8.3     joerg 	lwp_t *l;
    439  1.3.8.3     joerg 	int i;
    440      1.2      yamt 
    441  1.3.8.3     joerg 	printf("PID\tLID\tPRI\tIPRI\tEPRI\tLWP\t\t NAME\n");
    442  1.3.8.3     joerg 
    443  1.3.8.3     joerg 	TAILQ_FOREACH(l, &rq->rq_fixedpri, l_runq) {
    444  1.3.8.3     joerg 		(*pr)("%d\t%d\%d\t%d\t%d\t%016lx %s\n",
    445  1.3.8.3     joerg 		    l->l_proc->p_pid, l->l_lid, (int)l->l_priority,
    446  1.3.8.3     joerg 		    (int)l->l_inheritedprio, lwp_eprio(l),
    447  1.3.8.3     joerg 		    (long)l, l->l_proc->p_comm);
    448  1.3.8.3     joerg 	}
    449  1.3.8.3     joerg 
    450  1.3.8.3     joerg 	for (i = NUM_Q - 1; i >= 0; i--) {
    451  1.3.8.3     joerg 		TAILQ_FOREACH(l, &rq->rq_queue[i], l_runq) {
    452  1.3.8.3     joerg 			(*pr)("%d\t%d\t%d\t%d\t%d\t%016lx %s\n",
    453  1.3.8.3     joerg 			    l->l_proc->p_pid, l->l_lid, (int)l->l_priority,
    454  1.3.8.3     joerg 			    (int)l->l_inheritedprio, lwp_eprio(l),
    455  1.3.8.3     joerg 			    (long)l, l->l_proc->p_comm);
    456      1.2      yamt 		}
    457      1.2      yamt 	}
    458  1.3.8.3     joerg 
    459  1.3.8.3     joerg 	printf("CPUIDX\tRESCHED\tCURPRI\tFLAGS\n");
    460  1.3.8.3     joerg 	for (CPU_INFO_FOREACH(cii, ci)) {
    461  1.3.8.3     joerg 		printf("%d\t%d\t%d\t%04x\n", (int)ci->ci_index,
    462  1.3.8.3     joerg 		    (int)ci->ci_want_resched,
    463  1.3.8.3     joerg 		    (int)ci->ci_schedstate.spc_curpriority,
    464  1.3.8.3     joerg 		    (int)ci->ci_schedstate.spc_flags);
    465  1.3.8.3     joerg 	}
    466  1.3.8.3     joerg 
    467  1.3.8.3     joerg 	printf("NEXTLWP\n%016lx\n", (long)sched_nextlwp());
    468      1.2      yamt }
    469      1.2      yamt #endif /* defined(DDB) */
    470      1.2      yamt 
    471      1.2      yamt /*
    472      1.2      yamt  * Initialize the (doubly-linked) run queues
    473      1.2      yamt  * to be empty.
    474      1.2      yamt  */
    475      1.2      yamt void
    476      1.2      yamt sched_rqinit()
    477      1.2      yamt {
    478      1.2      yamt 
    479      1.2      yamt 	runqueue_init(&global_queue);
    480  1.3.8.4  jmcneill 	mutex_init(&sched_mutex, MUTEX_DEFAULT, IPL_SCHED);
    481      1.2      yamt 	/* Initialize the lock pointer for lwp0 */
    482      1.2      yamt 	lwp0.l_mutex = &curcpu()->ci_schedstate.spc_lwplock;
    483      1.2      yamt }
    484      1.2      yamt 
    485      1.2      yamt void
    486      1.2      yamt sched_cpuattach(struct cpu_info *ci)
    487      1.2      yamt {
    488      1.2      yamt 	runqueue_t *rq;
    489      1.2      yamt 
    490      1.2      yamt 	ci->ci_schedstate.spc_mutex = &sched_mutex;
    491      1.2      yamt 	rq = kmem_zalloc(sizeof(*rq), KM_NOSLEEP);
    492      1.2      yamt 	runqueue_init(rq);
    493      1.2      yamt 	ci->ci_schedstate.spc_sched_info = rq;
    494      1.2      yamt }
    495      1.2      yamt 
    496      1.2      yamt void
    497      1.2      yamt sched_setup()
    498      1.2      yamt {
    499      1.2      yamt 
    500      1.2      yamt 	rrticks = hz / 10;
    501      1.2      yamt }
    502      1.2      yamt 
    503      1.2      yamt void
    504      1.2      yamt sched_setrunnable(struct lwp *l)
    505      1.2      yamt {
    506      1.2      yamt 
    507      1.2      yamt  	if (l->l_slptime > 1)
    508      1.2      yamt  		updatepri(l);
    509      1.2      yamt }
    510      1.2      yamt 
    511      1.2      yamt bool
    512      1.2      yamt sched_curcpu_runnable_p(void)
    513      1.2      yamt {
    514  1.3.8.1  jmcneill 	struct schedstate_percpu *spc;
    515  1.3.8.3     joerg 	struct cpu_info *ci;
    516  1.3.8.3     joerg 	int bits;
    517      1.2      yamt 
    518  1.3.8.3     joerg 	ci = curcpu();
    519  1.3.8.3     joerg 	spc = &ci->ci_schedstate;
    520  1.3.8.3     joerg #ifndef __HAVE_FAST_SOFTINTS
    521  1.3.8.3     joerg 	bits = ci->ci_data.cpu_softints;
    522  1.3.8.3     joerg 	bits |= ((runqueue_t *)spc->spc_sched_info)->rq_count;
    523  1.3.8.3     joerg #else
    524  1.3.8.3     joerg 	bits = ((runqueue_t *)spc->spc_sched_info)->rq_count;
    525  1.3.8.3     joerg #endif
    526  1.3.8.1  jmcneill 	if (__predict_true((spc->spc_flags & SPCF_OFFLINE) == 0))
    527  1.3.8.3     joerg 		bits |= global_queue.rq_count;
    528  1.3.8.3     joerg 	return bits != 0;
    529      1.2      yamt }
    530      1.2      yamt 
    531      1.2      yamt void
    532  1.3.8.3     joerg sched_nice(struct proc *p, int n)
    533      1.2      yamt {
    534  1.3.8.3     joerg 	struct lwp *l;
    535  1.3.8.3     joerg 
    536  1.3.8.3     joerg 	KASSERT(mutex_owned(&p->p_smutex));
    537      1.2      yamt 
    538  1.3.8.3     joerg 	p->p_nice = n;
    539  1.3.8.3     joerg 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    540  1.3.8.3     joerg 		lwp_lock(l);
    541  1.3.8.3     joerg 		resetpriority(l);
    542  1.3.8.3     joerg 		lwp_unlock(l);
    543  1.3.8.3     joerg 	}
    544      1.2      yamt }
    545      1.2      yamt 
    546      1.2      yamt /*
    547  1.3.8.3     joerg  * Recompute the priority of an LWP.  Arrange to reschedule if
    548  1.3.8.3     joerg  * the resulting priority is better than that of the current LWP.
    549      1.2      yamt  */
    550      1.2      yamt static void
    551      1.2      yamt resetpriority(struct lwp *l)
    552      1.2      yamt {
    553  1.3.8.3     joerg 	pri_t pri;
    554      1.2      yamt 	struct proc *p = l->l_proc;
    555      1.2      yamt 
    556  1.3.8.3     joerg 	KASSERT(lwp_locked(l, NULL));
    557      1.2      yamt 
    558  1.3.8.3     joerg 	if (l->l_class != SCHED_OTHER)
    559      1.2      yamt 		return;
    560      1.2      yamt 
    561  1.3.8.3     joerg 	/* See comments above ESTCPU_SHIFT definition. */
    562  1.3.8.3     joerg 	pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
    563  1.3.8.3     joerg 	pri = imax(pri, 0);
    564  1.3.8.3     joerg 	if (pri != l->l_priority)
    565  1.3.8.3     joerg 		lwp_changepri(l, pri);
    566      1.2      yamt }
    567      1.2      yamt 
    568      1.2      yamt /*
    569      1.2      yamt  * We adjust the priority of the current process.  The priority of a process
    570  1.3.8.3     joerg  * gets worse as it accumulates CPU time.  The CPU usage estimator (l_estcpu)
    571      1.2      yamt  * is increased here.  The formula for computing priorities (in kern_synch.c)
    572  1.3.8.3     joerg  * will compute a different value each time l_estcpu increases. This can
    573      1.2      yamt  * cause a switch, but unless the priority crosses a PPQ boundary the actual
    574      1.2      yamt  * queue will not change.  The CPU usage estimator ramps up quite quickly
    575      1.2      yamt  * when the process is running (linearly), and decays away exponentially, at
    576      1.2      yamt  * a rate which is proportionally slower when the system is busy.  The basic
    577      1.2      yamt  * principle is that the system will 90% forget that the process used a lot
    578      1.2      yamt  * of CPU time in 5 * loadav seconds.  This causes the system to favor
    579      1.2      yamt  * processes which haven't run much recently, and to round-robin among other
    580      1.2      yamt  * processes.
    581      1.2      yamt  */
    582      1.2      yamt 
    583      1.2      yamt void
    584      1.2      yamt sched_schedclock(struct lwp *l)
    585      1.2      yamt {
    586  1.3.8.3     joerg 
    587  1.3.8.3     joerg 	if (l->l_class != SCHED_OTHER)
    588  1.3.8.3     joerg 		return;
    589      1.2      yamt 
    590      1.2      yamt 	KASSERT(!CURCPU_IDLE_P());
    591  1.3.8.3     joerg 	l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
    592      1.2      yamt 	lwp_lock(l);
    593      1.2      yamt 	resetpriority(l);
    594      1.2      yamt 	lwp_unlock(l);
    595      1.2      yamt }
    596      1.2      yamt 
    597      1.2      yamt /*
    598      1.2      yamt  * sched_proc_fork:
    599      1.2      yamt  *
    600      1.2      yamt  *	Inherit the parent's scheduler history.
    601      1.2      yamt  */
    602      1.2      yamt void
    603      1.2      yamt sched_proc_fork(struct proc *parent, struct proc *child)
    604      1.2      yamt {
    605  1.3.8.3     joerg 	lwp_t *pl;
    606      1.2      yamt 
    607      1.3        ad 	KASSERT(mutex_owned(&parent->p_smutex));
    608      1.2      yamt 
    609  1.3.8.3     joerg 	pl = LIST_FIRST(&parent->p_lwps);
    610  1.3.8.3     joerg 	child->p_estcpu_inherited = pl->l_estcpu;
    611      1.2      yamt 	child->p_forktime = sched_pstats_ticks;
    612      1.2      yamt }
    613      1.2      yamt 
    614      1.2      yamt /*
    615      1.2      yamt  * sched_proc_exit:
    616      1.2      yamt  *
    617      1.2      yamt  *	Chargeback parents for the sins of their children.
    618      1.2      yamt  */
    619      1.2      yamt void
    620      1.2      yamt sched_proc_exit(struct proc *parent, struct proc *child)
    621      1.2      yamt {
    622      1.2      yamt 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    623      1.2      yamt 	fixpt_t estcpu;
    624  1.3.8.3     joerg 	lwp_t *pl, *cl;
    625      1.2      yamt 
    626      1.2      yamt 	/* XXX Only if parent != init?? */
    627      1.2      yamt 
    628  1.3.8.3     joerg 	mutex_enter(&parent->p_smutex);
    629  1.3.8.3     joerg 	pl = LIST_FIRST(&parent->p_lwps);
    630  1.3.8.3     joerg 	cl = LIST_FIRST(&child->p_lwps);
    631      1.2      yamt 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
    632      1.2      yamt 	    sched_pstats_ticks - child->p_forktime);
    633  1.3.8.3     joerg 	if (cl->l_estcpu > estcpu) {
    634  1.3.8.3     joerg 		lwp_lock(pl);
    635  1.3.8.3     joerg 		pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
    636  1.3.8.3     joerg 		lwp_unlock(pl);
    637  1.3.8.3     joerg 	}
    638  1.3.8.3     joerg 	mutex_exit(&parent->p_smutex);
    639      1.2      yamt }
    640      1.2      yamt 
    641      1.2      yamt void
    642      1.2      yamt sched_enqueue(struct lwp *l, bool ctxswitch)
    643      1.2      yamt {
    644      1.2      yamt 
    645      1.2      yamt 	if ((l->l_flag & LW_BOUND) != 0)
    646      1.2      yamt 		runqueue_enqueue(l->l_cpu->ci_schedstate.spc_sched_info, l);
    647      1.2      yamt 	else
    648      1.2      yamt 		runqueue_enqueue(&global_queue, l);
    649      1.2      yamt }
    650      1.2      yamt 
    651      1.2      yamt /*
    652      1.2      yamt  * XXXSMP When LWP dispatch (cpu_switch()) is changed to use sched_dequeue(),
    653      1.2      yamt  * drop of the effective priority level from kernel to user needs to be
    654      1.2      yamt  * moved here from userret().  The assignment in userret() is currently
    655      1.2      yamt  * done unlocked.
    656      1.2      yamt  */
    657      1.2      yamt void
    658      1.2      yamt sched_dequeue(struct lwp *l)
    659      1.2      yamt {
    660      1.2      yamt 
    661      1.2      yamt 	if ((l->l_flag & LW_BOUND) != 0)
    662      1.2      yamt 		runqueue_dequeue(l->l_cpu->ci_schedstate.spc_sched_info, l);
    663      1.2      yamt 	else
    664      1.2      yamt 		runqueue_dequeue(&global_queue, l);
    665      1.2      yamt }
    666      1.2      yamt 
    667      1.2      yamt struct lwp *
    668      1.2      yamt sched_nextlwp(void)
    669      1.2      yamt {
    670  1.3.8.1  jmcneill 	struct schedstate_percpu *spc;
    671  1.3.8.3     joerg 	runqueue_t *rq;
    672      1.2      yamt 	lwp_t *l1, *l2;
    673      1.2      yamt 
    674  1.3.8.1  jmcneill 	spc = &curcpu()->ci_schedstate;
    675  1.3.8.1  jmcneill 
    676      1.2      yamt 	/* For now, just pick the highest priority LWP. */
    677  1.3.8.3     joerg 	rq = spc->spc_sched_info;
    678  1.3.8.3     joerg 	l1 = NULL;
    679  1.3.8.3     joerg 	if (rq->rq_count != 0)
    680  1.3.8.3     joerg 		l1 = runqueue_nextlwp(rq);
    681  1.3.8.3     joerg 
    682  1.3.8.3     joerg 	rq = &global_queue;
    683  1.3.8.3     joerg 	if (__predict_false((spc->spc_flags & SPCF_OFFLINE) != 0) ||
    684  1.3.8.3     joerg 	    rq->rq_count == 0)
    685  1.3.8.1  jmcneill 		return l1;
    686  1.3.8.3     joerg 	l2 = runqueue_nextlwp(rq);
    687      1.2      yamt 
    688      1.2      yamt 	if (l1 == NULL)
    689      1.2      yamt 		return l2;
    690      1.2      yamt 	if (l2 == NULL)
    691      1.2      yamt 		return l1;
    692  1.3.8.3     joerg 	if (lwp_eprio(l2) > lwp_eprio(l1))
    693      1.2      yamt 		return l2;
    694      1.2      yamt 	else
    695      1.2      yamt 		return l1;
    696      1.2      yamt }
    697      1.2      yamt 
    698  1.3.8.2     joerg struct cpu_info *
    699  1.3.8.2     joerg sched_takecpu(struct lwp *l)
    700  1.3.8.2     joerg {
    701  1.3.8.2     joerg 
    702  1.3.8.2     joerg 	return l->l_cpu;
    703  1.3.8.2     joerg }
    704  1.3.8.2     joerg 
    705  1.3.8.2     joerg void
    706  1.3.8.2     joerg sched_wakeup(struct lwp *l)
    707  1.3.8.2     joerg {
    708  1.3.8.2     joerg 
    709  1.3.8.2     joerg }
    710  1.3.8.2     joerg 
    711  1.3.8.2     joerg void
    712  1.3.8.2     joerg sched_slept(struct lwp *l)
    713  1.3.8.2     joerg {
    714  1.3.8.2     joerg 
    715  1.3.8.2     joerg }
    716  1.3.8.2     joerg 
    717      1.2      yamt void
    718  1.3.8.3     joerg sched_lwp_fork(struct lwp *l1, struct lwp *l2)
    719      1.2      yamt {
    720      1.2      yamt 
    721  1.3.8.3     joerg 	l2->l_estcpu = l1->l_estcpu;
    722      1.2      yamt }
    723      1.2      yamt 
    724      1.2      yamt void
    725      1.2      yamt sched_lwp_exit(struct lwp *l)
    726      1.2      yamt {
    727      1.2      yamt 
    728      1.2      yamt }
    729      1.2      yamt 
    730  1.3.8.3     joerg void
    731  1.3.8.3     joerg sched_lwp_collect(struct lwp *t)
    732  1.3.8.3     joerg {
    733  1.3.8.3     joerg 	lwp_t *l;
    734  1.3.8.3     joerg 
    735  1.3.8.3     joerg 	/* Absorb estcpu value of collected LWP. */
    736  1.3.8.3     joerg 	l = curlwp;
    737  1.3.8.3     joerg 	lwp_lock(l);
    738  1.3.8.3     joerg 	l->l_estcpu += t->l_estcpu;
    739  1.3.8.3     joerg 	lwp_unlock(l);
    740  1.3.8.3     joerg }
    741  1.3.8.3     joerg 
    742  1.3.8.2     joerg /*
    743  1.3.8.2     joerg  * sysctl setup.  XXX This should be split with kern_synch.c.
    744  1.3.8.2     joerg  */
    745      1.2      yamt SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
    746      1.2      yamt {
    747      1.2      yamt 	const struct sysctlnode *node = NULL;
    748      1.2      yamt 
    749      1.2      yamt 	sysctl_createv(clog, 0, NULL, NULL,
    750      1.2      yamt 		CTLFLAG_PERMANENT,
    751      1.2      yamt 		CTLTYPE_NODE, "kern", NULL,
    752      1.2      yamt 		NULL, 0, NULL, 0,
    753      1.2      yamt 		CTL_KERN, CTL_EOL);
    754      1.2      yamt 	sysctl_createv(clog, 0, NULL, &node,
    755      1.2      yamt 		CTLFLAG_PERMANENT,
    756      1.2      yamt 		CTLTYPE_NODE, "sched",
    757      1.2      yamt 		SYSCTL_DESCR("Scheduler options"),
    758      1.2      yamt 		NULL, 0, NULL, 0,
    759      1.2      yamt 		CTL_KERN, CTL_CREATE, CTL_EOL);
    760      1.2      yamt 
    761  1.3.8.2     joerg 	KASSERT(node != NULL);
    762  1.3.8.2     joerg 
    763  1.3.8.2     joerg 	sysctl_createv(clog, 0, &node, NULL,
    764  1.3.8.2     joerg 		CTLFLAG_PERMANENT,
    765  1.3.8.2     joerg 		CTLTYPE_STRING, "name", NULL,
    766  1.3.8.2     joerg 		NULL, 0, __UNCONST("4.4BSD"), 0,
    767  1.3.8.2     joerg 		CTL_CREATE, CTL_EOL);
    768  1.3.8.2     joerg 	sysctl_createv(clog, 0, &node, NULL,
    769  1.3.8.2     joerg 		CTLFLAG_READWRITE,
    770  1.3.8.2     joerg 		CTLTYPE_INT, "timesoftints",
    771  1.3.8.2     joerg 		SYSCTL_DESCR("Track CPU time for soft interrupts"),
    772  1.3.8.2     joerg 		NULL, 0, &softint_timing, 0,
    773  1.3.8.2     joerg 		CTL_CREATE, CTL_EOL);
    774      1.2      yamt }
    775      1.2      yamt 
    776      1.2      yamt #if defined(DDB)
    777      1.2      yamt void
    778      1.2      yamt sched_print_runqueue(void (*pr)(const char *, ...))
    779      1.2      yamt {
    780      1.2      yamt 
    781      1.2      yamt 	runqueue_print(&global_queue, pr);
    782      1.2      yamt }
    783      1.2      yamt #endif /* defined(DDB) */
    784