Home | History | Annotate | Line # | Download | only in kern
sched_4bsd.c revision 1.35
      1  1.35  riastrad /*	$NetBSD: sched_4bsd.c,v 1.35 2018/09/03 16:29:35 riastradh Exp $	*/
      2   1.2      yamt 
      3  1.31      maxv /*
      4  1.16        ad  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
      5   1.2      yamt  * All rights reserved.
      6   1.2      yamt  *
      7   1.2      yamt  * This code is derived from software contributed to The NetBSD Foundation
      8   1.2      yamt  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9   1.2      yamt  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
     10   1.2      yamt  * Daniel Sieger.
     11   1.2      yamt  *
     12   1.2      yamt  * Redistribution and use in source and binary forms, with or without
     13   1.2      yamt  * modification, are permitted provided that the following conditions
     14   1.2      yamt  * are met:
     15   1.2      yamt  * 1. Redistributions of source code must retain the above copyright
     16   1.2      yamt  *    notice, this list of conditions and the following disclaimer.
     17   1.2      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.2      yamt  *    notice, this list of conditions and the following disclaimer in the
     19   1.2      yamt  *    documentation and/or other materials provided with the distribution.
     20   1.2      yamt  *
     21   1.2      yamt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22   1.2      yamt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23   1.2      yamt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24   1.2      yamt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25   1.2      yamt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26   1.2      yamt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27   1.2      yamt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28   1.2      yamt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29   1.2      yamt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30   1.2      yamt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31   1.2      yamt  * POSSIBILITY OF SUCH DAMAGE.
     32   1.2      yamt  */
     33   1.2      yamt 
     34  1.31      maxv /*
     35   1.2      yamt  * Copyright (c) 1982, 1986, 1990, 1991, 1993
     36   1.2      yamt  *	The Regents of the University of California.  All rights reserved.
     37   1.2      yamt  * (c) UNIX System Laboratories, Inc.
     38   1.2      yamt  * All or some portions of this file are derived from material licensed
     39   1.2      yamt  * to the University of California by American Telephone and Telegraph
     40   1.2      yamt  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     41   1.2      yamt  * the permission of UNIX System Laboratories, Inc.
     42   1.2      yamt  *
     43   1.2      yamt  * Redistribution and use in source and binary forms, with or without
     44   1.2      yamt  * modification, are permitted provided that the following conditions
     45   1.2      yamt  * are met:
     46   1.2      yamt  * 1. Redistributions of source code must retain the above copyright
     47   1.2      yamt  *    notice, this list of conditions and the following disclaimer.
     48   1.2      yamt  * 2. Redistributions in binary form must reproduce the above copyright
     49   1.2      yamt  *    notice, this list of conditions and the following disclaimer in the
     50   1.2      yamt  *    documentation and/or other materials provided with the distribution.
     51   1.2      yamt  * 3. Neither the name of the University nor the names of its contributors
     52   1.2      yamt  *    may be used to endorse or promote products derived from this software
     53   1.2      yamt  *    without specific prior written permission.
     54   1.2      yamt  *
     55   1.2      yamt  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56   1.2      yamt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57   1.2      yamt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58   1.2      yamt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59   1.2      yamt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60   1.2      yamt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61   1.2      yamt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62   1.2      yamt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63   1.2      yamt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64   1.2      yamt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65   1.2      yamt  * SUCH DAMAGE.
     66   1.2      yamt  *
     67   1.2      yamt  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
     68   1.2      yamt  */
     69   1.2      yamt 
     70   1.2      yamt #include <sys/cdefs.h>
     71  1.35  riastrad __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.35 2018/09/03 16:29:35 riastradh Exp $");
     72   1.2      yamt 
     73   1.2      yamt #include "opt_ddb.h"
     74   1.2      yamt #include "opt_lockdebug.h"
     75   1.2      yamt 
     76   1.2      yamt #include <sys/param.h>
     77   1.2      yamt #include <sys/systm.h>
     78   1.2      yamt #include <sys/callout.h>
     79   1.2      yamt #include <sys/cpu.h>
     80   1.2      yamt #include <sys/proc.h>
     81   1.2      yamt #include <sys/kernel.h>
     82   1.2      yamt #include <sys/resourcevar.h>
     83   1.2      yamt #include <sys/sched.h>
     84   1.2      yamt #include <sys/sysctl.h>
     85   1.2      yamt #include <sys/lockdebug.h>
     86   1.5        ad #include <sys/intr.h>
     87   1.2      yamt 
     88   1.2      yamt static void updatepri(struct lwp *);
     89   1.2      yamt static void resetpriority(struct lwp *);
     90   1.2      yamt 
     91   1.2      yamt extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
     92   1.2      yamt 
     93   1.2      yamt /* Number of hardclock ticks per sched_tick() */
     94  1.31      maxv static int rrticks __read_mostly;
     95   1.2      yamt 
     96   1.2      yamt /*
     97   1.2      yamt  * Force switch among equal priority processes every 100ms.
     98   1.2      yamt  * Called from hardclock every hz/10 == rrticks hardclock ticks.
     99   1.5        ad  *
    100   1.5        ad  * There's no need to lock anywhere in this routine, as it's
    101   1.5        ad  * CPU-local and runs at IPL_SCHED (called from clock interrupt).
    102   1.2      yamt  */
    103   1.2      yamt /* ARGSUSED */
    104   1.2      yamt void
    105   1.2      yamt sched_tick(struct cpu_info *ci)
    106   1.2      yamt {
    107   1.2      yamt 	struct schedstate_percpu *spc = &ci->ci_schedstate;
    108  1.23        ad 	lwp_t *l;
    109   1.2      yamt 
    110   1.2      yamt 	spc->spc_ticks = rrticks;
    111   1.2      yamt 
    112  1.15        ad 	if (CURCPU_IDLE_P()) {
    113  1.15        ad 		cpu_need_resched(ci, 0);
    114   1.7     rmind 		return;
    115  1.15        ad 	}
    116  1.23        ad 	l = ci->ci_data.cpu_onproc;
    117  1.23        ad 	if (l == NULL) {
    118  1.19      yamt 		return;
    119  1.19      yamt 	}
    120  1.23        ad 	switch (l->l_class) {
    121  1.23        ad 	case SCHED_FIFO:
    122  1.23        ad 		/* No timeslicing for FIFO jobs. */
    123  1.23        ad 		break;
    124  1.23        ad 	case SCHED_RR:
    125  1.23        ad 		/* Force it into mi_switch() to look for other jobs to run. */
    126  1.23        ad 		cpu_need_resched(ci, RESCHED_KPREEMPT);
    127  1.23        ad 		break;
    128  1.23        ad 	default:
    129  1.23        ad 		if (spc->spc_flags & SPCF_SHOULDYIELD) {
    130  1.23        ad 			/*
    131  1.23        ad 			 * Process is stuck in kernel somewhere, probably
    132  1.31      maxv 			 * due to buggy or inefficient code.  Force a
    133  1.23        ad 			 * kernel preemption.
    134  1.23        ad 			 */
    135  1.23        ad 			cpu_need_resched(ci, RESCHED_KPREEMPT);
    136  1.23        ad 		} else if (spc->spc_flags & SPCF_SEENRR) {
    137  1.23        ad 			/*
    138  1.23        ad 			 * The process has already been through a roundrobin
    139  1.23        ad 			 * without switching and may be hogging the CPU.
    140  1.23        ad 			 * Indicate that the process should yield.
    141  1.23        ad 			 */
    142  1.23        ad 			spc->spc_flags |= SPCF_SHOULDYIELD;
    143  1.23        ad 			cpu_need_resched(ci, 0);
    144  1.23        ad 		} else {
    145  1.23        ad 			spc->spc_flags |= SPCF_SEENRR;
    146  1.23        ad 		}
    147  1.23        ad 		break;
    148  1.23        ad 	}
    149   1.2      yamt }
    150   1.2      yamt 
    151   1.8        ad /*
    152   1.8        ad  * Why PRIO_MAX - 2? From setpriority(2):
    153   1.8        ad  *
    154   1.8        ad  *	prio is a value in the range -20 to 20.  The default priority is
    155   1.8        ad  *	0; lower priorities cause more favorable scheduling.  A value of
    156   1.8        ad  *	19 or 20 will schedule a process only when nothing at priority <=
    157   1.8        ad  *	0 is runnable.
    158   1.8        ad  *
    159   1.8        ad  * This gives estcpu influence over 18 priority levels, and leaves nice
    160   1.8        ad  * with 40 levels.  One way to think about it is that nice has 20 levels
    161   1.8        ad  * either side of estcpu's 18.
    162   1.8        ad  */
    163   1.2      yamt #define	ESTCPU_SHIFT	11
    164   1.8        ad #define	ESTCPU_MAX	((PRIO_MAX - 2) << ESTCPU_SHIFT)
    165   1.8        ad #define	ESTCPU_ACCUM	(1 << (ESTCPU_SHIFT - 1))
    166  1.35  riastrad #define	ESTCPULIM(e)	uimin((e), ESTCPU_MAX)
    167   1.2      yamt 
    168   1.2      yamt /*
    169  1.31      maxv  * The main parameter used by this algorithm is 'l_estcpu'. It is an estimate
    170  1.31      maxv  * of the recent CPU utilization of the thread.
    171  1.31      maxv  *
    172  1.31      maxv  * l_estcpu is:
    173  1.31      maxv  *  - increased each time the hardclock ticks and the thread is found to
    174  1.31      maxv  *    be executing, in sched_schedclock() called from hardclock()
    175  1.31      maxv  *  - decreased (filtered) on each sched tick, in sched_pstats_hook()
    176  1.31      maxv  * If the lwp is sleeping for more than a second, we don't touch l_estcpu: it
    177  1.31      maxv  * will be updated in sched_setrunnable() when the lwp wakes up, in burst mode
    178  1.31      maxv  * (ie, we decrease it n times).
    179   1.2      yamt  *
    180   1.8        ad  * Note that hardclock updates l_estcpu and l_cpticks independently.
    181   1.2      yamt  *
    182  1.31      maxv  * -----------------------------------------------------------------------------
    183  1.31      maxv  *
    184  1.31      maxv  * Here we describe how l_estcpu is decreased.
    185  1.31      maxv  *
    186  1.31      maxv  * Constants for digital decay (filter):
    187  1.31      maxv  *     90% of l_estcpu usage in (5 * loadavg) seconds
    188  1.31      maxv  *
    189  1.31      maxv  * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds. That is, we
    190  1.31      maxv  * want to compute a value of decay such that the following loop:
    191  1.31      maxv  *     for (i = 0; i < (5 * loadavg); i++)
    192  1.31      maxv  *         l_estcpu *= decay;
    193  1.31      maxv  * will result in
    194  1.31      maxv  *     l_estcpu *= 0.1;
    195  1.31      maxv  * for all values of loadavg.
    196   1.2      yamt  *
    197   1.2      yamt  * Mathematically this loop can be expressed by saying:
    198  1.31      maxv  *     decay ** (5 * loadavg) ~= .1
    199  1.31      maxv  *
    200  1.31      maxv  * And finally, the corresponding value of decay we're using is:
    201  1.31      maxv  *     decay = (2 * loadavg) / (2 * loadavg + 1)
    202   1.2      yamt  *
    203  1.31      maxv  * -----------------------------------------------------------------------------
    204   1.2      yamt  *
    205  1.31      maxv  * Now, let's prove that the value of decay stated above will always fulfill
    206  1.31      maxv  * the equation:
    207  1.31      maxv  *     decay ** (5 * loadavg) ~= .1
    208   1.2      yamt  *
    209   1.2      yamt  * If we compute b as:
    210  1.31      maxv  *     b = 2 * loadavg
    211   1.2      yamt  * then
    212  1.31      maxv  *     decay = b / (b + 1)
    213   1.2      yamt  *
    214   1.2      yamt  * We now need to prove two things:
    215  1.31      maxv  *     1) Given [factor ** (5 * loadavg) =~ .1], prove [factor == b/(b+1)].
    216  1.31      maxv  *     2) Given [b/(b+1) ** power =~ .1], prove [power == (5 * loadavg)].
    217   1.2      yamt  *
    218   1.2      yamt  * Facts:
    219  1.31      maxv  *   * For x real: exp(x) = 0! + x**1/1! + x**2/2! + ...
    220  1.31      maxv  *     Therefore, for x close to zero, exp(x) =~ 1 + x.
    221  1.31      maxv  *     In turn, for b large enough, exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
    222  1.31      maxv  *
    223  1.31      maxv  *   * For b large enough, (b-1)/b =~ b/(b+1).
    224  1.31      maxv  *
    225  1.31      maxv  *   * For x belonging to [-1;1[, ln(1-x) = - x - x**2/2 - x**3/3 - ...
    226  1.31      maxv  *     Therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
    227  1.31      maxv  *
    228  1.31      maxv  *   * ln(0.1) =~ -2.30
    229   1.2      yamt  *
    230   1.2      yamt  * Proof of (1):
    231  1.31      maxv  *     factor ** (5 * loadavg) =~ 0.1
    232  1.31      maxv  *  => ln(factor) =~ -2.30 / (5 * loadavg)
    233  1.31      maxv  *  => factor =~ exp(-1 / ((5 / 2.30) * loadavg))
    234  1.31      maxv  *            =~ exp(-1 / (2 * loadavg))
    235  1.31      maxv  *            =~ exp(-1 / b)
    236  1.31      maxv  *            =~ (b - 1) / b
    237  1.31      maxv  *            =~ b / (b + 1)
    238  1.31      maxv  *            =~ (2 * loadavg) / ((2 * loadavg) + 1)
    239   1.2      yamt  *
    240   1.2      yamt  * Proof of (2):
    241  1.31      maxv  *     (b / (b + 1)) ** power =~ .1
    242  1.31      maxv  *  => power * ln(b / (b + 1)) =~ -2.30
    243  1.31      maxv  *  => power * (-1 / (b + 1)) =~ -2.30
    244  1.31      maxv  *  => power =~ 2.30 * (b + 1)
    245  1.31      maxv  *  => power =~ 4.60 * loadavg + 2.30
    246  1.31      maxv  *  => power =~ 5 * loadavg
    247  1.31      maxv  *
    248  1.31      maxv  * Conclusion: decay = (2 * loadavg) / (2 * loadavg + 1)
    249   1.2      yamt  */
    250   1.2      yamt 
    251  1.31      maxv /* See calculations above */
    252  1.32      maxv #define	loadfactor(loadavg)  (2 * (loadavg))
    253   1.2      yamt 
    254  1.17      yamt static fixpt_t
    255   1.2      yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
    256   1.2      yamt {
    257   1.2      yamt 
    258   1.2      yamt 	if (estcpu == 0) {
    259   1.2      yamt 		return 0;
    260   1.2      yamt 	}
    261   1.2      yamt 
    262   1.2      yamt #if !defined(_LP64)
    263   1.2      yamt 	/* avoid 64bit arithmetics. */
    264   1.2      yamt #define	FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
    265   1.2      yamt 	if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
    266   1.2      yamt 		return estcpu * loadfac / (loadfac + FSCALE);
    267   1.2      yamt 	}
    268  1.31      maxv #endif
    269   1.2      yamt 
    270   1.2      yamt 	return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
    271   1.2      yamt }
    272   1.2      yamt 
    273   1.2      yamt static fixpt_t
    274   1.2      yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
    275   1.2      yamt {
    276   1.2      yamt 
    277  1.31      maxv 	/*
    278  1.31      maxv 	 * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
    279  1.31      maxv 	 * if we slept for at least seven times the loadfactor, we will decay
    280  1.31      maxv 	 * l_estcpu to less than (1 << ESTCPU_SHIFT), and therefore we can
    281  1.31      maxv 	 * return zero directly.
    282  1.31      maxv 	 *
    283  1.31      maxv 	 * Note that our ESTCPU_MAX is actually much smaller than
    284  1.31      maxv 	 * (255 << ESTCPU_SHIFT).
    285  1.31      maxv 	 */
    286   1.2      yamt 	if ((n << FSHIFT) >= 7 * loadfac) {
    287   1.2      yamt 		return 0;
    288   1.2      yamt 	}
    289   1.2      yamt 
    290   1.2      yamt 	while (estcpu != 0 && n > 1) {
    291   1.2      yamt 		estcpu = decay_cpu(loadfac, estcpu);
    292   1.2      yamt 		n--;
    293   1.2      yamt 	}
    294   1.2      yamt 
    295   1.2      yamt 	return estcpu;
    296   1.2      yamt }
    297   1.2      yamt 
    298   1.2      yamt /*
    299   1.2      yamt  * sched_pstats_hook:
    300   1.2      yamt  *
    301   1.2      yamt  * Periodically called from sched_pstats(); used to recalculate priorities.
    302   1.2      yamt  */
    303   1.2      yamt void
    304  1.22     rmind sched_pstats_hook(struct lwp *l, int batch)
    305   1.2      yamt {
    306  1.25      yamt 	fixpt_t loadfac;
    307   1.2      yamt 
    308   1.8        ad 	/*
    309   1.8        ad 	 * If the LWP has slept an entire second, stop recalculating
    310   1.8        ad 	 * its priority until it wakes up.
    311   1.8        ad 	 */
    312  1.24     rmind 	KASSERT(lwp_locked(l, NULL));
    313  1.25      yamt 	if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
    314  1.25      yamt 	    l->l_stat == LSSUSPENDED) {
    315  1.25      yamt 		if (l->l_slptime > 1) {
    316  1.25      yamt 			return;
    317  1.25      yamt 		}
    318   1.8        ad 	}
    319  1.33      maxv 
    320  1.33      maxv 	loadfac = loadfactor(averunnable.ldavg[0]);
    321  1.25      yamt 	l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
    322  1.25      yamt 	resetpriority(l);
    323   1.2      yamt }
    324   1.2      yamt 
    325   1.2      yamt /*
    326  1.31      maxv  * Recalculate the priority of an LWP after it has slept for a while.
    327   1.2      yamt  */
    328   1.2      yamt static void
    329   1.2      yamt updatepri(struct lwp *l)
    330   1.2      yamt {
    331   1.2      yamt 	fixpt_t loadfac;
    332   1.2      yamt 
    333   1.3        ad 	KASSERT(lwp_locked(l, NULL));
    334   1.2      yamt 	KASSERT(l->l_slptime > 1);
    335   1.2      yamt 
    336   1.2      yamt 	loadfac = loadfactor(averunnable.ldavg[0]);
    337   1.2      yamt 
    338   1.2      yamt 	l->l_slptime--; /* the first time was done in sched_pstats */
    339   1.8        ad 	l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
    340   1.2      yamt 	resetpriority(l);
    341   1.2      yamt }
    342   1.2      yamt 
    343   1.2      yamt void
    344  1.14      matt sched_rqinit(void)
    345   1.2      yamt {
    346   1.2      yamt 
    347   1.2      yamt }
    348   1.2      yamt 
    349   1.2      yamt void
    350   1.2      yamt sched_setrunnable(struct lwp *l)
    351   1.2      yamt {
    352   1.2      yamt 
    353   1.2      yamt  	if (l->l_slptime > 1)
    354   1.2      yamt  		updatepri(l);
    355   1.2      yamt }
    356   1.2      yamt 
    357   1.2      yamt void
    358   1.8        ad sched_nice(struct proc *p, int n)
    359   1.2      yamt {
    360   1.8        ad 	struct lwp *l;
    361   1.8        ad 
    362  1.20        ad 	KASSERT(mutex_owned(p->p_lock));
    363   1.2      yamt 
    364   1.8        ad 	p->p_nice = n;
    365   1.8        ad 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
    366   1.8        ad 		lwp_lock(l);
    367   1.8        ad 		resetpriority(l);
    368   1.8        ad 		lwp_unlock(l);
    369   1.8        ad 	}
    370   1.2      yamt }
    371   1.2      yamt 
    372   1.2      yamt /*
    373   1.8        ad  * Recompute the priority of an LWP.  Arrange to reschedule if
    374   1.8        ad  * the resulting priority is better than that of the current LWP.
    375   1.2      yamt  */
    376   1.2      yamt static void
    377   1.2      yamt resetpriority(struct lwp *l)
    378   1.2      yamt {
    379   1.8        ad 	pri_t pri;
    380   1.2      yamt 	struct proc *p = l->l_proc;
    381   1.2      yamt 
    382   1.8        ad 	KASSERT(lwp_locked(l, NULL));
    383   1.2      yamt 
    384   1.8        ad 	if (l->l_class != SCHED_OTHER)
    385   1.2      yamt 		return;
    386   1.2      yamt 
    387   1.8        ad 	/* See comments above ESTCPU_SHIFT definition. */
    388   1.8        ad 	pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
    389   1.8        ad 	pri = imax(pri, 0);
    390   1.8        ad 	if (pri != l->l_priority)
    391   1.8        ad 		lwp_changepri(l, pri);
    392   1.2      yamt }
    393   1.2      yamt 
    394   1.2      yamt /*
    395  1.28      yamt  * We adjust the priority of the current LWP.  The priority of a LWP
    396   1.8        ad  * gets worse as it accumulates CPU time.  The CPU usage estimator (l_estcpu)
    397  1.28      yamt  * is increased here.  The formula for computing priorities will compute a
    398  1.28      yamt  * different value each time l_estcpu increases. This can cause a switch,
    399  1.28      yamt  * but unless the priority crosses a PPQ boundary the actual queue will not
    400  1.28      yamt  * change.  The CPU usage estimator ramps up quite quickly when the process
    401  1.28      yamt  * is running (linearly), and decays away exponentially, at a rate which is
    402  1.28      yamt  * proportionally slower when the system is busy.  The basic principle is
    403  1.28      yamt  * that the system will 90% forget that the process used a lot of CPU time
    404  1.31      maxv  * in (5 * loadavg) seconds.  This causes the system to favor processes which
    405  1.28      yamt  * haven't run much recently, and to round-robin among other processes.
    406   1.2      yamt  */
    407   1.2      yamt void
    408   1.2      yamt sched_schedclock(struct lwp *l)
    409   1.2      yamt {
    410   1.8        ad 
    411   1.8        ad 	if (l->l_class != SCHED_OTHER)
    412   1.8        ad 		return;
    413   1.2      yamt 
    414   1.2      yamt 	KASSERT(!CURCPU_IDLE_P());
    415   1.8        ad 	l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
    416   1.2      yamt 	lwp_lock(l);
    417   1.2      yamt 	resetpriority(l);
    418   1.2      yamt 	lwp_unlock(l);
    419   1.2      yamt }
    420   1.2      yamt 
    421   1.2      yamt /*
    422   1.2      yamt  * sched_proc_fork:
    423   1.2      yamt  *
    424   1.2      yamt  *	Inherit the parent's scheduler history.
    425   1.2      yamt  */
    426   1.2      yamt void
    427   1.2      yamt sched_proc_fork(struct proc *parent, struct proc *child)
    428   1.2      yamt {
    429   1.8        ad 	lwp_t *pl;
    430   1.2      yamt 
    431  1.20        ad 	KASSERT(mutex_owned(parent->p_lock));
    432   1.2      yamt 
    433   1.8        ad 	pl = LIST_FIRST(&parent->p_lwps);
    434   1.8        ad 	child->p_estcpu_inherited = pl->l_estcpu;
    435   1.2      yamt 	child->p_forktime = sched_pstats_ticks;
    436   1.2      yamt }
    437   1.2      yamt 
    438   1.2      yamt /*
    439   1.2      yamt  * sched_proc_exit:
    440   1.2      yamt  *
    441   1.2      yamt  *	Chargeback parents for the sins of their children.
    442   1.2      yamt  */
    443   1.2      yamt void
    444   1.2      yamt sched_proc_exit(struct proc *parent, struct proc *child)
    445   1.2      yamt {
    446   1.2      yamt 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
    447   1.2      yamt 	fixpt_t estcpu;
    448   1.8        ad 	lwp_t *pl, *cl;
    449   1.2      yamt 
    450   1.2      yamt 	/* XXX Only if parent != init?? */
    451   1.2      yamt 
    452  1.20        ad 	mutex_enter(parent->p_lock);
    453   1.8        ad 	pl = LIST_FIRST(&parent->p_lwps);
    454   1.8        ad 	cl = LIST_FIRST(&child->p_lwps);
    455   1.2      yamt 	estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
    456   1.2      yamt 	    sched_pstats_ticks - child->p_forktime);
    457   1.8        ad 	if (cl->l_estcpu > estcpu) {
    458   1.8        ad 		lwp_lock(pl);
    459   1.8        ad 		pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
    460   1.8        ad 		lwp_unlock(pl);
    461   1.8        ad 	}
    462  1.20        ad 	mutex_exit(parent->p_lock);
    463   1.2      yamt }
    464   1.2      yamt 
    465   1.2      yamt void
    466   1.6     rmind sched_wakeup(struct lwp *l)
    467   1.6     rmind {
    468   1.6     rmind 
    469   1.6     rmind }
    470   1.6     rmind 
    471   1.6     rmind void
    472   1.6     rmind sched_slept(struct lwp *l)
    473   1.6     rmind {
    474   1.6     rmind 
    475   1.6     rmind }
    476   1.6     rmind 
    477   1.2      yamt void
    478   1.8        ad sched_lwp_fork(struct lwp *l1, struct lwp *l2)
    479   1.2      yamt {
    480   1.2      yamt 
    481   1.8        ad 	l2->l_estcpu = l1->l_estcpu;
    482   1.2      yamt }
    483   1.2      yamt 
    484   1.2      yamt void
    485   1.8        ad sched_lwp_collect(struct lwp *t)
    486   1.8        ad {
    487   1.8        ad 	lwp_t *l;
    488   1.8        ad 
    489   1.8        ad 	/* Absorb estcpu value of collected LWP. */
    490   1.8        ad 	l = curlwp;
    491   1.8        ad 	lwp_lock(l);
    492   1.8        ad 	l->l_estcpu += t->l_estcpu;
    493   1.8        ad 	lwp_unlock(l);
    494   1.8        ad }
    495   1.8        ad 
    496  1.16        ad void
    497  1.16        ad sched_oncpu(lwp_t *l)
    498  1.16        ad {
    499  1.16        ad 
    500  1.16        ad }
    501  1.16        ad 
    502  1.16        ad void
    503  1.16        ad sched_newts(lwp_t *l)
    504  1.16        ad {
    505  1.16        ad 
    506  1.16        ad }
    507  1.16        ad 
    508   1.5        ad /*
    509  1.12     rmind  * Sysctl nodes and initialization.
    510   1.5        ad  */
    511  1.12     rmind 
    512  1.12     rmind static int
    513  1.12     rmind sysctl_sched_rtts(SYSCTLFN_ARGS)
    514  1.12     rmind {
    515  1.12     rmind 	struct sysctlnode node;
    516  1.12     rmind 	int rttsms = hztoms(rrticks);
    517  1.12     rmind 
    518  1.12     rmind 	node = *rnode;
    519  1.12     rmind 	node.sysctl_data = &rttsms;
    520  1.12     rmind 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    521  1.12     rmind }
    522  1.12     rmind 
    523  1.16        ad SYSCTL_SETUP(sysctl_sched_4bsd_setup, "sysctl sched setup")
    524   1.2      yamt {
    525   1.2      yamt 	const struct sysctlnode *node = NULL;
    526   1.2      yamt 
    527   1.2      yamt 	sysctl_createv(clog, 0, NULL, &node,
    528   1.2      yamt 		CTLFLAG_PERMANENT,
    529   1.2      yamt 		CTLTYPE_NODE, "sched",
    530   1.2      yamt 		SYSCTL_DESCR("Scheduler options"),
    531   1.2      yamt 		NULL, 0, NULL, 0,
    532   1.2      yamt 		CTL_KERN, CTL_CREATE, CTL_EOL);
    533   1.2      yamt 
    534  1.16        ad 	if (node == NULL)
    535  1.16        ad 		return;
    536   1.5        ad 
    537  1.16        ad 	rrticks = hz / 10;
    538  1.16        ad 
    539  1.16        ad 	sysctl_createv(NULL, 0, &node, NULL,
    540   1.5        ad 		CTLFLAG_PERMANENT,
    541   1.5        ad 		CTLTYPE_STRING, "name", NULL,
    542   1.5        ad 		NULL, 0, __UNCONST("4.4BSD"), 0,
    543   1.5        ad 		CTL_CREATE, CTL_EOL);
    544  1.16        ad 	sysctl_createv(NULL, 0, &node, NULL,
    545  1.12     rmind 		CTLFLAG_PERMANENT,
    546  1.12     rmind 		CTLTYPE_INT, "rtts",
    547  1.30      maxv 		SYSCTL_DESCR("Round-robin time quantum (in milliseconds)"),
    548  1.12     rmind 		sysctl_sched_rtts, 0, NULL, 0,
    549  1.12     rmind 		CTL_CREATE, CTL_EOL);
    550   1.2      yamt }
    551