sched_4bsd.c revision 1.35 1 1.35 riastrad /* $NetBSD: sched_4bsd.c,v 1.35 2018/09/03 16:29:35 riastradh Exp $ */
2 1.2 yamt
3 1.31 maxv /*
4 1.16 ad * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 1.2 yamt * All rights reserved.
6 1.2 yamt *
7 1.2 yamt * This code is derived from software contributed to The NetBSD Foundation
8 1.2 yamt * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.2 yamt * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
10 1.2 yamt * Daniel Sieger.
11 1.2 yamt *
12 1.2 yamt * Redistribution and use in source and binary forms, with or without
13 1.2 yamt * modification, are permitted provided that the following conditions
14 1.2 yamt * are met:
15 1.2 yamt * 1. Redistributions of source code must retain the above copyright
16 1.2 yamt * notice, this list of conditions and the following disclaimer.
17 1.2 yamt * 2. Redistributions in binary form must reproduce the above copyright
18 1.2 yamt * notice, this list of conditions and the following disclaimer in the
19 1.2 yamt * documentation and/or other materials provided with the distribution.
20 1.2 yamt *
21 1.2 yamt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 1.2 yamt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 1.2 yamt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 1.2 yamt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 1.2 yamt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 1.2 yamt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 1.2 yamt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.2 yamt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 1.2 yamt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 1.2 yamt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 1.2 yamt * POSSIBILITY OF SUCH DAMAGE.
32 1.2 yamt */
33 1.2 yamt
34 1.31 maxv /*
35 1.2 yamt * Copyright (c) 1982, 1986, 1990, 1991, 1993
36 1.2 yamt * The Regents of the University of California. All rights reserved.
37 1.2 yamt * (c) UNIX System Laboratories, Inc.
38 1.2 yamt * All or some portions of this file are derived from material licensed
39 1.2 yamt * to the University of California by American Telephone and Telegraph
40 1.2 yamt * Co. or Unix System Laboratories, Inc. and are reproduced herein with
41 1.2 yamt * the permission of UNIX System Laboratories, Inc.
42 1.2 yamt *
43 1.2 yamt * Redistribution and use in source and binary forms, with or without
44 1.2 yamt * modification, are permitted provided that the following conditions
45 1.2 yamt * are met:
46 1.2 yamt * 1. Redistributions of source code must retain the above copyright
47 1.2 yamt * notice, this list of conditions and the following disclaimer.
48 1.2 yamt * 2. Redistributions in binary form must reproduce the above copyright
49 1.2 yamt * notice, this list of conditions and the following disclaimer in the
50 1.2 yamt * documentation and/or other materials provided with the distribution.
51 1.2 yamt * 3. Neither the name of the University nor the names of its contributors
52 1.2 yamt * may be used to endorse or promote products derived from this software
53 1.2 yamt * without specific prior written permission.
54 1.2 yamt *
55 1.2 yamt * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 1.2 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 1.2 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 1.2 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 1.2 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 1.2 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 1.2 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 1.2 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 1.2 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 1.2 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 1.2 yamt * SUCH DAMAGE.
66 1.2 yamt *
67 1.2 yamt * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
68 1.2 yamt */
69 1.2 yamt
70 1.2 yamt #include <sys/cdefs.h>
71 1.35 riastrad __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.35 2018/09/03 16:29:35 riastradh Exp $");
72 1.2 yamt
73 1.2 yamt #include "opt_ddb.h"
74 1.2 yamt #include "opt_lockdebug.h"
75 1.2 yamt
76 1.2 yamt #include <sys/param.h>
77 1.2 yamt #include <sys/systm.h>
78 1.2 yamt #include <sys/callout.h>
79 1.2 yamt #include <sys/cpu.h>
80 1.2 yamt #include <sys/proc.h>
81 1.2 yamt #include <sys/kernel.h>
82 1.2 yamt #include <sys/resourcevar.h>
83 1.2 yamt #include <sys/sched.h>
84 1.2 yamt #include <sys/sysctl.h>
85 1.2 yamt #include <sys/lockdebug.h>
86 1.5 ad #include <sys/intr.h>
87 1.2 yamt
88 1.2 yamt static void updatepri(struct lwp *);
89 1.2 yamt static void resetpriority(struct lwp *);
90 1.2 yamt
91 1.2 yamt extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
92 1.2 yamt
93 1.2 yamt /* Number of hardclock ticks per sched_tick() */
94 1.31 maxv static int rrticks __read_mostly;
95 1.2 yamt
96 1.2 yamt /*
97 1.2 yamt * Force switch among equal priority processes every 100ms.
98 1.2 yamt * Called from hardclock every hz/10 == rrticks hardclock ticks.
99 1.5 ad *
100 1.5 ad * There's no need to lock anywhere in this routine, as it's
101 1.5 ad * CPU-local and runs at IPL_SCHED (called from clock interrupt).
102 1.2 yamt */
103 1.2 yamt /* ARGSUSED */
104 1.2 yamt void
105 1.2 yamt sched_tick(struct cpu_info *ci)
106 1.2 yamt {
107 1.2 yamt struct schedstate_percpu *spc = &ci->ci_schedstate;
108 1.23 ad lwp_t *l;
109 1.2 yamt
110 1.2 yamt spc->spc_ticks = rrticks;
111 1.2 yamt
112 1.15 ad if (CURCPU_IDLE_P()) {
113 1.15 ad cpu_need_resched(ci, 0);
114 1.7 rmind return;
115 1.15 ad }
116 1.23 ad l = ci->ci_data.cpu_onproc;
117 1.23 ad if (l == NULL) {
118 1.19 yamt return;
119 1.19 yamt }
120 1.23 ad switch (l->l_class) {
121 1.23 ad case SCHED_FIFO:
122 1.23 ad /* No timeslicing for FIFO jobs. */
123 1.23 ad break;
124 1.23 ad case SCHED_RR:
125 1.23 ad /* Force it into mi_switch() to look for other jobs to run. */
126 1.23 ad cpu_need_resched(ci, RESCHED_KPREEMPT);
127 1.23 ad break;
128 1.23 ad default:
129 1.23 ad if (spc->spc_flags & SPCF_SHOULDYIELD) {
130 1.23 ad /*
131 1.23 ad * Process is stuck in kernel somewhere, probably
132 1.31 maxv * due to buggy or inefficient code. Force a
133 1.23 ad * kernel preemption.
134 1.23 ad */
135 1.23 ad cpu_need_resched(ci, RESCHED_KPREEMPT);
136 1.23 ad } else if (spc->spc_flags & SPCF_SEENRR) {
137 1.23 ad /*
138 1.23 ad * The process has already been through a roundrobin
139 1.23 ad * without switching and may be hogging the CPU.
140 1.23 ad * Indicate that the process should yield.
141 1.23 ad */
142 1.23 ad spc->spc_flags |= SPCF_SHOULDYIELD;
143 1.23 ad cpu_need_resched(ci, 0);
144 1.23 ad } else {
145 1.23 ad spc->spc_flags |= SPCF_SEENRR;
146 1.23 ad }
147 1.23 ad break;
148 1.23 ad }
149 1.2 yamt }
150 1.2 yamt
151 1.8 ad /*
152 1.8 ad * Why PRIO_MAX - 2? From setpriority(2):
153 1.8 ad *
154 1.8 ad * prio is a value in the range -20 to 20. The default priority is
155 1.8 ad * 0; lower priorities cause more favorable scheduling. A value of
156 1.8 ad * 19 or 20 will schedule a process only when nothing at priority <=
157 1.8 ad * 0 is runnable.
158 1.8 ad *
159 1.8 ad * This gives estcpu influence over 18 priority levels, and leaves nice
160 1.8 ad * with 40 levels. One way to think about it is that nice has 20 levels
161 1.8 ad * either side of estcpu's 18.
162 1.8 ad */
163 1.2 yamt #define ESTCPU_SHIFT 11
164 1.8 ad #define ESTCPU_MAX ((PRIO_MAX - 2) << ESTCPU_SHIFT)
165 1.8 ad #define ESTCPU_ACCUM (1 << (ESTCPU_SHIFT - 1))
166 1.35 riastrad #define ESTCPULIM(e) uimin((e), ESTCPU_MAX)
167 1.2 yamt
168 1.2 yamt /*
169 1.31 maxv * The main parameter used by this algorithm is 'l_estcpu'. It is an estimate
170 1.31 maxv * of the recent CPU utilization of the thread.
171 1.31 maxv *
172 1.31 maxv * l_estcpu is:
173 1.31 maxv * - increased each time the hardclock ticks and the thread is found to
174 1.31 maxv * be executing, in sched_schedclock() called from hardclock()
175 1.31 maxv * - decreased (filtered) on each sched tick, in sched_pstats_hook()
176 1.31 maxv * If the lwp is sleeping for more than a second, we don't touch l_estcpu: it
177 1.31 maxv * will be updated in sched_setrunnable() when the lwp wakes up, in burst mode
178 1.31 maxv * (ie, we decrease it n times).
179 1.2 yamt *
180 1.8 ad * Note that hardclock updates l_estcpu and l_cpticks independently.
181 1.2 yamt *
182 1.31 maxv * -----------------------------------------------------------------------------
183 1.31 maxv *
184 1.31 maxv * Here we describe how l_estcpu is decreased.
185 1.31 maxv *
186 1.31 maxv * Constants for digital decay (filter):
187 1.31 maxv * 90% of l_estcpu usage in (5 * loadavg) seconds
188 1.31 maxv *
189 1.31 maxv * We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds. That is, we
190 1.31 maxv * want to compute a value of decay such that the following loop:
191 1.31 maxv * for (i = 0; i < (5 * loadavg); i++)
192 1.31 maxv * l_estcpu *= decay;
193 1.31 maxv * will result in
194 1.31 maxv * l_estcpu *= 0.1;
195 1.31 maxv * for all values of loadavg.
196 1.2 yamt *
197 1.2 yamt * Mathematically this loop can be expressed by saying:
198 1.31 maxv * decay ** (5 * loadavg) ~= .1
199 1.31 maxv *
200 1.31 maxv * And finally, the corresponding value of decay we're using is:
201 1.31 maxv * decay = (2 * loadavg) / (2 * loadavg + 1)
202 1.2 yamt *
203 1.31 maxv * -----------------------------------------------------------------------------
204 1.2 yamt *
205 1.31 maxv * Now, let's prove that the value of decay stated above will always fulfill
206 1.31 maxv * the equation:
207 1.31 maxv * decay ** (5 * loadavg) ~= .1
208 1.2 yamt *
209 1.2 yamt * If we compute b as:
210 1.31 maxv * b = 2 * loadavg
211 1.2 yamt * then
212 1.31 maxv * decay = b / (b + 1)
213 1.2 yamt *
214 1.2 yamt * We now need to prove two things:
215 1.31 maxv * 1) Given [factor ** (5 * loadavg) =~ .1], prove [factor == b/(b+1)].
216 1.31 maxv * 2) Given [b/(b+1) ** power =~ .1], prove [power == (5 * loadavg)].
217 1.2 yamt *
218 1.2 yamt * Facts:
219 1.31 maxv * * For x real: exp(x) = 0! + x**1/1! + x**2/2! + ...
220 1.31 maxv * Therefore, for x close to zero, exp(x) =~ 1 + x.
221 1.31 maxv * In turn, for b large enough, exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
222 1.31 maxv *
223 1.31 maxv * * For b large enough, (b-1)/b =~ b/(b+1).
224 1.31 maxv *
225 1.31 maxv * * For x belonging to [-1;1[, ln(1-x) = - x - x**2/2 - x**3/3 - ...
226 1.31 maxv * Therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
227 1.31 maxv *
228 1.31 maxv * * ln(0.1) =~ -2.30
229 1.2 yamt *
230 1.2 yamt * Proof of (1):
231 1.31 maxv * factor ** (5 * loadavg) =~ 0.1
232 1.31 maxv * => ln(factor) =~ -2.30 / (5 * loadavg)
233 1.31 maxv * => factor =~ exp(-1 / ((5 / 2.30) * loadavg))
234 1.31 maxv * =~ exp(-1 / (2 * loadavg))
235 1.31 maxv * =~ exp(-1 / b)
236 1.31 maxv * =~ (b - 1) / b
237 1.31 maxv * =~ b / (b + 1)
238 1.31 maxv * =~ (2 * loadavg) / ((2 * loadavg) + 1)
239 1.2 yamt *
240 1.2 yamt * Proof of (2):
241 1.31 maxv * (b / (b + 1)) ** power =~ .1
242 1.31 maxv * => power * ln(b / (b + 1)) =~ -2.30
243 1.31 maxv * => power * (-1 / (b + 1)) =~ -2.30
244 1.31 maxv * => power =~ 2.30 * (b + 1)
245 1.31 maxv * => power =~ 4.60 * loadavg + 2.30
246 1.31 maxv * => power =~ 5 * loadavg
247 1.31 maxv *
248 1.31 maxv * Conclusion: decay = (2 * loadavg) / (2 * loadavg + 1)
249 1.2 yamt */
250 1.2 yamt
251 1.31 maxv /* See calculations above */
252 1.32 maxv #define loadfactor(loadavg) (2 * (loadavg))
253 1.2 yamt
254 1.17 yamt static fixpt_t
255 1.2 yamt decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
256 1.2 yamt {
257 1.2 yamt
258 1.2 yamt if (estcpu == 0) {
259 1.2 yamt return 0;
260 1.2 yamt }
261 1.2 yamt
262 1.2 yamt #if !defined(_LP64)
263 1.2 yamt /* avoid 64bit arithmetics. */
264 1.2 yamt #define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
265 1.2 yamt if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
266 1.2 yamt return estcpu * loadfac / (loadfac + FSCALE);
267 1.2 yamt }
268 1.31 maxv #endif
269 1.2 yamt
270 1.2 yamt return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
271 1.2 yamt }
272 1.2 yamt
273 1.2 yamt static fixpt_t
274 1.2 yamt decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
275 1.2 yamt {
276 1.2 yamt
277 1.31 maxv /*
278 1.31 maxv * For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
279 1.31 maxv * if we slept for at least seven times the loadfactor, we will decay
280 1.31 maxv * l_estcpu to less than (1 << ESTCPU_SHIFT), and therefore we can
281 1.31 maxv * return zero directly.
282 1.31 maxv *
283 1.31 maxv * Note that our ESTCPU_MAX is actually much smaller than
284 1.31 maxv * (255 << ESTCPU_SHIFT).
285 1.31 maxv */
286 1.2 yamt if ((n << FSHIFT) >= 7 * loadfac) {
287 1.2 yamt return 0;
288 1.2 yamt }
289 1.2 yamt
290 1.2 yamt while (estcpu != 0 && n > 1) {
291 1.2 yamt estcpu = decay_cpu(loadfac, estcpu);
292 1.2 yamt n--;
293 1.2 yamt }
294 1.2 yamt
295 1.2 yamt return estcpu;
296 1.2 yamt }
297 1.2 yamt
298 1.2 yamt /*
299 1.2 yamt * sched_pstats_hook:
300 1.2 yamt *
301 1.2 yamt * Periodically called from sched_pstats(); used to recalculate priorities.
302 1.2 yamt */
303 1.2 yamt void
304 1.22 rmind sched_pstats_hook(struct lwp *l, int batch)
305 1.2 yamt {
306 1.25 yamt fixpt_t loadfac;
307 1.2 yamt
308 1.8 ad /*
309 1.8 ad * If the LWP has slept an entire second, stop recalculating
310 1.8 ad * its priority until it wakes up.
311 1.8 ad */
312 1.24 rmind KASSERT(lwp_locked(l, NULL));
313 1.25 yamt if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
314 1.25 yamt l->l_stat == LSSUSPENDED) {
315 1.25 yamt if (l->l_slptime > 1) {
316 1.25 yamt return;
317 1.25 yamt }
318 1.8 ad }
319 1.33 maxv
320 1.33 maxv loadfac = loadfactor(averunnable.ldavg[0]);
321 1.25 yamt l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
322 1.25 yamt resetpriority(l);
323 1.2 yamt }
324 1.2 yamt
325 1.2 yamt /*
326 1.31 maxv * Recalculate the priority of an LWP after it has slept for a while.
327 1.2 yamt */
328 1.2 yamt static void
329 1.2 yamt updatepri(struct lwp *l)
330 1.2 yamt {
331 1.2 yamt fixpt_t loadfac;
332 1.2 yamt
333 1.3 ad KASSERT(lwp_locked(l, NULL));
334 1.2 yamt KASSERT(l->l_slptime > 1);
335 1.2 yamt
336 1.2 yamt loadfac = loadfactor(averunnable.ldavg[0]);
337 1.2 yamt
338 1.2 yamt l->l_slptime--; /* the first time was done in sched_pstats */
339 1.8 ad l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
340 1.2 yamt resetpriority(l);
341 1.2 yamt }
342 1.2 yamt
343 1.2 yamt void
344 1.14 matt sched_rqinit(void)
345 1.2 yamt {
346 1.2 yamt
347 1.2 yamt }
348 1.2 yamt
349 1.2 yamt void
350 1.2 yamt sched_setrunnable(struct lwp *l)
351 1.2 yamt {
352 1.2 yamt
353 1.2 yamt if (l->l_slptime > 1)
354 1.2 yamt updatepri(l);
355 1.2 yamt }
356 1.2 yamt
357 1.2 yamt void
358 1.8 ad sched_nice(struct proc *p, int n)
359 1.2 yamt {
360 1.8 ad struct lwp *l;
361 1.8 ad
362 1.20 ad KASSERT(mutex_owned(p->p_lock));
363 1.2 yamt
364 1.8 ad p->p_nice = n;
365 1.8 ad LIST_FOREACH(l, &p->p_lwps, l_sibling) {
366 1.8 ad lwp_lock(l);
367 1.8 ad resetpriority(l);
368 1.8 ad lwp_unlock(l);
369 1.8 ad }
370 1.2 yamt }
371 1.2 yamt
372 1.2 yamt /*
373 1.8 ad * Recompute the priority of an LWP. Arrange to reschedule if
374 1.8 ad * the resulting priority is better than that of the current LWP.
375 1.2 yamt */
376 1.2 yamt static void
377 1.2 yamt resetpriority(struct lwp *l)
378 1.2 yamt {
379 1.8 ad pri_t pri;
380 1.2 yamt struct proc *p = l->l_proc;
381 1.2 yamt
382 1.8 ad KASSERT(lwp_locked(l, NULL));
383 1.2 yamt
384 1.8 ad if (l->l_class != SCHED_OTHER)
385 1.2 yamt return;
386 1.2 yamt
387 1.8 ad /* See comments above ESTCPU_SHIFT definition. */
388 1.8 ad pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
389 1.8 ad pri = imax(pri, 0);
390 1.8 ad if (pri != l->l_priority)
391 1.8 ad lwp_changepri(l, pri);
392 1.2 yamt }
393 1.2 yamt
394 1.2 yamt /*
395 1.28 yamt * We adjust the priority of the current LWP. The priority of a LWP
396 1.8 ad * gets worse as it accumulates CPU time. The CPU usage estimator (l_estcpu)
397 1.28 yamt * is increased here. The formula for computing priorities will compute a
398 1.28 yamt * different value each time l_estcpu increases. This can cause a switch,
399 1.28 yamt * but unless the priority crosses a PPQ boundary the actual queue will not
400 1.28 yamt * change. The CPU usage estimator ramps up quite quickly when the process
401 1.28 yamt * is running (linearly), and decays away exponentially, at a rate which is
402 1.28 yamt * proportionally slower when the system is busy. The basic principle is
403 1.28 yamt * that the system will 90% forget that the process used a lot of CPU time
404 1.31 maxv * in (5 * loadavg) seconds. This causes the system to favor processes which
405 1.28 yamt * haven't run much recently, and to round-robin among other processes.
406 1.2 yamt */
407 1.2 yamt void
408 1.2 yamt sched_schedclock(struct lwp *l)
409 1.2 yamt {
410 1.8 ad
411 1.8 ad if (l->l_class != SCHED_OTHER)
412 1.8 ad return;
413 1.2 yamt
414 1.2 yamt KASSERT(!CURCPU_IDLE_P());
415 1.8 ad l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
416 1.2 yamt lwp_lock(l);
417 1.2 yamt resetpriority(l);
418 1.2 yamt lwp_unlock(l);
419 1.2 yamt }
420 1.2 yamt
421 1.2 yamt /*
422 1.2 yamt * sched_proc_fork:
423 1.2 yamt *
424 1.2 yamt * Inherit the parent's scheduler history.
425 1.2 yamt */
426 1.2 yamt void
427 1.2 yamt sched_proc_fork(struct proc *parent, struct proc *child)
428 1.2 yamt {
429 1.8 ad lwp_t *pl;
430 1.2 yamt
431 1.20 ad KASSERT(mutex_owned(parent->p_lock));
432 1.2 yamt
433 1.8 ad pl = LIST_FIRST(&parent->p_lwps);
434 1.8 ad child->p_estcpu_inherited = pl->l_estcpu;
435 1.2 yamt child->p_forktime = sched_pstats_ticks;
436 1.2 yamt }
437 1.2 yamt
438 1.2 yamt /*
439 1.2 yamt * sched_proc_exit:
440 1.2 yamt *
441 1.2 yamt * Chargeback parents for the sins of their children.
442 1.2 yamt */
443 1.2 yamt void
444 1.2 yamt sched_proc_exit(struct proc *parent, struct proc *child)
445 1.2 yamt {
446 1.2 yamt fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
447 1.2 yamt fixpt_t estcpu;
448 1.8 ad lwp_t *pl, *cl;
449 1.2 yamt
450 1.2 yamt /* XXX Only if parent != init?? */
451 1.2 yamt
452 1.20 ad mutex_enter(parent->p_lock);
453 1.8 ad pl = LIST_FIRST(&parent->p_lwps);
454 1.8 ad cl = LIST_FIRST(&child->p_lwps);
455 1.2 yamt estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
456 1.2 yamt sched_pstats_ticks - child->p_forktime);
457 1.8 ad if (cl->l_estcpu > estcpu) {
458 1.8 ad lwp_lock(pl);
459 1.8 ad pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
460 1.8 ad lwp_unlock(pl);
461 1.8 ad }
462 1.20 ad mutex_exit(parent->p_lock);
463 1.2 yamt }
464 1.2 yamt
465 1.2 yamt void
466 1.6 rmind sched_wakeup(struct lwp *l)
467 1.6 rmind {
468 1.6 rmind
469 1.6 rmind }
470 1.6 rmind
471 1.6 rmind void
472 1.6 rmind sched_slept(struct lwp *l)
473 1.6 rmind {
474 1.6 rmind
475 1.6 rmind }
476 1.6 rmind
477 1.2 yamt void
478 1.8 ad sched_lwp_fork(struct lwp *l1, struct lwp *l2)
479 1.2 yamt {
480 1.2 yamt
481 1.8 ad l2->l_estcpu = l1->l_estcpu;
482 1.2 yamt }
483 1.2 yamt
484 1.2 yamt void
485 1.8 ad sched_lwp_collect(struct lwp *t)
486 1.8 ad {
487 1.8 ad lwp_t *l;
488 1.8 ad
489 1.8 ad /* Absorb estcpu value of collected LWP. */
490 1.8 ad l = curlwp;
491 1.8 ad lwp_lock(l);
492 1.8 ad l->l_estcpu += t->l_estcpu;
493 1.8 ad lwp_unlock(l);
494 1.8 ad }
495 1.8 ad
496 1.16 ad void
497 1.16 ad sched_oncpu(lwp_t *l)
498 1.16 ad {
499 1.16 ad
500 1.16 ad }
501 1.16 ad
502 1.16 ad void
503 1.16 ad sched_newts(lwp_t *l)
504 1.16 ad {
505 1.16 ad
506 1.16 ad }
507 1.16 ad
508 1.5 ad /*
509 1.12 rmind * Sysctl nodes and initialization.
510 1.5 ad */
511 1.12 rmind
512 1.12 rmind static int
513 1.12 rmind sysctl_sched_rtts(SYSCTLFN_ARGS)
514 1.12 rmind {
515 1.12 rmind struct sysctlnode node;
516 1.12 rmind int rttsms = hztoms(rrticks);
517 1.12 rmind
518 1.12 rmind node = *rnode;
519 1.12 rmind node.sysctl_data = &rttsms;
520 1.12 rmind return sysctl_lookup(SYSCTLFN_CALL(&node));
521 1.12 rmind }
522 1.12 rmind
523 1.16 ad SYSCTL_SETUP(sysctl_sched_4bsd_setup, "sysctl sched setup")
524 1.2 yamt {
525 1.2 yamt const struct sysctlnode *node = NULL;
526 1.2 yamt
527 1.2 yamt sysctl_createv(clog, 0, NULL, &node,
528 1.2 yamt CTLFLAG_PERMANENT,
529 1.2 yamt CTLTYPE_NODE, "sched",
530 1.2 yamt SYSCTL_DESCR("Scheduler options"),
531 1.2 yamt NULL, 0, NULL, 0,
532 1.2 yamt CTL_KERN, CTL_CREATE, CTL_EOL);
533 1.2 yamt
534 1.16 ad if (node == NULL)
535 1.16 ad return;
536 1.5 ad
537 1.16 ad rrticks = hz / 10;
538 1.16 ad
539 1.16 ad sysctl_createv(NULL, 0, &node, NULL,
540 1.5 ad CTLFLAG_PERMANENT,
541 1.5 ad CTLTYPE_STRING, "name", NULL,
542 1.5 ad NULL, 0, __UNCONST("4.4BSD"), 0,
543 1.5 ad CTL_CREATE, CTL_EOL);
544 1.16 ad sysctl_createv(NULL, 0, &node, NULL,
545 1.12 rmind CTLFLAG_PERMANENT,
546 1.12 rmind CTLTYPE_INT, "rtts",
547 1.30 maxv SYSCTL_DESCR("Round-robin time quantum (in milliseconds)"),
548 1.12 rmind sysctl_sched_rtts, 0, NULL, 0,
549 1.12 rmind CTL_CREATE, CTL_EOL);
550 1.2 yamt }
551