Home | History | Annotate | Line # | Download | only in kern
sched_4bsd.c revision 1.30.4.1
      1  1.30.4.1  skrll /*	$NetBSD: sched_4bsd.c,v 1.30.4.1 2017/08/28 17:53:07 skrll Exp $	*/
      2       1.2   yamt 
      3  1.30.4.1  skrll /*
      4      1.16     ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5       1.2   yamt  * All rights reserved.
      6       1.2   yamt  *
      7       1.2   yamt  * This code is derived from software contributed to The NetBSD Foundation
      8       1.2   yamt  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9       1.2   yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
     10       1.2   yamt  * Daniel Sieger.
     11       1.2   yamt  *
     12       1.2   yamt  * Redistribution and use in source and binary forms, with or without
     13       1.2   yamt  * modification, are permitted provided that the following conditions
     14       1.2   yamt  * are met:
     15       1.2   yamt  * 1. Redistributions of source code must retain the above copyright
     16       1.2   yamt  *    notice, this list of conditions and the following disclaimer.
     17       1.2   yamt  * 2. Redistributions in binary form must reproduce the above copyright
     18       1.2   yamt  *    notice, this list of conditions and the following disclaimer in the
     19       1.2   yamt  *    documentation and/or other materials provided with the distribution.
     20       1.2   yamt  *
     21       1.2   yamt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22       1.2   yamt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23       1.2   yamt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24       1.2   yamt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25       1.2   yamt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26       1.2   yamt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27       1.2   yamt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28       1.2   yamt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29       1.2   yamt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30       1.2   yamt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31       1.2   yamt  * POSSIBILITY OF SUCH DAMAGE.
     32       1.2   yamt  */
     33       1.2   yamt 
     34  1.30.4.1  skrll /*
     35       1.2   yamt  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     36       1.2   yamt  *	The Regents of the University of California.  All rights reserved.
     37       1.2   yamt  * (c) UNIX System Laboratories, Inc.
     38       1.2   yamt  * All or some portions of this file are derived from material licensed
     39       1.2   yamt  * to the University of California by American Telephone and Telegraph
     40       1.2   yamt  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     41       1.2   yamt  * the permission of UNIX System Laboratories, Inc.
     42       1.2   yamt  *
     43       1.2   yamt  * Redistribution and use in source and binary forms, with or without
     44       1.2   yamt  * modification, are permitted provided that the following conditions
     45       1.2   yamt  * are met:
     46       1.2   yamt  * 1. Redistributions of source code must retain the above copyright
     47       1.2   yamt  *    notice, this list of conditions and the following disclaimer.
     48       1.2   yamt  * 2. Redistributions in binary form must reproduce the above copyright
     49       1.2   yamt  *    notice, this list of conditions and the following disclaimer in the
     50       1.2   yamt  *    documentation and/or other materials provided with the distribution.
     51       1.2   yamt  * 3. Neither the name of the University nor the names of its contributors
     52       1.2   yamt  *    may be used to endorse or promote products derived from this software
     53       1.2   yamt  *    without specific prior written permission.
     54       1.2   yamt  *
     55       1.2   yamt  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56       1.2   yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57       1.2   yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58       1.2   yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59       1.2   yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60       1.2   yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61       1.2   yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62       1.2   yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63       1.2   yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64       1.2   yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65       1.2   yamt  * SUCH DAMAGE.
     66       1.2   yamt  *
     67       1.2   yamt  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     68       1.2   yamt  */
     69       1.2   yamt 
     70       1.2   yamt #include <sys/cdefs.h>
     71  1.30.4.1  skrll __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.30.4.1 2017/08/28 17:53:07 skrll Exp $");
     72       1.2   yamt 
     73       1.2   yamt #include "opt_ddb.h"
     74       1.2   yamt #include "opt_lockdebug.h"
     75       1.2   yamt #include "opt_perfctrs.h"
     76       1.2   yamt 
     77       1.2   yamt #include <sys/param.h>
     78       1.2   yamt #include <sys/systm.h>
     79       1.2   yamt #include <sys/callout.h>
     80       1.2   yamt #include <sys/cpu.h>
     81       1.2   yamt #include <sys/proc.h>
     82       1.2   yamt #include <sys/kernel.h>
     83       1.2   yamt #include <sys/resourcevar.h>
     84       1.2   yamt #include <sys/sched.h>
     85       1.2   yamt #include <sys/sysctl.h>
     86       1.2   yamt #include <sys/lockdebug.h>
     87       1.5     ad #include <sys/intr.h>
     88       1.2   yamt 
     89       1.2   yamt static void updatepri(struct lwp *);
     90       1.2   yamt static void resetpriority(struct lwp *);
     91       1.2   yamt 
     92       1.2   yamt extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
     93       1.2   yamt 
     94       1.2   yamt /* Number of hardclock ticks per sched_tick() */
     95  1.30.4.1  skrll static int rrticks __read_mostly;
     96       1.2   yamt 
     97       1.2   yamt /*
     98       1.2   yamt  * Force switch among equal priority processes every 100ms.
     99       1.2   yamt  * Called from hardclock every hz/10 == rrticks hardclock ticks.
    100       1.5     ad  *
    101       1.5     ad  * There's no need to lock anywhere in this routine, as it's
    102       1.5     ad  * CPU-local and runs at IPL_SCHED (called from clock interrupt).
    103       1.2   yamt  */
    104       1.2   yamt /* ARGSUSED */
    105       1.2   yamt void
    106       1.2   yamt sched_tick(struct cpu_info *ci)
    107       1.2   yamt {
    108       1.2   yamt 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    109      1.23     ad 	lwp_t *l;
    110       1.2   yamt 
    111       1.2   yamt 	spc->spc_ticks = rrticks;
    112       1.2   yamt 
    113      1.15     ad 	if (CURCPU_IDLE_P()) {
    114      1.15     ad 		cpu_need_resched(ci, 0);
    115       1.7  rmind 		return;
    116      1.15     ad 	}
    117      1.23     ad 	l = ci->ci_data.cpu_onproc;
    118      1.23     ad 	if (l == NULL) {
    119      1.19   yamt 		return;
    120      1.19   yamt 	}
    121      1.23     ad 	switch (l->l_class) {
    122      1.23     ad 	case SCHED_FIFO:
    123      1.23     ad 		/* No timeslicing for FIFO jobs. */
    124      1.23     ad 		break;
    125      1.23     ad 	case SCHED_RR:
    126      1.23     ad 		/* Force it into mi_switch() to look for other jobs to run. */
    127      1.23     ad 		cpu_need_resched(ci, RESCHED_KPREEMPT);
    128      1.23     ad 		break;
    129      1.23     ad 	default:
    130      1.23     ad 		if (spc->spc_flags & SPCF_SHOULDYIELD) {
    131      1.23     ad 			/*
    132      1.23     ad 			 * Process is stuck in kernel somewhere, probably
    133  1.30.4.1  skrll 			 * due to buggy or inefficient code.  Force a
    134      1.23     ad 			 * kernel preemption.
    135      1.23     ad 			 */
    136      1.23     ad 			cpu_need_resched(ci, RESCHED_KPREEMPT);
    137      1.23     ad 		} else if (spc->spc_flags & SPCF_SEENRR) {
    138      1.23     ad 			/*
    139      1.23     ad 			 * The process has already been through a roundrobin
    140      1.23     ad 			 * without switching and may be hogging the CPU.
    141      1.23     ad 			 * Indicate that the process should yield.
    142      1.23     ad 			 */
    143      1.23     ad 			spc->spc_flags |= SPCF_SHOULDYIELD;
    144      1.23     ad 			cpu_need_resched(ci, 0);
    145      1.23     ad 		} else {
    146      1.23     ad 			spc->spc_flags |= SPCF_SEENRR;
    147      1.23     ad 		}
    148      1.23     ad 		break;
    149      1.23     ad 	}
    150       1.2   yamt }
    151       1.2   yamt 
    152       1.8     ad /*
    153       1.8     ad  * Why PRIO_MAX - 2? From setpriority(2):
    154       1.8     ad  *
    155       1.8     ad  *	prio is a value in the range -20 to 20.  The default priority is
    156       1.8     ad  *	0; lower priorities cause more favorable scheduling.  A value of
    157       1.8     ad  *	19 or 20 will schedule a process only when nothing at priority <=
    158       1.8     ad  *	0 is runnable.
    159       1.8     ad  *
    160       1.8     ad  * This gives estcpu influence over 18 priority levels, and leaves nice
    161       1.8     ad  * with 40 levels.  One way to think about it is that nice has 20 levels
    162       1.8     ad  * either side of estcpu's 18.
    163       1.8     ad  */
    164       1.2   yamt #define	ESTCPU_SHIFT	11
    165       1.8     ad #define	ESTCPU_MAX	((PRIO_MAX - 2) << ESTCPU_SHIFT)
    166       1.8     ad #define	ESTCPU_ACCUM	(1 << (ESTCPU_SHIFT - 1))
    167       1.2   yamt #define	ESTCPULIM(e)	min((e), ESTCPU_MAX)
    168       1.2   yamt 
    169       1.2   yamt /*
    170  1.30.4.1  skrll  * The main parameter used by this algorithm is 'l_estcpu'. It is an estimate
    171  1.30.4.1  skrll  * of the recent CPU utilization of the thread.
    172  1.30.4.1  skrll  *
    173  1.30.4.1  skrll  * l_estcpu is:
    174  1.30.4.1  skrll  *  - increased each time the hardclock ticks and the thread is found to
    175  1.30.4.1  skrll  *    be executing, in sched_schedclock() called from hardclock()
    176  1.30.4.1  skrll  *  - decreased (filtered) on each sched tick, in sched_pstats_hook()
    177  1.30.4.1  skrll  * If the lwp is sleeping for more than a second, we don't touch l_estcpu: it
    178  1.30.4.1  skrll  * will be updated in sched_setrunnable() when the lwp wakes up, in burst mode
    179  1.30.4.1  skrll  * (ie, we decrease it n times).
    180       1.2   yamt  *
    181       1.8     ad  * Note that hardclock updates l_estcpu and l_cpticks independently.
    182       1.2   yamt  *
    183  1.30.4.1  skrll  * -----------------------------------------------------------------------------
    184  1.30.4.1  skrll  *
    185  1.30.4.1  skrll  * Here we describe how l_estcpu is decreased.
    186  1.30.4.1  skrll  *
    187  1.30.4.1  skrll  * Constants for digital decay (filter):
    188  1.30.4.1  skrll  *     90% of l_estcpu usage in (5 * loadavg) seconds
    189  1.30.4.1  skrll  *
    190  1.30.4.1  skrll  * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds. That is, we
    191  1.30.4.1  skrll  * want to compute a value of decay such that the following loop:
    192  1.30.4.1  skrll  *     for (i = 0; i < (5 * loadavg); i++)
    193  1.30.4.1  skrll  *         l_estcpu *= decay;
    194  1.30.4.1  skrll  * will result in
    195  1.30.4.1  skrll  *     l_estcpu *= 0.1;
    196  1.30.4.1  skrll  * for all values of loadavg.
    197       1.2   yamt  *
    198       1.2   yamt  * Mathematically this loop can be expressed by saying:
    199  1.30.4.1  skrll  *     decay ** (5 * loadavg) ~= .1
    200  1.30.4.1  skrll  *
    201  1.30.4.1  skrll  * And finally, the corresponding value of decay we're using is:
    202  1.30.4.1  skrll  *     decay = (2 * loadavg) / (2 * loadavg + 1)
    203       1.2   yamt  *
    204  1.30.4.1  skrll  * -----------------------------------------------------------------------------
    205       1.2   yamt  *
    206  1.30.4.1  skrll  * Now, let's prove that the value of decay stated above will always fulfill
    207  1.30.4.1  skrll  * the equation:
    208  1.30.4.1  skrll  *     decay ** (5 * loadavg) ~= .1
    209       1.2   yamt  *
    210       1.2   yamt  * If we compute b as:
    211  1.30.4.1  skrll  *     b = 2 * loadavg
    212       1.2   yamt  * then
    213  1.30.4.1  skrll  *     decay = b / (b + 1)
    214       1.2   yamt  *
    215       1.2   yamt  * We now need to prove two things:
    216  1.30.4.1  skrll  *     1) Given [factor ** (5 * loadavg) =~ .1], prove [factor == b/(b+1)].
    217  1.30.4.1  skrll  *     2) Given [b/(b+1) ** power =~ .1], prove [power == (5 * loadavg)].
    218       1.2   yamt  *
    219       1.2   yamt  * Facts:
    220  1.30.4.1  skrll  *   * For x real: exp(x) = 0! + x**1/1! + x**2/2! + ...
    221  1.30.4.1  skrll  *     Therefore, for x close to zero, exp(x) =~ 1 + x.
    222  1.30.4.1  skrll  *     In turn, for b large enough, exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    223  1.30.4.1  skrll  *
    224  1.30.4.1  skrll  *   * For b large enough, (b-1)/b =~ b/(b+1).
    225  1.30.4.1  skrll  *
    226  1.30.4.1  skrll  *   * For x belonging to [-1;1[, ln(1-x) = - x - x**2/2 - x**3/3 - ...
    227  1.30.4.1  skrll  *     Therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    228  1.30.4.1  skrll  *
    229  1.30.4.1  skrll  *   * ln(0.1) =~ -2.30
    230       1.2   yamt  *
    231       1.2   yamt  * Proof of (1):
    232  1.30.4.1  skrll  *     factor ** (5 * loadavg) =~ 0.1
    233  1.30.4.1  skrll  *  => ln(factor) =~ -2.30 / (5 * loadavg)
    234  1.30.4.1  skrll  *  => factor =~ exp(-1 / ((5 / 2.30) * loadavg))
    235  1.30.4.1  skrll  *            =~ exp(-1 / (2 * loadavg))
    236  1.30.4.1  skrll  *            =~ exp(-1 / b)
    237  1.30.4.1  skrll  *            =~ (b - 1) / b
    238  1.30.4.1  skrll  *            =~ b / (b + 1)
    239  1.30.4.1  skrll  *            =~ (2 * loadavg) / ((2 * loadavg) + 1)
    240       1.2   yamt  *
    241       1.2   yamt  * Proof of (2):
    242  1.30.4.1  skrll  *     (b / (b + 1)) ** power =~ .1
    243  1.30.4.1  skrll  *  => power * ln(b / (b + 1)) =~ -2.30
    244  1.30.4.1  skrll  *  => power * (-1 / (b + 1)) =~ -2.30
    245  1.30.4.1  skrll  *  => power =~ 2.30 * (b + 1)
    246  1.30.4.1  skrll  *  => power =~ 4.60 * loadavg + 2.30
    247  1.30.4.1  skrll  *  => power =~ 5 * loadavg
    248  1.30.4.1  skrll  *
    249  1.30.4.1  skrll  * Conclusion: decay = (2 * loadavg) / (2 * loadavg + 1)
    250       1.2   yamt  */
    251       1.2   yamt 
    252  1.30.4.1  skrll /* See calculations above */
    253  1.30.4.1  skrll #define	loadfactor(loadavg)  (2 * (loadavg))
    254       1.2   yamt 
    255      1.17   yamt static fixpt_t
    256       1.2   yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    257       1.2   yamt {
    258       1.2   yamt 
    259       1.2   yamt 	if (estcpu == 0) {
    260       1.2   yamt 		return 0;
    261       1.2   yamt 	}
    262       1.2   yamt 
    263       1.2   yamt #if !defined(_LP64)
    264       1.2   yamt 	/* avoid 64bit arithmetics. */
    265       1.2   yamt #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    266       1.2   yamt 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    267       1.2   yamt 		return estcpu * loadfac / (loadfac + FSCALE);
    268       1.2   yamt 	}
    269  1.30.4.1  skrll #endif
    270       1.2   yamt 
    271       1.2   yamt 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    272       1.2   yamt }
    273       1.2   yamt 
    274       1.2   yamt static fixpt_t
    275       1.2   yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    276       1.2   yamt {
    277       1.2   yamt 
    278  1.30.4.1  skrll 	/*
    279  1.30.4.1  skrll 	 * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
    280  1.30.4.1  skrll 	 * if we slept for at least seven times the loadfactor, we will decay
    281  1.30.4.1  skrll 	 * l_estcpu to less than (1 << ESTCPU_SHIFT), and therefore we can
    282  1.30.4.1  skrll 	 * return zero directly.
    283  1.30.4.1  skrll 	 *
    284  1.30.4.1  skrll 	 * Note that our ESTCPU_MAX is actually much smaller than
    285  1.30.4.1  skrll 	 * (255 << ESTCPU_SHIFT).
    286  1.30.4.1  skrll 	 */
    287       1.2   yamt 	if ((n << FSHIFT) >= 7 * loadfac) {
    288       1.2   yamt 		return 0;
    289       1.2   yamt 	}
    290       1.2   yamt 
    291       1.2   yamt 	while (estcpu != 0 && n > 1) {
    292       1.2   yamt 		estcpu = decay_cpu(loadfac, estcpu);
    293       1.2   yamt 		n--;
    294       1.2   yamt 	}
    295       1.2   yamt 
    296       1.2   yamt 	return estcpu;
    297       1.2   yamt }
    298       1.2   yamt 
    299       1.2   yamt /*
    300       1.2   yamt  * sched_pstats_hook:
    301       1.2   yamt  *
    302       1.2   yamt  * Periodically called from sched_pstats(); used to recalculate priorities.
    303       1.2   yamt  */
    304       1.2   yamt void
    305      1.22  rmind sched_pstats_hook(struct lwp *l, int batch)
    306       1.2   yamt {
    307      1.25   yamt 	fixpt_t loadfac;
    308       1.2   yamt 
    309       1.8     ad 	/*
    310       1.8     ad 	 * If the LWP has slept an entire second, stop recalculating
    311       1.8     ad 	 * its priority until it wakes up.
    312       1.8     ad 	 */
    313      1.24  rmind 	KASSERT(lwp_locked(l, NULL));
    314      1.25   yamt 	if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    315      1.25   yamt 	    l->l_stat == LSSUSPENDED) {
    316      1.25   yamt 		if (l->l_slptime > 1) {
    317      1.25   yamt 			return;
    318      1.25   yamt 		}
    319       1.8     ad 	}
    320  1.30.4.1  skrll 
    321  1.30.4.1  skrll 	loadfac = loadfactor(averunnable.ldavg[0]);
    322      1.25   yamt 	l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
    323      1.25   yamt 	resetpriority(l);
    324       1.2   yamt }
    325       1.2   yamt 
    326       1.2   yamt /*
    327  1.30.4.1  skrll  * Recalculate the priority of an LWP after it has slept for a while.
    328       1.2   yamt  */
    329       1.2   yamt static void
    330       1.2   yamt updatepri(struct lwp *l)
    331       1.2   yamt {
    332       1.2   yamt 	fixpt_t loadfac;
    333       1.2   yamt 
    334       1.3     ad 	KASSERT(lwp_locked(l, NULL));
    335       1.2   yamt 	KASSERT(l->l_slptime > 1);
    336       1.2   yamt 
    337       1.2   yamt 	loadfac = loadfactor(averunnable.ldavg[0]);
    338       1.2   yamt 
    339       1.2   yamt 	l->l_slptime--; /* the first time was done in sched_pstats */
    340       1.8     ad 	l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
    341       1.2   yamt 	resetpriority(l);
    342       1.2   yamt }
    343       1.2   yamt 
    344       1.2   yamt void
    345      1.14   matt sched_rqinit(void)
    346       1.2   yamt {
    347       1.2   yamt 
    348       1.2   yamt }
    349       1.2   yamt 
    350       1.2   yamt void
    351       1.2   yamt sched_setrunnable(struct lwp *l)
    352       1.2   yamt {
    353       1.2   yamt 
    354       1.2   yamt  	if (l->l_slptime > 1)
    355       1.2   yamt  		updatepri(l);
    356       1.2   yamt }
    357       1.2   yamt 
    358       1.2   yamt void
    359       1.8     ad sched_nice(struct proc *p, int n)
    360       1.2   yamt {
    361       1.8     ad 	struct lwp *l;
    362       1.8     ad 
    363      1.20     ad 	KASSERT(mutex_owned(p->p_lock));
    364       1.2   yamt 
    365       1.8     ad 	p->p_nice = n;
    366       1.8     ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    367       1.8     ad 		lwp_lock(l);
    368       1.8     ad 		resetpriority(l);
    369       1.8     ad 		lwp_unlock(l);
    370       1.8     ad 	}
    371       1.2   yamt }
    372       1.2   yamt 
    373       1.2   yamt /*
    374       1.8     ad  * Recompute the priority of an LWP.  Arrange to reschedule if
    375       1.8     ad  * the resulting priority is better than that of the current LWP.
    376       1.2   yamt  */
    377       1.2   yamt static void
    378       1.2   yamt resetpriority(struct lwp *l)
    379       1.2   yamt {
    380       1.8     ad 	pri_t pri;
    381       1.2   yamt 	struct proc *p = l->l_proc;
    382       1.2   yamt 
    383       1.8     ad 	KASSERT(lwp_locked(l, NULL));
    384       1.2   yamt 
    385       1.8     ad 	if (l->l_class != SCHED_OTHER)
    386       1.2   yamt 		return;
    387       1.2   yamt 
    388       1.8     ad 	/* See comments above ESTCPU_SHIFT definition. */
    389       1.8     ad 	pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
    390       1.8     ad 	pri = imax(pri, 0);
    391       1.8     ad 	if (pri != l->l_priority)
    392       1.8     ad 		lwp_changepri(l, pri);
    393       1.2   yamt }
    394       1.2   yamt 
    395       1.2   yamt /*
    396      1.28   yamt  * We adjust the priority of the current LWP.  The priority of a LWP
    397       1.8     ad  * gets worse as it accumulates CPU time.  The CPU usage estimator (l_estcpu)
    398      1.28   yamt  * is increased here.  The formula for computing priorities will compute a
    399      1.28   yamt  * different value each time l_estcpu increases. This can cause a switch,
    400      1.28   yamt  * but unless the priority crosses a PPQ boundary the actual queue will not
    401      1.28   yamt  * change.  The CPU usage estimator ramps up quite quickly when the process
    402      1.28   yamt  * is running (linearly), and decays away exponentially, at a rate which is
    403      1.28   yamt  * proportionally slower when the system is busy.  The basic principle is
    404      1.28   yamt  * that the system will 90% forget that the process used a lot of CPU time
    405  1.30.4.1  skrll  * in (5 * loadavg) seconds.  This causes the system to favor processes which
    406      1.28   yamt  * haven't run much recently, and to round-robin among other processes.
    407       1.2   yamt  */
    408       1.2   yamt void
    409       1.2   yamt sched_schedclock(struct lwp *l)
    410       1.2   yamt {
    411       1.8     ad 
    412       1.8     ad 	if (l->l_class != SCHED_OTHER)
    413       1.8     ad 		return;
    414       1.2   yamt 
    415       1.2   yamt 	KASSERT(!CURCPU_IDLE_P());
    416       1.8     ad 	l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
    417       1.2   yamt 	lwp_lock(l);
    418       1.2   yamt 	resetpriority(l);
    419       1.2   yamt 	lwp_unlock(l);
    420       1.2   yamt }
    421       1.2   yamt 
    422       1.2   yamt /*
    423       1.2   yamt  * sched_proc_fork:
    424       1.2   yamt  *
    425       1.2   yamt  *	Inherit the parent's scheduler history.
    426       1.2   yamt  */
    427       1.2   yamt void
    428       1.2   yamt sched_proc_fork(struct proc *parent, struct proc *child)
    429       1.2   yamt {
    430       1.8     ad 	lwp_t *pl;
    431       1.2   yamt 
    432      1.20     ad 	KASSERT(mutex_owned(parent->p_lock));
    433       1.2   yamt 
    434       1.8     ad 	pl = LIST_FIRST(&parent->p_lwps);
    435       1.8     ad 	child->p_estcpu_inherited = pl->l_estcpu;
    436       1.2   yamt 	child->p_forktime = sched_pstats_ticks;
    437       1.2   yamt }
    438       1.2   yamt 
    439       1.2   yamt /*
    440       1.2   yamt  * sched_proc_exit:
    441       1.2   yamt  *
    442       1.2   yamt  *	Chargeback parents for the sins of their children.
    443       1.2   yamt  */
    444       1.2   yamt void
    445       1.2   yamt sched_proc_exit(struct proc *parent, struct proc *child)
    446       1.2   yamt {
    447       1.2   yamt 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    448       1.2   yamt 	fixpt_t estcpu;
    449       1.8     ad 	lwp_t *pl, *cl;
    450       1.2   yamt 
    451       1.2   yamt 	/* XXX Only if parent != init?? */
    452       1.2   yamt 
    453      1.20     ad 	mutex_enter(parent->p_lock);
    454       1.8     ad 	pl = LIST_FIRST(&parent->p_lwps);
    455       1.8     ad 	cl = LIST_FIRST(&child->p_lwps);
    456       1.2   yamt 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
    457       1.2   yamt 	    sched_pstats_ticks - child->p_forktime);
    458       1.8     ad 	if (cl->l_estcpu > estcpu) {
    459       1.8     ad 		lwp_lock(pl);
    460       1.8     ad 		pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
    461       1.8     ad 		lwp_unlock(pl);
    462       1.8     ad 	}
    463      1.20     ad 	mutex_exit(parent->p_lock);
    464       1.2   yamt }
    465       1.2   yamt 
    466       1.2   yamt void
    467       1.6  rmind sched_wakeup(struct lwp *l)
    468       1.6  rmind {
    469       1.6  rmind 
    470       1.6  rmind }
    471       1.6  rmind 
    472       1.6  rmind void
    473       1.6  rmind sched_slept(struct lwp *l)
    474       1.6  rmind {
    475       1.6  rmind 
    476       1.6  rmind }
    477       1.6  rmind 
    478       1.2   yamt void
    479       1.8     ad sched_lwp_fork(struct lwp *l1, struct lwp *l2)
    480       1.2   yamt {
    481       1.2   yamt 
    482       1.8     ad 	l2->l_estcpu = l1->l_estcpu;
    483       1.2   yamt }
    484       1.2   yamt 
    485       1.2   yamt void
    486       1.8     ad sched_lwp_collect(struct lwp *t)
    487       1.8     ad {
    488       1.8     ad 	lwp_t *l;
    489       1.8     ad 
    490       1.8     ad 	/* Absorb estcpu value of collected LWP. */
    491       1.8     ad 	l = curlwp;
    492       1.8     ad 	lwp_lock(l);
    493       1.8     ad 	l->l_estcpu += t->l_estcpu;
    494       1.8     ad 	lwp_unlock(l);
    495       1.8     ad }
    496       1.8     ad 
    497      1.16     ad void
    498      1.16     ad sched_oncpu(lwp_t *l)
    499      1.16     ad {
    500      1.16     ad 
    501      1.16     ad }
    502      1.16     ad 
    503      1.16     ad void
    504      1.16     ad sched_newts(lwp_t *l)
    505      1.16     ad {
    506      1.16     ad 
    507      1.16     ad }
    508      1.16     ad 
    509       1.5     ad /*
    510      1.12  rmind  * Sysctl nodes and initialization.
    511       1.5     ad  */
    512      1.12  rmind 
    513      1.12  rmind static int
    514      1.12  rmind sysctl_sched_rtts(SYSCTLFN_ARGS)
    515      1.12  rmind {
    516      1.12  rmind 	struct sysctlnode node;
    517      1.12  rmind 	int rttsms = hztoms(rrticks);
    518      1.12  rmind 
    519      1.12  rmind 	node = *rnode;
    520      1.12  rmind 	node.sysctl_data = &rttsms;
    521      1.12  rmind 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    522      1.12  rmind }
    523      1.12  rmind 
    524      1.16     ad SYSCTL_SETUP(sysctl_sched_4bsd_setup, "sysctl sched setup")
    525       1.2   yamt {
    526       1.2   yamt 	const struct sysctlnode *node = NULL;
    527       1.2   yamt 
    528       1.2   yamt 	sysctl_createv(clog, 0, NULL, &node,
    529       1.2   yamt 		CTLFLAG_PERMANENT,
    530       1.2   yamt 		CTLTYPE_NODE, "sched",
    531       1.2   yamt 		SYSCTL_DESCR("Scheduler options"),
    532       1.2   yamt 		NULL, 0, NULL, 0,
    533       1.2   yamt 		CTL_KERN, CTL_CREATE, CTL_EOL);
    534       1.2   yamt 
    535      1.16     ad 	if (node == NULL)
    536      1.16     ad 		return;
    537       1.5     ad 
    538      1.16     ad 	rrticks = hz / 10;
    539      1.16     ad 
    540      1.16     ad 	sysctl_createv(NULL, 0, &node, NULL,
    541       1.5     ad 		CTLFLAG_PERMANENT,
    542       1.5     ad 		CTLTYPE_STRING, "name", NULL,
    543       1.5     ad 		NULL, 0, __UNCONST("4.4BSD"), 0,
    544       1.5     ad 		CTL_CREATE, CTL_EOL);
    545      1.16     ad 	sysctl_createv(NULL, 0, &node, NULL,
    546      1.12  rmind 		CTLFLAG_PERMANENT,
    547      1.12  rmind 		CTLTYPE_INT, "rtts",
    548      1.30   maxv 		SYSCTL_DESCR("Round-robin time quantum (in milliseconds)"),
    549      1.12  rmind 		sysctl_sched_rtts, 0, NULL, 0,
    550      1.12  rmind 		CTL_CREATE, CTL_EOL);
    551       1.2   yamt }
    552